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Abstract—In this paper, we present a novel data-driven1

approach to detect outage events in partially observable distri-2

bution systems by capturing the changes in smart meters’ (SMs)3

data distribution. To achieve this, first, a breadth-first search4

(BFS)-based mechanism is proposed to decompose the network5

into a set of zones that maximize outage location information6

in partially observable systems. Then, using SM data in each7

zone, a generative adversarial network (GAN) is designed to8

implicitly extract the temporal-spatial behavior in normal con-9

ditions in an unsupervised fashion. After training, an anomaly10

scoring technique is leveraged to determine if real-time mea-11

surements indicate an outage event in the zone. Finally, to infer12

the location of the outage events in a multi-zone network, a13

zone coordination process is proposed to take into account the14

interdependencies of intersecting zones. We have provided ana-15

lytical guarantees of performance for our algorithm using the16

concept of entropy, which is leveraged to quantify outage loca-17

tion information in multi-zone grids. The proposed method has18

been tested and verified on distribution feeder models with real19

SM data.20

Index Terms—Generative adversarial networks, outage detec-21

tion, partially observable system, smart meter, zone.22

NOMENCLATURE23

AMI Advanced metering infrastructure24

BFS Breadth-first search25

GAN Generative adversarial network26

SM Smart meter27

A \ B Elements of set A that are not in set B28

A � B A has a higher topological order than B29

Bc Candidate branch set that are potentially the30

location of outage event31

Bg Set of grid branches32

cosφi Power factor of node i33
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D Discriminator 34

G Generator 35

H(·) Entropy function for assessing outage location 36

information 37

Ii−1,i Branch current between nodes i− 1 and i 38

Ki−1,i Approximate voltage drop factor 39

li−1,i Length of distribution line segment between 40

nodes i− 1 and i 41

m Number of batch size 42

M Number of branches in the system 43

nD Number of iterations for D per G iteration 44

N(g) Set of neighboring nodes in the grid 45

O Number of observable nodes 46

Oend Number of observable nodes that do not have 47

any observable downstream nodes 48

Pi Power consumption of node i 49

�Ps Outage event magnitude 50

PX�i
Probability density function of historical data 51

in zone �i 52

Sr Network’s root node 53

Sg Set of observable nodes in the partially observ- 54

able distribution system 55

So1 Upstream observable node of zone 56

So2 Downstream observable node of zone 57

T Length of the time window 58

uk k’th set of branches that are covered with the 59

exact same set of zones 60

U(�g) Undetectable branch set for the selected zone 61

set �g
62

VO Number of zones containing the faulted branch 63

in the system 64

|Vi| Voltage magnitude measurements at node i 65

�V Voltage drop value in normal condition 66

�Vo Post-outage voltage drop value 67

X�i Training dataset for zone �i 68

z Noise signal with uniform distribution 69

z∗ Optimal solution for residual error 70

Z�i Set of branch in zone �i 71

ZZZ(i−1,i),abc Phase impedance matrix between nodes i − 1 72

and i 73

α Learning rate 74

δR(·) Residual error 75

δD(·) Discriminator error 76
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γ g(bj) Set of zones in the grid that include branch bj77

λ Weight factor for combining δR(·) and δD(·)78

μ�i Sample mean of the anomaly scores for the79

training dataset in zone �i80

ω Number of zones in the system81

�i i’th outage detection zone82

�g Set of all selected zones for the partially83

observable grid84

�a Target zone containing the maximum85

information on the outage event86

σ�i Sample variance of the anomaly scores for the87

training dataset in zone �i88

θG, θD Learning parameters for G and D89

ζ�i GAN-based anomaly score in zone �i.90

I. INTRODUCTION91

OUTAGE detection is a challenging problem in power92

systems, especially in distribution networks where the93

majority of outage events take place. According to the94

statistical data provided by the U.S. Energy Information95

Administration, each customer lost power for around 4 hours96

on average in 2016 [1]. To decrease outage duration, and97

improve system reliability and customer satisfaction, distri-98

bution system operators (DSOs) deploy state-of-the-art out-99

age management systems, using modern software tools and100

protection devices with bidirectional communication func-101

tion. This allows DSOs to collect real-time up-to-the-second102

data from the network [2]. Nevertheless, use of intelligent103

communication-capable devices in distribution systems has104

not become prevalent, mostly due to budgetary limitations of105

utilities [3]. Hence, identification of distribution system out-106

age events, especially for small utilities, still relies on trouble107

calls from customers and manual inspection. However, trouble108

calls alone are not a reliable data source of outage detection109

because customers may not make prompt calls to utilities [4].110

Also, conventional expert-experience-based outage discovery111

methods that use customer calls are laborious, costly, and112

time-consuming [5].113

In recent years, a number of papers have explored data-114

driven alternatives for outage detection. According to the type115

of data source, the previous works in this area can be classified116

into two groups: Class I - Smart meter (SM)-based meth-117

ods: With the widespread deployment of advanced metering118

infrastructure (AMI), SMs provide an opportunity to rapidly119

detect outage events by recording the real-time demand con-120

sumption and automatically sending “last gasp” signals to the121

utilities. In [6], a multi-label support vector machine classifi-122

cation method is presented that utilizes the last gasp signals123

of SMs to detect and find the locations of damaged lines in124

fully observable networks. In [7], a hierarchical framework is125

developed to provide anomaly-related insights using multivari-126

ate event counter data collected from SMs. In [8], a fuzzy Petri127

nets-based approach is proposed to detect nontechnical losses128

and outage events by tracking the differences between pro-129

filed and irregular power consumption. In [9], a probabilistic130

and fuzzy model-based algorithm is presented to process out-131

age data using AMI. In [10], a tree-based polling algorithm132

is developed to obtain information about the system condi- 133

tions by polling local SMs. Class II - non-SM-based methods: 134

Other data sources have been used in the literature for outage 135

detection, as well. In [2], a hypothesis testing-based outage 136

detection method is developed combining the use of real-time 137

power flow measurements and load forecasts of the nodes. 138

In [4], a social network-based data-driven method is proposed 139

by leveraging real-time information extraction from Twitter. 140

In [11], a new boosting algorithm is developed to estimate 141

outages in overhead distribution systems by utilizing weather 142

information. 143

Even though previous works provide valuable results, crit- 144

ical questions remain unanswered in this area. The limitation 145

of most Class I models is their basic assumption that the dis- 146

tribution system is fully observable, i.e., all the nodes have 147

measurement devices. However, this assumption does not nec- 148

essarily apply to practical systems, in which large portions 149

of customers do not own smart meters [6]. On the other 150

hand, Class II methods are generally based on several limit- 151

ing assumptions, such as availability of accurate forecasts for 152

customer loads, availability of real-time power flow measure- 153

ments, and reliability of social network data. Another difficulty 154

in outage detection is outage data scarcity, which means that 155

the size of the outage data is far smaller compared to the 156

data in normal conditions. This issue causes a data imbal- 157

ance problem that could hinder reliable training of supervised 158

learning-based outage detection models [12]. 159

To address these shortcomings, in this paper, a genera- 160

tive adversarial network (GAN)-based method is developed 161

to detect power outages in partially observable distribution 162

systems by capturing the anomalous changes in SMs’ measure- 163

ment data distributions that are caused by outage events [13]. 164

Compared to the previous works, the proposed method solves 165

three fundamental challenges in outage monitoring for par- 166

tially observable distribution systems: 1) Unlike supervised 167

classifiers that can fail in case of outage data scarcity, the 168

proposed generative model follows an unsupervised learn- 169

ing style which only relies on the operation data in normal 170

conditions for model training. Then, a GAN-based anomaly 171

score is defined to quantify the deviations between the learned 172

distribution and the real-time measurements to detect poten- 173

tial outage events, i.e., new observations with high anomaly 174

scores imply outage [14]. 2) Due to the temporal variability of 175

AMI data, efficient outage detection requires capturing high- 176

dimensional temporal-spatial relationships in measurement 177

data. Conventional data distribution estimators are limited by 178

the high-dimensional nature of the data. Instead of construct- 179

ing a complex data likelihood function explicitly, our approach 180

trains GANs to implicitly extract the underlying distribution of 181

the data. Each GAN consists of two interconnected deep neural 182

networks (DNNs) [15]. 3) Considering the partial observabil- 183

ity of real systems, we have proposed a breadth-first search 184

(BFS)-based mechanism to decompose large-scale distribu- 185

tion networks into a set of intersecting zones [16]. Each zone 186

is determined by two neighboring observable nodes of the 187

network (i.e., nodes with known voltages and demands) and 188

contains only a subset of network branches. A separate GAN 189

is trained in each zone using the time-series data of the two 190
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Fig. 1. Example zone in normal condition.

observable nodes. Since sectionalizing networks into multiple191

zones can be done in more than one way depending on the192

choice of observable nodes, it is necessary to find the optimal193

set of zones. Our BFS-based approach optimizes the zone194

selection and anomaly score coordination process and achieves195

maximum outage location information. To demonstrate this,196

we have proposed an outage detection metric based on the197

information-theoretic concept of entropy to quantify outage198

location information. The proposed outage detection method-199

ology has been tested and verified using real AMI data and200

network models.201

II. REAL DATA DESCRIPTION AND ZONE SELECTION202

A. AMI Data Description203

The historical AMI data used in this paper contains sev-204

eral U.S., mid-west utilities’ hourly energy consumption data205

(kWh) and voltage magnitude measurements of over 6000206

customers [17]. The dataset includes around four years of mea-207

surements, from January 2015 to May 2018. Over 95% of208

customers are residential and commercial loads in the dataset.209

The hourly data was initially processed to remove bad and210

missing data caused by communication error.211

B. Outage Detection Zone Definition212

When an outage happens in a radial system, a protec-213

tive device isolates the faulted area along with the loads214

downstream of the fault location [2]. This will cause the mea-215

surement data samples from unfaulted upstream observable216

nodes to deviate from the data distribution in normal condi-217

tion. In this paper, we exploit this phenomenon to define an218

outage detection zone.219

In general, two observable nodes (i.e., nodes with AMI-220

based measured voltage magnitudes and power consumption)221

can be utilized to detect an outage happening on the paths222

downstream of the two nodes. To show this, Fig. 1 presents223

a typical distribution feeder with two observable nodes, node224

n and node n + N. Given the radial structure of the feeder,225

the voltage drop, �V , between nodes n and n + N can be226

Fig. 2. Joint data distribution under normal and outage conditions.

expressed as [18]: 227

�V = |Vn| − |Vn+N | ≈ |
n+N∑

i=n+1

Z(i−1,i),abc · Ii−1,i| (1) 228

where, |Vn| and |Vn+N | are the voltage magnitude measure- 229

ments of the observable nodes, Ii−1,i and Z(i−1,i),abc are the 230

branch current and the phase impedance matrix between bus 231

i − 1 and i. Dimensions of the variables in (1) depend on 232

the number of phases of distribution lines. For example, for 233

a three-phase feeder |Vn|, |Vn+N | and Ii−1,i are 3-by-1 vec- 234

tors, and Z(i−1,i),abc is a 3-by-3 matrix. The above equation 235

can be rewritten in terms of nodal power measurements, as 236

follows [18]: 237

�V ≈
n+N∑

i=n+1

n+L∑

j=i

Ki−1,i ⊗ li−1,i ⊗ Pj

cosφj
(2) 238

where, n+L is the total length of this path, Ki−1,i [ %drop
kVA·mile ] and 239

li−1,i are the approximate voltage drop factor and the length 240

of distribution line segment between nodes i− 1 and i, Pj and 241

cos φj represent the nodal power consumption and the power 242

factor at node j. Here, Ki−1,i, li−1,i, and Pj are 3-by-1 vec- 243

tors, and ⊗ denotes element-wise multiplication. When outage 244

happens at an unobservable node s downstream of node n, 245

n+ 1 ≤ s ≤ n+ L, the post-outage voltage drop value, �Vo, 246

is determined as follows: 247

�Vo ≈ �V+
min(s,n+N)∑

i=n+1

Ki−1,i ⊗ li−1,i ⊗ �Ps

cosφs
(3) 248

where, �Ps represents the outage event magnitude and has 249

a negative value. Comparing (3) with (2), we can observe 250

that the voltage drop value across the two observable nodes 251

changes after an outage event downstream of any of the two 252

nodes. These changes are almost proportional to the outage 253

magnitude, �Ps. This can also be confirmed using real AMI 254

data, as shown in Fig. 2, where Pag
1 and Pag

2 are the aggregated 255

power consumption of the first and second observable nodes in 256

a zone. This figure shows the perceivable gap between the joint 257

data distribution obtained from two observable nodes under 258

normal and one specific outage condition, in three dimensions. 259

Given that an outage event anywhere downstream of the two 260

nodes will lead to deviations from their underlying joint mea- 261

surement data distribution in normal operations, we define an 262

outage detection zone as follows. 263
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Definition 1: In a radial network, an outage detection zone,264

�i, is defined as �i = {So1, So2, Z�i} where So1 and So2 are265

two observable nodes, with So1 being upstream of So2, and266

Z�i is the set of all the branches downstream of So1.267

C. Zone Selection268

Based on Definition 1, for a specific distribution system,269

different zone selection strategies can result in different zone270

partitioning, which will impact the performance of outage271

detection and location. Hence, we propose a BFS-based zone272

selection method by exploiting the tree-like structure of distri-273

bution systems in this paper. Specifically, our method selects274

the zones using nodes at the present depth before moving275

on the nodes at the next depth level. As will be elabo-276

rated in Section IV, the proposed zone selection algorithm277

offers two advantages: (1) it is able to obtain the optimal278

zone set that maximizes the outage location information in279

arbitrary partially observable network. (2) The proposed BFS-280

based algorithm introduces a valid topological ordering, which281

significantly simplifies outage location identification process.282

Prior to discussing the zone selection algorithm, we provide283

the following useful definition [19].284

Definition 2: In a radial network, node B is defined as an285

immediate observable downstream node for an arbitrary node286

A if two conditions are satisfied: 1) node B is located down-287

stream of node A; 2) the path that connects A and B consists288

only of unobservable nodes.289

The proposed algorithm involves the following steps:290

• Step I: Consider a partially observable distribution291

system, g, with a total number of M branches, Bg =292

{b1, . . . , bM}, and a set of O+ 1 observable nodes, Sg =293

{Sr, S1, S2, . . . , SO}, where Sr represents the network’s294

root node (i.e., main substation).295

• Step II: Define and initialize the zone set and the neigh-296

boring node set for g, as �g and N(g) = {∅}. Note that297

the set �g is an ordered set, where new elements are298

added to the right side of the current elements in the299

set (i.e., order of elements matters). Initialize the set of300

candidate observable nodes as SB = {Sr}, and the zone301

counter k← 1.302

• Step III: If N(g) = {∅}, randomly select and then remove303

a node, So1, from SB. Else if N(g) 
= {∅}, randomly select304

and remove a node, So1, from N(g).305

• Step IV: Find all the immediate observable nodes down-306

stream of So1 (see Definition 2), and randomly select a307

node from this set, which is denoted as So2. If N(g) = {∅},308

add all the immediate observable nodes downstream of309

So1 to N(g); otherwise, add them to SB.310

• Step V: Select a new zone �k, with So1 and So2, and311

include all the branches downstream of So1 into Z�k (see312

Definition 1). Add �k to the right side of the current313

zones in �g.314

• Step VI: k ← k + 1. Go back to Step III until N(g) is315

empty for all the nodes in SB.316

• Step VII: Output the ordered set of all network zones,317

�g = {�1, . . . , �w}, with w denoting the number of318

selected zones.319

Fig. 3. Proposed BFS-based zone selection and ordering method.

To help the reader understand each step of the algorithm, an 320

example of zone selection is shown in Fig. 3. In this exemplary 321

system, Bg = {b1, . . . , b36} and Sg = {Sr, S1, . . . , S8}. In the 322

first iteration (k = 1), �g and N(g) are both empty, {∅}; In 323

Step II, the root node is selected to be the first observable node, 324

SB = {Sr}. In Step III, since N(g) is empty, So1 is randomly 325

selected and then removed from SB; thus, So1 ← Sr and SB ← 326

{∅}. In Step IV, S1 and S2 are identified as the immediate 327

observable downstream nodes of Sr. Since N(g) is empty, these 328

two nodes are added to N(g). Then, So2 is selected randomly 329

from {S1, S2}. In this example, So2 ← {S1}. In Step V, the 330

first zone is defined based on the selected So1 and So2 and 331

added to the set �g; �g = {�1}, where �1 = {Sr, S1, Z�1}. 332

The algorithm will go back to Step III for the next iteration 333

(k← k + 1). 334

Following the proposed zone selection method, the num- 335

ber of zones, ω, can be represented as a function of number 336

of observable nodes: ω = O + 1 − Oend, where O is the 337

number of all observable nodes and Oend is the number of 338

observable nodes that do not have any observable downstream 339

nodes. This function indicates that the proposed method needs 340

sensors installation at internal nodes to develop a meaning- 341

ful zone partitioning. This requirement is consistent with the 342

recent expansion of smart grid monitoring devices. In current 343

distribution systems, metering devices are generally installed 344
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at some select locations, such as at the root node and other345

major utility equipment, which can be utilized to obtain a346

zone partitioning [20]. On the other hand, in many distri-347

bution systems monitoring devices are only installed at the348

terminal nodes, as claimed in [21]. To handle zone selection349

is such systems, we have provided an approximation method.350

Prior to discussing the method, we define passive and active351

internal nodes: active internal nodes are the subset of network352

internal nodes with non-zero current injection. In contrast, pas-353

sive internal nodes do not have any current injection. The basic354

idea of this method is to utilize a part of measurement data of355

observed terminal nodes to represent their nearest unobserved356

passive internal nodes. The rationale behind this approxima-357

tion is that the voltage drop between passive internal nodes358

internal nodes and the nearest terminal nodes can often be359

ignored. Using this approximation, the proposed approach can360

develop a reasonable zone partitioning when only terminal361

buses are metered. It should be noted that similar strategy362

has been utilized in previous works for learning the topology363

of distribution systems [22].364

When the zone set is obtained, each branch in the system365

will belong to at least one zone, while at the same time, no366

two zones have the exact same set of branches. For example,367

branches of the zone �6 in Fig. 3, are also covered by zones368

�1, . . . , �5. As will be shown in Section IV, these inter-zonal369

intersections introduce a redundancy, which will be leveraged370

for enhancing the robustness of the outage detection process371

by blocking bad data samples and outliers. Furthermore, to372

specify the outage location considering the zonal intersections,373

a zone coordination method is proposed in Section III.374

III. GAN-BASED ZONE MONITORING375

In this paper, to quantify deviations from the measurement376

data distribution in normal conditions caused by outage events,377

we have utilized a recently-invented non-parametric unsuper-378

vised learning approach, GAN [23]. One unique advantage379

of GAN is its ability to implicitly represent complex data380

distributions without constructing high-dimensional likelihood381

functions, thus addressing the challenge of dimensionality.382

Moreover, GAN does not assume a prior parametric struc-383

ture over the data distribution. This ensures the performance384

of GAN for outage detection problem, since the utilities gen-385

erally do not have a prior knowledge of the exact structure386

of data distribution in normal conditions. Meanwhile, since387

model training is done using only the data from normal con-388

dition, our method is not vulnerable to the outage data scarcity389

problem. When training is completed, a GAN-based anomaly390

score is assigned to real-time measurements to detect outage391

events inside the zone [14].392

A. GAN Fundamentals and Training Process393

For each zone, a GAN is trained to learn the joint distribu-394

tion of measured variables X = {�Vt, Pt
n, Pt

n+N}Tt=1 within395

a time-window with length T (see Fig. 1), where Pt
n and396

Pt
n+N are the nodal power consumption for the two observ-397

able nodes in the zone, and �Vt is the voltage difference398

between the two nodes at time t. The purpose of defining a399

time-window over the observable variables is to exploit tem- 400

poral relations between consecutive data samples in power 401

distribution systems for more effective anomaly detection. In 402

this paper, T is selected to be 3 hours based on calibration 403

results from the grid search method [24]. It should be noted 404

that the training procedure of GANs is an offline process; as a 405

result, the high computational cost of the grid search approach 406

does not impact the real-time performance of the proposed 407

method. The training set consists of the SM data history of the 408

variables defined in each zone, and is denoted as X�i for zone 409

�i. To account for the strong seasonal changes in customers’ 410

behavior that might mislead detecting the boundary between 411

normal and outage behavior [25], the dataset has been decom- 412

posed into separate seasons to train different GAN models for 413

each zone. Each dataset is randomly divided into three sep- 414

arate subsets for training (70% of the total data), validation 415

(15% of the total data), and testing (15% of the total data). 416

GAN relies on two interconnected DNNs, which are simul- 417

taneously trained via an adversarial process: a generator, G, 418

and a discriminator, D [26], as shown in Fig. 4 (part A). 419

The interaction between the two DNNs can be modeled as a 420

game-theoretic two-player nested minmax optimization [13]: 421

min
θG

max
θD

V(D, G) = Ex�i∼pX�i
(x�i )

[ log(D(x�i))] 422

+ Ez∼pz(z)[ log(1− D(G(z)))] (4) 423

where, θG and θD are the learning parameters of G and D, 424

respectively. pX�i
is the underlying probability density function 425

of historical data obtained from the two observable nodes of 426

the zone. In each iteration, D is trained to maximize the prob- 427

ability of assigning the correct label to both training examples 428

and artificially generated samples from G. Thus, the output 429

of D, 0 ≤ D(x�i) ≤ 1, represents the probability that x�i is 430

from the training dataset rather than generated artificially by 431

G [13]. On the other hand, G is trained to generate artificial 432

samples that maximize the probability of the discriminator D 433

mislabeling. The input of G is defined as z ∈ R
d×1, which 434

is a noise signal with uniform distribution pz(z). In this case, 435

d = 4 showed the best performance on the validation set. 436

After a number of training iterations, G and D will reach 437

a unique global optima at which both cannot improve. This 438

means the generator can recover the underlying distribution of 439

the training data and the discriminator cannot distinguish the 440

true samples from the artificially generated samples [27]. The 441

training process takes place offline and the detailed procedure 442

is presented in Algorithm 1. In this paper, the hyperparameter 443

set of GAN is calibrated by using the random search algo- 444

rithm [28]; as a result, G consists of three components: an 445

input layer of 4 neurons, two hidden layers of 8 neurons, and 446

an output layer of 9 neurons. D also has three parts: an input 447

layer of 9 neurons, two hidden layers of 8 neurons, and an 448

output layer of 1 neuron. Moreover, {α, m, nD} are selected as 449

0.01, 100, 1, respectively. To update θG and θD, a minibatch 450

stochastic gradient descent method is utilized [13]. 451

B. GAN-Based Anomaly Score Assignment 452

To detect potential outage events in each zone, a GAN-based 453

anomaly score is utilized to evaluate sequential measurements 454
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Fig. 4. GAN-based learning and testing structure.

Algorithm 1 GAN Training for Zone �i

Require: : Seasonal normal behavior data for zone �i

Require: : Learning rate α, batch size m, number of iterations
for D per G iteration nD, initial learning parameters for G
and D, θD and θG

1: while Nash equilibrium has not been achieved do
2: for t = 0, . . . , nD do
3: Generate sample batch from the latent space z
4: pz → {(zj)}mj=1
5: Obtain sample batch from the historical data
6: pX�i

→ {x�i(j)}mj=1
7: Update discriminator parameters using gradient

descent with α based on the discriminator loss
8: δD = 1

m

∑m
j=1 [−log D(x�i(j))−log(1−D(G(zi)))]

9: θD := θD − α ∗ �θDδD

10: end for
11: Update generator parameters using gradient descent

with α

12: δG = 1
m

∑m
j=1 [− log D(G(zj))]

13: θG := θG − α ∗ �θGδG

14: end while

of SMs online [14], as shown in Fig. 4 (part B). The anomaly455

score consists of two error metrics: the residual error, δR(·),456

and the discriminator error, δD(·). When a new data inquiry457

xt
new ∈ R

3T×1 is obtained (at the T time slots), the residual458

error describes the extent to which xt
new follows the learned459

distribution of the G model, in the best case [14]:460

δR(xt
new) = min

z
|xt

new − G(z)| (5)461

After training, the generator, G, has learned an almost perfect462

mapping from the latent space z to the zonal measurement463

data distribution in normal conditions. Hence, if xt
new is464

obtained from normal conditions, its residual error value is465

zero, δR(xt
new) = 0, since xt

new and G(z∗) are identical, where466

z∗ is the optimal solution to (5). To obtain z∗ during test time, a467

commercial nonlinear programming solver, “fmincon”, is used468

in this work. Thus, higher δR(xt
new) values represent deviations469

from normal operation conditions, suggesting occurrence of470

outage event within the zone.471

The discriminator error, δD(xt
new), is defined using the472

trained discriminator, D, to measure how well G(z∗) follows473

the learned data distribution by the G model. The discriminator 474

error can be written as [13]: 475

δD(xt
new) = − log D(xt

new)− log(1− D(G(z∗))) (6) 476

The GAN-based anomaly score for zone �i is defined as the 477

weighted sum of both error metrics [14]: 478

ζ�i(x
t
new) = (1− λ) · δR(xt

new)+ λ · δD(xt
new) (7) 479

where, 0 ≤ λ ≤ 1 is a user-defined weight factor, the value of 480

which is set at 0.1 in this paper, based on calibration results 481

over the validation set. To determine the critical threshold for 482

the anomaly score, above which new data points are identi- 483

fied as outage events, the GAN-based anomaly score, ζ�i , is 484

obtained for all training data samples of zone �i. The sam- 485

ple mean, μ�i , and the sample variance, σ�i , of the anomaly 486

scores for the training data samples are calculated to deter- 487

mine the range of anomaly score in normal operations. When 488

outage occurs, the real-time measurement data samples are 489

expected to have anomaly scores above this range. We have 490

used a rolling window approach in this work. Hence, the test 491

point could use T − 1 measurements before an outage, thus, 492

we can detect an outage within one-time interval. The length 493

of the time interval depends on the resolution of the smart 494

meter data. The details of anomaly identification process are 495

elaborated in the next section. 496

C. GAN-Based Zone Coordination 497

Using the trained GANs and GAN-based anomaly score 498

method, outage events can be detected in each zone by com- 499

paring the anomaly scores between the new inquiry samples 500

and the critical threshold. Considering that a GAN is trained 501

for each zone, a high anomaly score only gives a rough estima- 502

tion of event location by simply implying outage somewhere 503

in the zone. In other words, all branches in the zone are the 504

candidate event locations. Specifically, if we treat the whole 505

grid as a single zone (i.e., if only a single GAN is trained for 506

the whole grid), then a high anomaly score will only indicate 507

that an outage has occurred somewhere in the system with- 508

out any detailed location information. Since the granularity 509

of location information depends on the number of candidate 510

branches, it is necessary to reduce this number as much as 511

possible. To achieve this, we have presented a GAN-based 512

zone coordination method by integrating anomaly scores from 513

multiple zones, which includes the following steps: 514
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• Stage I: Assign a GAN to each zone, �i ∈ �g and515

use Algorithm 1 over the historical seasonal data of the516

two observable nodes of each zone to learn the joint517

distribution of the measurement data.518

• Stage II: After training for each zone, �i, obtain the519

anomaly score for training samples in the zone; determine520

the anomaly score sample mean and sample variance,521

denoted as μ�i and σ�i , respectively.522

• Stage III: At time T , observe the anomaly scores of all523

the zones in the set �g based on the latest real-time524

measurements.525

• Stage IV: Select the first zone from the right side of the526

set �g that has an abnormal anomaly score value and527

denote it as �a. We will show that this zone contains the528

maximum information on the outage event in Section IV.529

In other words, a = arg maxξ ξ, s.t. ζ�ξ > μ�ξ +h ·σ�ξ ,530

where, h is a user-defined threshold factor.531

• Stage V: Output the set of candidate branches that are532

potential locations of outage event as Bc = Z�a \{Z�a+1∪533

Z�a+2 ∪· · ·∪Z�ω }, where A\B represents the elements of534

set A that are not in set B. Further, {�a+1, �a+2, . . . , �ω}535

are the zones that have lower topology ordering than �a.536

Based on the outcome of zone coordination, the DSO537

can obtain the minimum branch candidates that are poten-538

tially impacted by the outage, thus maximizing the outage539

information. This process will help the repair crew to rapidly540

find the outage location. Note that given the unbalanced nature541

of distribution networks, the proposed algorithm is applied to542

each phase separately. Hence, the zone set needs to be obtained543

for three phases. For the sake of conciseness we will continue544

our discussions for one phase, keeping in mind that the same545

logic applies to the other phases as well.546

In practice, the distribution system often undergoes recon-547

figuration, on-load tap changing, and capacitor switching,548

which can strongly affect the actual data distribution. Thus,549

the proposed outage detection method needs to be customized550

to account for the effects of these events as well, as shown551

in Fig. 5. The basic idea is to integrate pre-trained GANs and552

fine-tuning strategy. Considering that the zone selection pro-553

cess and the training procedure of GANs are offline processes,554

the utility can obtain the zone sets and the corresponding555

GAN library in advance using historical data. When a capac-556

itor switching occurs and raises an anomaly score flag, the557

existing GANs are treated as the pre-trained models which558

still maintain useful information. The new measurements from559

the observable nodes are utilized to fine-tune these pre-trained560

GANs for adapting to the changes of the underlying data561

distribution. The fine-tuning strategy can counter the over-562

fitting problem on small datasets, thus, reducing the data size563

requirement [22].564

IV. THEORETICAL PROPERTIES OF THE PROPOSED565

FRAMEWORK566

In this section, we discuss the theoretical properties of the567

proposed outage-detection framework. We will show that this568

approach has three fundamental properties.569

Fig. 5. Flowchart of the proposed method considering possibility of
reconfiguration, on-load tap changing, and capacitor switching.

Framework Property 1—Valid Topological Ordering of the 570

Zones: The framework introduces a valid topological order 571

among the zones. This order can be leverage to simplify out- 572

age location in large-scale networks. A valid topological order 573

for any pair of zones is a relationship denoted as �i � �j, 574

indicating that �i has a higher topological order than �j. This 575

means that Z�i 
⊂ Z�j ; i.e., either all branches in �j are located 576

downstream of the branches of �i or the branches of �i and 577

�j do not share any common path starting from the network’s 578

root node. Note that �g = {�1, . . . , �w} obtained from the 579

proposed BFS-based zone selection algorithm follows a valid 580

topological order, meaning that �1 � · · · � �w. The reason 581

for this is that the proposed zone selection algorithm explores 582

all the immediate downstream nodes at each depth level with- 583

out backtracking in Stage II (Section II), prior to moving to 584

the next level. 585

To show this, note that when an outage event happens the 586

anomaly scores for a subset of zones in �g, will increase 587

above their normal range. Due to the radial structure of the 588

networks these zones will follow a relationship of the form 589

Z�1 ⊃ Z�2 ⊃ · · · ⊃ Z�vO
, with vO denoting the number 590

of the zones containing the faulted branch. Thus, the zones 591

within �g that are impacted by outage also follow a valid 592

topological order. At Stage IV (Section III), the proposed zone 593

coordination algorithm selects �v0 ← �a (i.e., the zone with 594

the lowest topological order) as the zone that has the most 595

specific information on the location of outage among all the 596

impacted zones, since it contains the least number of candidate 597

branches. Hence, higher order zones on the same path with 598

abnormal anomaly scores, which are supersets of the selected 599

zone and have less information on outage location, are auto- 600

matically ignored. This eliminates the need for a burdensome 601

comprehensive search process. Finally, to infer the candidate 602
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Fig. 6. Venn diagram for demonstrating proof of Theorem 1.

branches that are potentially the location of the outage event,603

all the branches in the healthy zones with lower topological604

orders than �vO have to be removed, as shown in Step IV605

(Section II). This helps the operator to directly pick the small-606

est set of branches among thousands of candidate branches in607

a large-scale network. For example, when outage occurs in any608

branches within �6 in Fig. 3, the DSO can ignore the anomaly609

scores of zones that have a higher topological ordering (i.e.,610

�1, . . . , �5) to directly infer outage location as �a ← �6.611

Framework Property 2—Maximum Outage Location612

Information Extraction: The proposed algorithm is able to613

obtain the optimal zone set as it (locally) maximizes the614

amount of information on the location of outage events615

in partially observable systems. To show this, first, we616

leverage the concept of entropy to assess the amount617

of outage location information in �g. The set γ g(bj) is618

defined as γ g(bj) = {∀�i : bj ∈ Z�i , �i ∈ �g}. Hence,619

γ g(bj) is the set of all zones in �g that include bj. Based620

on this definition, for each �g, a set of undetectable621

branch sets is defined as U(�g) = {u1, . . . , uV}, where622

uk = {bk1 , . . . , bkn :∀bki , bkj , γ
g(bki) = γ g(bkj)}. Thus, uk623

defines a set of branches that are covered with the exact624

same set of zones and cannot be distinguished from each625

other in terms of outage event location. Given the set U(�g)626

the outage location information can be measured using the627

concept of entropy, as follows [29]:628

H(U(�g)) = −
V∑

i=1

|ui|
M

log
|ui|
M

(8)629

where |ui| is the cardinality of the set ui. The higher entropy630

value implies a higher number of distinguishable branches, and631

consequently, more information on outage location. The theo-632

retical upper boundary for the entropy is log(M); this case633

only happens when each uk only includes a single branch634

and V = M (i.e., all branches are fully distinguishable and635

|ui| = 1). This indicates any individual branch is distinguish-636

able using two zones that intersect exactly at that branch. The637

theoretical lower boundary value for the entropy is zero, which638

implies that all the branches are covered by identical set of639

zones (i.e., the branches are not distinguishable and |ui| = M).640

Based on this metric, the following theorem and proof are641

obtained.642

Theorem 1: For any partially observable network, the 643

proposed BFS-based zone selection algorithm maximizes the 644

outage detection entropy. 645

Proof: We will prove the local optimality of the selected 646

zone set, �g, by showing that any deviation from this set 647

results in a decline in outage detection information entropy. 648

Here, a deviation is defined as the addition or removal of 649

any one zone. First, consider the case of removing an arbi- 650

trary zone �j ∈ �g, and without loss of generality assume 651

that �j−1 ∈ �g and �j+1 ∈ �g are the smallest and largest 652

zones, respectively, where �j−1 ⊃ �j ⊃ �j+1 holds. As is 653

demonstrated in Fig. 6, all the branches that are covered by 654

�j−1, �j and �j+1 are partitioned into three branch sets that 655

belong to the set U : ul−1 = Z�j−1 \ Z�j , ul = Z�j \ Z�j+1 , 656

and ul+1 = Z�j+1 . Based on the proposed GAN-based zone 657

coordination algorithm, the status of ul−1 can be determined 658

by comparing the anomaly scores of �j−1 and �j. The sta- 659

tus of ul and ul+1 are determined by the anomaly scores of 660

�j and �j+1. Note that all these three sets are distinguishable 661

from each other in outage detection. When �j is removed, ul 662

will be eliminated from U(�g). The new branch partition is 663

reduced to two sets ul−1 ← Z�j−1 \ Z�j+1 and ul+1 = Z�j+1 . 664

This means that the status of ul cannot be determined any- 665

more (i.e., ul is merged into ul−1). In other words, �j is the one 666

zone that enables discrimination between branches ul and ul−1. 667

Mathematically, this leads to a decrease in entropy, H(U(�g)); 668

the decline in entropy equals 1
M log (|ul−1|+|ul|)|ul−1|+|ul|

|ul−1||ul−1||ul||ul| . This 669

decrease shows that removal of any zone in �g will reduce 670

the amount of outage location information. Now consider the 671

case of adding a zone to �g: assume that the newly added 672

zone, �j, is defined by two observable nodes So1 ∈ Sg and 673

So2 ∈ Sg; however, the proposed algorithm has already uti- 674

lized all the observable nodes in Sg as So1, shown in Step II 675

(Section II); this means that there is at least one zone in �g
676

that is identical to �j. Hence, adding a zone to the set �g will 677

not change U(�g) and the entropy remains unchanged. 678

Framework Property 3—Robustness Against Bad Data 679

Samples: Bad AMI data samples could generate high anomaly 680

scores, which can lead to misclassification of bad data as out- 681

age event. Hence, it is essential to block these data samples 682

from the outage detection algorithm. To do this, we have inte- 683

grated a bad data detection mechanism into the algorithm by 684

taking advantage of existing redundancy of the zones in �g. 685

The basic idea is that since bad measurement data are not actu- 686

ally generated by outage events, it is highly unlikely to cause 687

deviations in anomaly scores assigned to several intersecting 688

zones at the same time, given that intersecting zones do not 689

share the data from the same measurement devices. To intro- 690

duce robustness against bad data, a set of redundant zones is 691

selected for �a, Stage IV (Section III). This set consists of the 692

zones with lower topological order than �a, and is denoted as 693

�R = {�r1 , . . . , �rn}, where �a ⊂ �ri , ∀�ri ∈ �R. If ∃�ri 694

such that ζ�ri
≤ μ�ri

+ h · σ�ri
then the outage in �a is 695

dismissed as bad data. The number of redundant zones |�R| 696

depends on the desired reliability of the algorithm against bad 697

data. If the probability of receiving an anomaly due to bad 698

data for each zone is η, then the probability of misclassifying 699

a case of bad data as outage decreases with η|�R|. 700
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Fig. 7. 164-node feeder topology.

V. NUMERICAL RESULTS701

The proposed outage detection method is tested on a real702

distribution feeder with corresponding 3-year hourly SM data.703

To provide convincing results, the most complex real dis-704

tribution feeders is selected from our dataset. The topology705

of this network is shown in Fig. 7. This feeder consists of706

164 nodes and around 800 customers [17]. Six observable707

nodes are assumed in this feeder (node 8, node 22, node708

31, node 83, node 109, and node 158), where five zones709

are defined based on these nodes. These zones are denoted710

{�1, . . . , �5} and include branches downstream of node 8,711

node 22, node 31, node 83, and node 109, respectively. Note712

that �1 � �2 � · · · � �5.713

A. Performance of GAN Model714

To validate the performance of GAN training process, we715

calculate the loss values of G and D that can be leveraged to716

verify if the model has the model has converged to the Nash717

equilibrium or not. The loss values are calculated based on the718

objective function of GAN. In the training process, G is trained719

to maximize log(D(G(z))) and D is trained to maximize the720

probability of assigning the correct label to both training exam-721

ples and samples from G, −log(D(x�i)) − log(1 − D(G(z))).722

According to the theoretical analysis in [13], when the Jensen-723

Shannon divergence between the G model’s distribution and724

the data distribution is zero, D(G(z)) and D(x�i) should con-725

verge to 1/2, which indicates that the loss values of G and726

D should converge to 2 log(2) and log( 1
2 ) at the equilibrium,727

respectively. This has been confirmed in Fig. 8. After a num-728

ber of training iterations, both D and G losses converge to729

the desired values and these indicate that the GAN has been730

trained successfully and the underlying joint data distribution731

in normal condition has been learned.732

The case study is conducted on a standard PC with an Intel733

Xeon CPU running at 3.70 GHz and with 32.0 GB of RAM.734

The average computational time for training each GAN over735

the available SM dataset is around 840 seconds. It should be736

Fig. 8. Training result for a GAN model.

noted that multiple GANs can be trained independently and in 737

parallel with each other, which can reduce the adaptation time 738

after system reconfiguration and capacitor switching. Since the 739

training procedure is offline this parallel training method can 740

be conveniently scaled to large distribution systems. 741

B. Performance of Outage Detection 742

The performance of the GAN-based outage detection 743

method is tested for different outage cases. The outage event 744

is located between node 142 and node 164, as shown in Fig. 7; 745

three outage events are simulated with three different out- 746

age magnitudes to evaluate the performance of the proposed 747

method. The first case is designed as a small-size event where 748

around 20 customers are disconnected (with 40kW aggregate 749

average hourly demand). The second case is designed to rep- 750

resent a middle-size event, where around 50 customers are 751

impacted (with 100kW aggregate average hourly demand). The 752

third case is a large-size event, with around 80 customers 753

(with 150kW aggregate average hourly demand). For each 754

case, GAN models are trained using the historical SM data 755

of the five zones. These three outage cases where simulated 756

in OpenDSS using our real datasets, in which voltage drop 757

was calculated according to simulation outcomes. Meanwhile, 758

to represent standard measurement deviations, error samples 759

were generated from a normal distribution with zero mean and 760

1% variance and added to the voltage values obtained from 761

the simulator [30]. Fig. 9 presents the histogram of anomaly 762

score for one zone under normal and outage conditions. The 763

mean values of ζ are 1.263 and 1.33 in the normal and outage 764

conditions with variance values 7.7 × 10−5 and 2.7 × 10−4, 765

respectively. Based on Fig. 9, the difference between anomaly 766

score under normal and outage conditions is large enough 767

to enable DSOs to distinguish these conditions. Meanwhile, 768

Fig. 10 presents the consistency of anomaly score for train- 769

ing and test sets when the system is in normal conditions. 770

However, when the outage event takes place in the zone, the 771

real-time anomaly score reaches considerably higher values. 772

It is critical to show that an outage event outside a zone 773

will not lead to abnormal anomaly scores for that zone. 774

Fig. 7 shows the distribution of anomaly score changes for 775

one zone, when the outages of different magnitudes happen 776

outside the zone. Hence, this figure depicts the histogram of 777
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Fig. 9. Anomaly score histogram under the normal and outage conditions.

Fig. 10. Anomaly score of the training set, with respect to the normal/outage
test set.

Fig. 11. The histogram of �ζ .

�ζ = ζn−ζout, where ζn is the anomaly score obtained in nor-778

mal conditions and ζout is the anomaly score obtained when779

the outage happens outside the zone. As can be observed,780

the anomaly score assigned to the zone does not change and781

remains almost constant for these outside-zone outages, which782

indicates that the anomaly score can be relied upon to correctly783

distinguish the outages inside and outside the zone.784

To evaluate the quality of outage detection performance of785

the proposed method for a multi-zone network, several statis-786

tical metrics are applied, such as accuracy (Accu), precision787

(Prec), recall, and F1 score [31]. The values of these indexes788

are presented in Table I for the three outage cases and dif-789

ferent zones. Based on the results, we can conclude that790

TABLE I
OUTAGE DETECTION QUALITY ANALYSIS

Fig. 12. Sensitivity of outage detection accuracy to the size of training set.

the performance of the proposed outage detection method 791

improves as the event size increases, due to higher levels of 792

deviation from normal joint measurement data distribution. For 793

medium and large outage cases, all indexes reach values over 794

0.9. Moreover, to represent the sensitivity of the outage infer- 795

ence accuracy to the duration of training data, we have tested 796

the average performance of the GAN under various sizes of 797

training dataset as shown in Fig. 12. As is demonstrated in 798

the figure, the performance of the GAN can reach acceptable 799

detection accuracy with a small training set (around 700 data 800

samples, which translates to around 3 days of data). 801

To prove the performance of our method, we have conducted 802

one more test with more smart meters, and hence finer zones. 803

In this case, 33 observable nodes are assumed in the feeder 804

(node 8, 9, 12, 18, 21, 22, 26, 29, 31, 35, 39, 41, 43, 48, 53, 73, 805

75, 83, 85, 90, 93, 95, 99, 106, 108, 109, 110, 114, 125, 129, 806

134, 141, 158), where 19 zones are defined based on these 807

nodes. These zones are denoted as {�1, . . . , �19} using the 808

proposed zone selection method. The values of the statistical 809

indexes are presented in Table II. Based on this table, most of 810

the statistical indexes are above 0.9, which corroborates good 811

detection performance. When the outage does not occur in the 812

zones, the accuracy of these zones remains stable and high. In 813

general, the proposed method can handle distribution systems 814
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TABLE II
OUTAGE DETECTION QUALITY ANALYSIS FOR 19-ZONE CASE

with different number of smart meters distributed across the815

grid.816

C. Method Adaption817

To validate our fine-tuning strategy, we have conducted818

additional numerical experiments as shown in Fig. 13. As819

demonstrated in the figure, a capacitor switching is assumed to820

have occurred at 12:00 pm. Due to the change in the underly-821

ing data distribution, the performance of the proposed method822

decreases from around 97% to 76%. Here, instead of perform-823

ing Monte Carlo simulation based on a single set of demand824

data, we have tested the model with one-month data (under825

the capacitor switching) and calculated the average accuracy.826

At the beginning of the fine-tuning process and immediately827

after the switching event, the model accuracy drops to a low828

level compared to the previous time-point (around 25%). This829

is due to the extremely small size of the newly-acquired train-830

ing dataset and re-calculation of the critical threshold of the831

anomaly score. Then, the average accuracy of the proposed832

method clearly improves as the size of training data increases,833

which allows the model to be fine-tuned reliably. Around a day 834

later, our method achieves similar accuracy levels as before 835

capacitor switching, which means the proposed method has 836

adapted to changes in system conditions. Compared to the 837

results of Fig. 12, the data collection time can be reduced 838

from 3 days to 1 day using our fine-tuning strategy. 839

D. Method Comparison 840

We have conducted numerical comparisons with a previous 841

support vector machine-based approach [6] to show that our 842

proposed method can achieve good outage detection accuracy 843

with smaller number of smart meters. To ensure a fair com- 844

parison between the two methods, the accuracies of both are 845

evaluated based on the same zone-level criteria. As is demon- 846

strated in Fig. 14, for the three different outage cases, the 847

previous method [6] requires a much higher level of observ- 848

ability (i.e., almost 10 times more) to achieve similar detection 849

accuracy with our method. This indicates that our approach 850

can accurately detect outage events and is a suitable method in 851

most current distribution grids that have limited observability. 852
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Fig. 13. The performance of the fine-tuning strategy under capacitor
switching.

Fig. 14. Comparison results between [6] and the proposed method.

VI. CONCLUSION853

In this paper, we have presented a new data-driven method854

to detect and locate outage events in partially observable grids855

using SM measurements. The proposed GAN-based approach856

is able to implicitly represent the distribution of data in normal857

conditions and determine potential outage events online. The858

developed multi-zone outage detection mechanism is based on859

an unsupervised learning approach, which can address sev-860

eral challenges in outage detection: 1) the poor observability861

of system caused by the limited number of SMs. 2) data862

imbalance problem caused by outage data scarcity. 3) the863

high-dimensionality of the data caused by the temporal-spatial864

relationship. Meanwhile, our proposed robust BFS-based zone865

selection and ordering mechanism is guaranteed to capture the866

maximum amount of information on outage location for any867

given partially observable system. This method is validated on868

a real utility feeder using real SM data.869
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