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Analysis of Conservation Voltage Reduction Effects
Based on Multistage SVR and Stochastic Process
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Abstract—This paper aims to develop a novel method to eval-
uate Conservation Voltage Reduction (CVR) effects. A multistage
Support Vector Regression (MSVR)-basedmodel is proposed to es-
timate the load without voltage reduction during the CVR period.
The first stage is to select a set of load profiles that are close to the
profile under estimation by a Euclidian distance-based index; the
second stage is to train the SVR prediction model using the pre-se-
lected profiles; the third stage is to re-select the estimated profiles to
minimize the impacts of estimation errors on CVR factor calcula-
tion. Compared with previous efforts to analyze the CVR outcome,
this MSVR-based technique does not depend on selections of con-
trol groups or assumptions of any linear relationship between the
load and its impact factors. In order to deal with the variability of
CVR performances, a stochastic framework is proposed to assist
utilities in selecting target feeders. The proposed method has been
applied to evaluate CVR effects of practical voltage reduction tests
and shown to be accurate and effective.

Index Terms—Conservation voltage reduction (CVR), Euclidian
distance, short-term load forecasting, Kolmogorov-Smirnov (K-S)
test, support vector regression (SVR).
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II. INTRODUCTION

C ONSERVATION VOLTAGE REDUCTION (CVR)
lowers voltages on the distribution system in a controlled

manner. CVR can reduce peak demand and achieve more
energy savings, while keeping the lowest customer-utilization
voltage consistent with levels determined by regulatory agen-
cies and standards setting organizations [1], [2]. CVR is shown
to be an established and cost-effective way to reduce peak
demand and energy consumption, which has motivated many
utilities to investigate its application in individual systems
[3]–[6]. How to quantify the effects of CVR has always been
a major issue in selecting suitable feeders to implement CVR
and performing cost/benefit analysis.
The industry-accepted metric for measuring the performance

of CVR is Conservation Voltage Reduction factor (CVRf),
which is defined as the percentage of load consumption reduc-
tion resulting from one percent reduction in voltage. In this
paper, load consumption refers to active power consumed by
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the load. Previous studies mainly use two methods to calculate
the CVR factor, namely the comparison method and the regres-
sion method [7], [8]. There are two popular ways to perform
the comparison method. The first is to select a group of similar
feeders. Reduced voltage is applied to one feeder, while normal
voltage is applied to other feeders (control group) at the same
time. The second is to perform CVR tests on a feeder and
apply normal voltage to the same feeder but during another
day with similar weather conditions as the CVR test day. Both
comparison methods compare load consumptions of the test
and non-test groups to calculate CVR factors. However, it is
difficult to find a good ‘control group’ since there are no two
feeders or two days whose operation conditions are exactly
the same. The regression method is based on linear regression
models that decompose the load, usually into basic and weather
dependent components. This method requires long-term “day
on/day off” tests and simulates the CVR on/off load for each
season based on the assumed model and recorded load as well
as weather data. The method can only provide a statistical CVR
factor for a certain period such as one season. It is controversial
whether this simple linear model can represent complicated
load behaviors.
From the engineering point of view, utilities would like to

know which feeders are suitable to implement CVR. There are
two challenges to answer this question: how to quantify the
CVR factor of test feeders; how to select preferred feeders when
CVR factors vary from time to time and from feeder to feeder.
The major issue in evaluating the CVR effect is to find what the
load would bewithout voltage reduction during the CVR test pe-
riod. A short-term load forecasting (STLF) method is needed to
estimate the normal-voltage load during the CVR period. Many
studies have been made in the area of load forecasting and its
applications [9]–[16]. Reference [9] applied particle swarm op-
timization (PSO) and neural networks in load forecasting. Ref-
erence [10] used support vector machine (SVM) in mid-term
load forecasting (predicting daily load of the next 31 days).
Reference [11] combined self-organized map (SOM) and SVM
to solve the short-term load forecasting problem (day-ahead
prediction). Study in [12] developed a SVR model based on
locally weighted vectors for load forecasting. However, these
methods are not designed to analyze the CVR effect. Study in
[17] used multiple linear regression (MLR) to analyze the im-
pact of demand response (DR) program on energy conservation,
load shedding and forecasting at a system level. But the results
cannot be used to guide utilities to select suitable feeders to im-
plement DR.
In this paper, a multistage Support Vector Regression-based

short-term load forecasting (MSVR-STLF) method is proposed
and used to estimate the load consumption at normal voltage
levels during the CVR period. As a powerful machine learning
method, Support Vector Regression (SVR) is considered as one
of the best non-parametric regression techniques, since it can
approximate any nonlinear functions [12], [18]. In order to in-
crease the accuracy of the SVR model, only the set of profiles
that are close to the load profile under prediction is used to train
the SVR model. The selection process is performed by calcu-
lating a Euclidian distance-based index in the first stage. SVR
is used for load estimation in the second stage. The model accu-

racy can be largely improved by performing the pre-selection of
the training data. To further lower down estimation errors, the
estimated profiles are re-selected in the third stage.
A CVR factor is subject to different types of uncertainties,

depending on load mix, feeder configurations, weather condi-
tions, human behaviors, etc. For a certain test period, different
feeders have different CVR responses. Even for a certain feeder,
its CVR factor may vary a lot from one day to another, thus re-
quiring a probabilistic analysis framework. This paper uses the
Kolmogorov-Smirnov (K-S) goodness-of-fit test [19] to identify
the most suitable probability distributions representing CVR
factors of different feeders. The cumulative distribution func-
tions (CDFs) that represent CVR effects of each feeder are used
to select candidate feeders. The results could potentially be used
to rapidly select target CVR feeders before making any invest-
ments.
The main contributions of this paper can be summarized as:
1) Nonparametric load forecasting technique for practical
CVR effect analysis at the feeder level based on a large
amount of actual field data;

2) A multistage SVR algorithm is developed to improve the
forecasting accuracy;

3) A Euclidian distance-based technique is created to validate
the results;

4) The probabilistic nature of CVR effects is considered when
selecting target feeders to implement voltage reduction.

This paper is organized as follows: Section III introduces
CVR and how to evaluate its performance. Section IV details
the proposed multistage SVR framework and how to apply it to
analyze the CVR effect. The impacts of load estimation errors
on evaluation of CVR effects are also presented. The analysis
and comparisons of field test results are included in Section V.
Section VI presents a stochastic methodology to analyze CVR
factors. Section VII concludes the work.

III. CONSERVATION VOLTAGE REDUCTION

A. Basic Concepts

The CVR effect is evaluated by the Conservation Voltage Re-
duction factor , which is the relating change in load
consumptions to the change in voltage, as defined in (1).

%
%

(1)

The major issue in calculating the CVR factor is to estimate
. Fig. 1 shows a typical CVR test result. The peak demand

reduction is achieved by CVR. The test data can be divided into
three parts: and . The dark bold line represents
the measured load. The figure also shows the ‘actual’ load at
normal voltage during the CVR period, which is impossible to
know, and the upper and lower bounds of estimated power con-
sumption without CVR.
If the power consumption without CVR could be estimated,

the CVR factor can be calculated as follows:

(2)
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Fig. 1. Typical CVR test result.

In this paper, a multi-stage SVR-based technique is applied
to calculate . should fall between the upper and lower
bounds, which means there is a certain level of estimation error.
The error has impacts on CVR factor calculation, and will be
discussed in next section. One important characteristic of the
CVR test data is that and can be used to find load pro-
files that are similar to the test profile but at the normal voltage
level.

B. Introduction to Field Tests

CVR tests were performed by a utility company on five se-
lected feeders throughout its service area from July, 2011 to
March, 2012. Overall, data of 275 days were recorded, of which
120 days were tested. CVR was only implemented during peak
hours of these tested days. Measurement devices were installed
at each substation to continuously measure kW, kVAR, voltage
and current. These data were recorded at one-minute intervals.
The devices only recorded data for ten hours out of twenty
four-hour operation each day.

IV. EVALUATING CVR EFFECTS BY MULTISTAGE SVR

In order to estimate what the load consumption would be if
there is no voltage reduction, the first step is to reconstruct the
time series. In this paper, the load is represented by (3).

(3)

Inmost cases, a predictionmodel is trained based on the entire
data history, which is called global predictors. However, a better
model can be trained by using only the set of points that are close
to the point under prediction, which is defined as local predictors
[12]. and can be used to select load profiles that are
similar to the current profile under estimation.
Based on the above analysis, a multistage SVR (MSVR)

framework is proposed in this paper and used to estimate
the power consumption without CVR. As shown in Fig. 2,
measurement data such as power and voltage of both test
and non-test days are stored in the database. The rest of the
flowchart can be classified into three stages, which represent
the following:

Fig. 2. Multistage SVR framework for CVR analysis.

A. First-Stage: Select Similar Profiles by Euclidian Distance

The purpose of the first stage is to select load profiles from
all available historic data to find those are similar to the profile
under prediction. This subset of training data is used in local
prediction. The similarity between day and the test day is de-
fined by a Euclidian distance-based index:

% (4)

Each load profile is divided by the same value which is the
largest peak value of all load profiles. By this action, the differ-
ences of peak loads of all profiles are maintained. It is clear that
the smaller the index, the closer the profile is to the one under
prediction. increases as becomes larger, which means
more dissimilar profiles are included in the training set. In this
paper, is set to be 1%.

B. Second-Stage: Load Consumption Estimation

There are many load consumption estimation methodologies,
i.e., multi-linear regression (MLR) [13], [20], [21] and SVR.
MLR is one of the most developed and popular forecasting
methods. Before comparing the two methods with our dataset,
it is necessary to briefly introduce SVR.
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Suppose there is a set of training data , where
is the input pattern, and denotes the associated output value
of . SVR finds a nonlinear map from the input space to the
output space and maps the input data to a higher dimensional
feature space through this map. Linear regression in the feature
space is made by the following estimation function [22],

(5)

where is the nonlinear mapping from the input space to the
high-dimensional feature space, denotes the coefficients that
need to be estimated, and is a real constant that also has to be
estimated.
The SVR solves an optimization problem [11]:

(6)

subject to

(7)

(8)

(9)

where is the slack variable of the upper training error
( is the lower one) subject to the -insensitive tube

, The constant determines the
tradeoff between the flatness of and its accuracy in capturing
the training data.
The constraints of (7)–(9) imply that most of the data are

placed inside the tube . If is outside the tube, there is an error
or that needs to be minimized in the objective function.

SVR avoids underfitting and overfitting of the training data by
minimizing the regularization term as well as the training
error .
In the solving process of SVM, Lagrange multipliers and
are introduced, the SVR training procedure is to solve the

dual problem of (6):

(10)

subject to

(11)

(12)

where is the kernel function. In this
paper, the Gaussian kernel as defined in (13) is used.

(13)

The SVR output is:

(14)

In this paper, we define the above algorithm as single SVR.
As discussed in Section III, there are 155 non-test days; data of

Fig. 3. Actual and forecasted load of feeder 1 on Feb. 14, 2012.

TABLE I
ESTIMATION ERRORS OF SINGLE SVR AND MLR

these days are used to evaluate the performance of each method.
55 non-test days are randomly selected to be validation data,
data of the remaining 100 non-test days belong to the training
set. Load is represented as shown in (3). The training set is used
to train the MLR and SVR models. Details about MLR can be
found in [13], [21]. The validation set is used to show the per-
formances of the trained models. The MLR model used in this
paper is defined as

(15)

Fig. 3 shows estimation results of feeder 1 on a day in Feb-
ruary, 2012. It can be seen that the SVR model developed in
this paper has a better performance than theMLR benchmarking
model as specified in (15). The estimation performance is quan-
tified with the mean absolute percentage error (MAPE), normal-
ized mean square error (NMSE) and relative error percentage
(REP). The definitions of MAPE and NMSE can be found in
[18]. REP is defined as

(16)

Estimation errors of the days in the validation dataset are av-
eraged and shown in Table I. It can be seen that the SVR model
provides significantly better estimation than the MLR model.
Thus, SVR is used in the second stage for time-series learning

and prediction. The selected profiles are used to train the SVR
model.
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Fig. 4. Relationship of estimation errors of load, CVR factor and estimation
errors of CVR.

C. Third-Stage: Re-Select Load Profiles

By taking advantage of the pre-selecting step, the proposed
method is expected to have lower errors. However, since the
CVR effect is generally a few percentages, the accuracy of CVR
effect estimation is highly dependent on the accuracy of esti-
mated load. Equations (17a)–(17d) show how forecasting er-
rors impact the accuracy of CVR effect estimation. In (17d), if
there is no forecasting error equals .
Though is unknown, it can be seen that as becomes
larger, differs more from . Moreover, the im-
pacts of will be enlarged if the CVR effect is small ( ap-
proximates 1).

(17a)

(17b)

(17c)

(17d)

Fig. 4 demonstrates the relationship among the MAPEs of
estimation, assumed actual CVR factors and errors of CVR
effect estimation. It can be seen that lower CVR factors and
higher MAPEs will result in larger errors of the estimated CVR
factors. In this stage, the estimated load profiles are re-selected
to further lower down the estimation errors. As it is clear
that is unknown on a test day, the MAPEs between

and are used for re-selection. If the
MAPE is smaller than 0.8, is stored for further analysis,
otherwise, it is discarded.
In order to show the performance of the proposed MSVR

model, we calculate the relative errors (REs) between forecasted
loads and actual loads in the validation set. The RE of an esti-
mation point can be defined as

(18)

The mean of REs is 0.134, and the variance is 0.0692.

TABLE II
ESTIMATION ERRORS OF MSVR AND SINGLE SVR

V. NUMERICAL STUDIES

The proposed multistage SVR method is applied to analyze
practical CVR tests. The typical test data for a day can be di-
vided into three parts as discussed in Section III. The devices
only recorded ten-hour instead of 24-hour operation data each
day, which is sufficient for training the SVR model since CVR
tests were only performed during peak hours. CVR factors vary
from time to time and from circuit to circuit, so the proposed
method is applied to the data of each feeder on all test days.
We also use the Euclidian distance-based comparison method
to validate our MSVR-based approach.

A. Methodology Verification

It is clear that the data of CVR test days cannot be used
to verify whether the proposed method is better than single
SVR since the load at normal voltage is unknown. For this
reason, one non-test day in each month from July, 2011 to
March, 2012 is selected and used to evaluate the performance
of the proposed method. Since there are five feeders and nine
test months, forty-five datasets in total are used to verify the
proposed method. For each dataset, the data covers 360 min-
utes. Estimation errors of the forty-five datasets are averaged
and shown in Table II. It can be seen that the MSVR provides
significantly better estimation than single SVR.

B. Estimation of CVR Effects for an Example Feeder

In order to show how the proposed method works to evaluate
the CVR effect, the test data of Feeder 1 on a winter day is se-
lected as an example. As shown in Fig. 5, CVR starts at 140min-
utes and ends at 420 minutes; this part of data is defined as
in Section II. The first 140-minute data and the last 180-minute
data are defined as pre-CVR and post-CVR data , re-
spectively. They are used in the first stage of the MSVR frame-
work to select sets of non-tested load profiles that are similar
to the current profile under prediction. is set to be 1% and
is 63. The selected profiles are used to train the SVR model

in the second stage. Finally, the load consumption without CVR
on that test day is estimated by the trained model. The estimated
load and the load data with CVR are shown in Fig. 5.
The Euclidian distance-based comparison method is devel-

oped to validate the CVR factor calculated by the proposed
method. The method calculates as defined in (4) and as de-
fined in (19) so as to find a non-test day whose load and voltage
profiles are close to those of the test day.

% (19)

CVR factors can be then calculated by comparing the load and
voltage differences of the non-test and test days as shown in (2).
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Fig. 5. Voltage profile, actual load profile (w/ CVR) and estimated load profile
on a winter day.

Fig. 6. Calculated Euclidian distance-indexes of Feeder 1 on all non-test days
in the same winter month.

Since Feeder 1 on a winter day is used as an example in the
previous session, it is necessary to select a ‘control group’ from
all load and voltage profiles of Feeder 1 on non-test days in
the same winter month. Control group refers to the load and
voltage data under CVR. Fig. 6 shows all the calculated power
differences and voltage differences . Date 11 is the
most similar to the test day and is used as a ‘control group’ to
calculate the CVR factor. Fig. 7 shows CVR factors calculated
by the MSVR and the comparison method.
The line with circle markers represents the CVR factors cal-

culated using MSVR estimation. The line with stars represents
the CVR factors derived from the control group-based compar-
ison method. It can be seen that the comparison method is sim-
ilar to the estimated CVR line, which can validate the accuracy
of the proposed method. However, as there is no guarantee that
a good control group always exists for any feeder on any test
day, the proposed MSVR method is more effective. In case the
good control group is not available, we cannot validate the cal-
culated CVR factors, which is the limitation of the Euclidian

Fig. 7. CVR factors calculated by SVR and the comparison method.

TABLE III
RESULTS OF CVR FACTOR CALCULATIONS OF FIVE FEEDERS

distance-based comparison method. For the 120 test days in this
paper, a good ‘control group’ exists for 46 days. The average
MAPE representing the differences between CVR factors cal-
culated by the multistage SVR and the comparison method is
0.69%, which shows the accuracy of the proposed method.

C. Overall Results

The overall results of all five feeders on a summer day and
a winter day are summarized in Table III, where represents
the beginning value of the CVR factor, represents the ending
value, denotes the mean value of the CVR factor during the
test period and S/M is the standard deviation of the CVR factor
divided by its mean value and is represented in percentage.
It can be shown from Table III that CVR factors are not con-

stant but always fluctuating and tend to decrease during test
periods. Therefore, continuous monitoring and real-time CVR
factor calculation are necessary. For a certain day, CVR effects
are different from one feeder to another while a certain circuit’s
CVR effects are quite different from one day to another. This
result indicates that the CVR effects must be evaluated circuit
by circuit and day by day. Also, it is clear that CVR factors in
winter are much higher than those in summer, which might be
due to the large amount of resistive heating loads in winter.
Fig. 8 shows the box plot of CVR factors on all test days from

July, 2011 to March, 2012. Boxplot shows the maximum value,
minimum value, median, upper quartile (75% quartile), lower
quartile (25% quartile) and outliers of the data. As shown in
Fig. 8, the maximum value of CVR factor of feeder2 is 1.29,
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Fig. 8. CVR factors of all feeders on all test days.

the minimum value is 0.89, values that are smaller than 0.89
are identified as outliers. Feeder 2 has the largest median CVR
factor and Feeder 5 has the smallest one. However, Feeder 5
has the largest CVR factor. This indicates Feeder 5 has a large
variance of CVR performances. Since CVR factors may vary
a lot from one day to another, preferred CVR feeders cannot
be selected by comparing only the statistical median or mean
value of CVR factors of each feeder. It can be seen from the
boxplot that the fluctuations of CVR factors are relatively large
and different from feeder to feeder. This increases the difficulty
of selecting target CVR feeders.

VI. STOCHASTIC ANALYSIS

Because of the variability of CVR factors, the CVR effect
of each feeder cannot be evaluated deterministically but deter-
mined probabilistically. The target CVR feeders can be selected
by comparing their probabilistic CVR performances.
In order to identify the most suitable probability distributions

for CVR factors of each feeder, the Kolmogorov-Smirnov (K-S)
goodness-of-fit test has been carried out [19]. The K-S test com-
putes the test error , which is the maximum vertical distance
between a sample cumulative distribution function (CDF) and a
fitted CDF. This error is compared to a critical value , and
any probability distribution fit that satisfies could be
accepted.
Fig. 9 shows the differences between the CDF of CVR factors

of Feeder 1 and various other CDFs (normal, gamma, Weibull,
Rayleigh and Exponential). It is clear that the normal distri-
bution exhibits the most promising goodness-of-fit. Table IV
shows the K-S test errors subject to a normal distribution and
the maximum likelihood estimates for parameters. is the mean
and is the standard deviation, for the normal
distribution fit with a level of significance 5%.
Fig. 10 shows the CDF chart of CVR performances of

all feeders. The CDF gives the probability that the variable
takes a value less than or equal to some specified

value . Table V summarizes CVR effects of all test
feeders. It shows the percentiles, which represent the certainty
level of achieving a CVR factor below a particular threshold.

Fig. 9. CDFs of CVR factors of Feeder 1 and various probability distributions.

Fig. 10. CDFs of CVR factors of all test feeders.

TABLE IV
K-S TEST ERRORS AND ESTIMATED PARAMETERS

TABLE V
SUMMARY OF CVR FACTORS OF ALL TEST FEEDERS

The and represent maximum and min-
imum CVR factors at different percentile levels. For all five
test feeders, there is zero chance that any of the feeder exhibits
a CVR factor less than 0.6137.
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If there are no intersections among the CDF curves, the CDF
on the far right of the CDF chart offers the best opportunity for
achieving the highest CVR factor at every confidence level, and
this feeder is the best CVR candidate. If the CDF curves intersect
(as they are in this example), the best feeder is the one that gives
the highest CVR factor with the predefined certainty level. If the
certainty level is defined to be 90%, then it is clear that Feeder 2 is
the best candidate and Feeder 1exhibts the worst performance.

VII. CONCLUSION

In this paper, we proposed a multi-stage SVR technique to es-
timate the load consumption without voltage reduction during a
CVR period. The first stage is to make full use of pre-CVR and
post-CVR data to calculate a Euclidian distance-based index,
and to select a set of load profiles that are closest to the pro-
file under estimation. The selected profiles are used to train the
SVR prediction model in the second stage. Estimated load pro-
files with large errors are filtered out in the third stage. The CVR
factor can be calculated by using the estimated load profile. The
impacts of load estimation errors on CVR factor calculation are
analyzed. The multistage SVR framework is validated by the
Euclidian distance-based comparison method and shown to be
accurate and effective. Practical test results show that the CVR
factor varies daily as well as seasonally: a winter day’s CVR
factors appear to be higher than those of a summer day. When
selecting the preferred CVR feeders, the variety of CVR effects
is taken into account. A Kolmogorov-Smirnov-test based prob-
abilistic framework is used to find the probabilistic CVR per-
formance of each feeder.
Compared with the previous efforts on evaluating CVR ef-

fects, the proposed method has four notable advantages: first, it
can provide the CVR factor of any test feeder during any time;
second, it does not depend on the selection of a control group or
assumption of a simple linear relationship between load and its
impact factors.; third, it does not require long-term CVR tests
as long as the normal operation data are available for training
SVR; last, it considers the varying nature of CVR effects when
selecting target CVR feeders. The proposed technique can be
used to analyze the CVR effects of candidate feeders before
making financial investments in applying CVR.
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