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Time-Varying Stochastic Assessment of Conservation
Voltage Reduction Based on Load Modeling

Zhaoyu Wang, Student Member, IEEE, and Jianhui Wang, Senior Member, IEEE

Abstract—This paper presents a time-varying stochastic tech-
nique to assess conservation voltage reduction (CVR) effects based
on load modeling. A time-varying exponential load model is de-
veloped to represent voltage dependences of loads. The recursive
least square (RLS) method is applied to identify model parameters
in a recursive way. CVR factors can be calculated using the iden-
tified model parameters. The time-varying stochastic model for
CVR effects can then be constructed by the Kolmogorov-Smirnov
(K-S) test. The proposed CVR assessment method is applied to
one-yearmeasurement data from autility company. The calculated
CVR factors are verified by aEuclidian distance-based comparison
method. Stochastic models of CVR effects in each time window are
constructed. Compared with previous efforts on assessing CVR ef-
fects, the proposed method does not require control groups or as-
sumptions of linear relationships between the load and its impact
factors. The probabilistic nature of CVR effects is also fully con-
sidered.

Index Terms—Conservation voltage reduction, Kolmogorov-
Smirnov (K-S) test, load model identification, recursive least
square, stochastic modeling.

NOMENCLATURE

Active load consumption with and without
CVR.

Reduced/normal voltage level.

Active load power demand.

Nominal active power.

Nominal voltage.

Active load-voltage dependences of
exponential load model.
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Time-varying active load components.

Time-varying active load-to-voltage
dependences.

Measured active load and identified model
output at time .

Active load consumption before CVR test.

Active load consumption during CVR
period.

Active load consumption after CVR test.

Estimated active load at normal voltage
during CVR period.

Pre-CVR, CVR, and Post-CVR period.

Euclidian distance-based load index for
th non-test day.

Active load at time on the test day.

Active load at time on the th non-test
day.

Number of data points during
(pre-CVR) and (post-CVR) periods.

Euclidian distance-based voltage index for
th non-test day.

Voltage at time on the test day.

Voltage at time on the th non-test day.

I. INTRODUCTION

C ONSERVATION voltage reduction (CVR) controls dis-
tribution voltage levels in the lower range of ANSI stan-

dards in order to reduce peak demand and energy consumption
[1]. CVR works on the principle that many loads are voltage de-
pendent and consume less power when the supplied voltage is
reduced [2]. As a popular and economical energy-saving mea-
sure, CVR has attracted many utilities for implementation in
their distribution systems.
Reference [3] introduced CVR studies of the Northwest

Energy Efficiency Alliance (NEEA) and found a summer CVR
factor of 0.67 compared to the CVR factor of 0.20 in winter.
Hydro Quebec implemented a CVR pilot project in 2005, and
found the overall CVR factor of 0.4 [4]. The study in [5] used an
equivalent ZIP model to calculate the energy conservation gains
due to CVR in New York City networks. It was found that CVR
factors for the test networks were between 0.5 and 1. The study
in [6] analyzed the CVR data of Dominion Virginia Power.
Results show 1% reduction in voltage produced approximately
0.92% reduction in energy consumption for tested substations.
The study in [7] proposed a real-time adaptive CVR system
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using intelligent agents. The study in [8] introduced CVR tests
conducted on a typical distribution feeder of Avista Unitlity.
The results of the study confirm significant energy conserva-
tion on those feeders: 2%–3% reduction of voltage yielded
3%–4% reduction in electricity consumption. The study in [9]
investigated implementing CVR through the use of line drop
compensation (LDC) in Oneida-Madison Electric Cooperative
(OMEC). It was found the annual energy consumption could be
reduced by 0.9–1.1% and the system losses could be reduced
by 0.07–0.13% in OMEC feeders. Reference [10] reviews the
implementation and assessment methodologies of CVR. A
recent report shows that deployment of CVR on all distribution
feeders of the United States could provide a 3.04% reduction in
the annual national energy consumption [11]. CVR can benefit
both consumers and distribution network operators (DNOs).
For consumers, the CVR benefits come from reduced energy
consumptions. For DNOs, the CVR benefits come from both
operational and economic aspects such as peak load relief, net
loss reduction [12], emission reduction as well as potential in-
centives and requirements from regulatory agencies. Moreover,
the optimal voltage/var control can be achieved by combing
CVR with system improvements such as adding capacitors,
load and phase balancing.
There are two ways to perform CVR: short-term demand

reduction [13], [14] and long-term energy reduction [12]. In
short-term CVR, voltage reduction is applied during peak hours
to reduce peak demand. In long-term CVR, the voltage is re-
duced permanently to save energy. Utilities choose the type of
CVR to be implemented in their systems based on operational,
economic and security considerations. One of the critical prob-
lems about CVR is how to assess its energy-saving effect, which
is useful for utilities in selecting candidate feeders to implement
voltage reduction and conduct cost/benefit analysis. CVR ef-
fects are evaluated by a conservation voltage reduction factor
(CVRf), which is defined as the percentage of load consump-
tion reduction resulting from 1 percent reduction in voltage. Pre-
vious assessment methodologies can be mainly classified into
three categories: comparison-based methods [1], [15], [16], re-
gression-based methods [12], [13] and synthesis-based methods
[17], [18]. Comparison-based methods compare load consump-
tions of the voltage-reduction group (test group) and normal-
voltage group (control group). The control group can be a dif-
ferent feeder than the test group with a similar load composition
or the same feeder but on a different day with similar operation
conditions (e.g., similar weather). The load consumptions be-
tween the two groups are compared and the difference shows
the effect of CVR. However, a good control group may not exist
since there are no two feeders or two days whose operation con-
ditions are exactly the same. Regression-based methods assume
a linear model for the load with a linear dependence on voltage
and other factors. Multivariate regression is often used to detect
sensitivities of load to its impact factors. The problems with this
method are that the regression errors may bias the CVR factor
which is usually small itself (only a few percent), and the linear
model is not accurate enough to capture nonlinear load behav-
iors. Reference [19] improved the linear regression method by
applying a support vector regression (SVR) technique to assess
CVR effects. The synthesis-based methods aggregate CVR ef-
fects of different customer types based on load composition in-
formation. However, this method assumes the CVR effects on
each customer type are deterministic. Moreover, it is difficult to
collect accurate load composition information for a feeder.

Measuring load-to-voltage (LTV) sensitivities is crucial for
assessing CVR effects. CVR effects will decrease when the
LTV changes from a constant impedance type to a constant
power type. Many efforts have been done in the broader area of
load modeling, which can be classified into two groups: compo-
nent-based modeling [20]–[22] and measurement-based mod-
eling [23]–[25]. The component-based approach is an aggregate
method, which requires prior knowledge on load models and
corresponding loadmodel parameters of individual load compo-
nents. The measurement-based approach estimates load model
parameters by collecting field measurements and solving an op-
timization problem.
This paper proposes a time-varying stochastic method for

assessing CVR effects. In comparison with the previous efforts
(comparison, regression or synthesis-based), the proposed
method calculates the CVR factors by identifying LTV sen-
sitivities based on load modeling. The proposed stochastic
method considers the complexity, stochasticity and time vari-
ability of load, which were widely recognized (e.g., in [25] and
[26] for voltage stability analysis) but not captured in previous
studies for CVR effect analysis. A time-varying exponential
load model (TELM) is used to represent load’s dependence
on voltage and other impact factors. A recursive least square
(RLS) algorithm is then employed to identify load models,
and the CVR factor can be calculated using the identified
model parameters. Since CVR effects are subject to different
types of uncertainties (load composition, season, time of the
day, weather conditions, human behaviors, etc.), different
CVR effects may occur at different times for a certain sub-
station. Accordingly, the time-adaptive probabilistic analysis
framework proposed in this paper analyzes the statistics and
uncertainties of CVR effects so that the interested utilities can
be better informed in selecting target feeders and suitable times
to launch voltage reduction as well as perform cost/benefit
analysis. The Kolmogorov-Smirnov (K-S) goodness-of-fit test
[27] is implemented to identify the most suitable probability
distribution representing CVR factors for each time window.
Finally, the proposed method is applied to field measurements
from a utility company.
The major contributions of this paper can be summarized as
1) assessment of CVR effects by load modeling;
2) time-adaptive stochastic framework to capture the time-
varying and probabilistic nature of CVR effects.

The organization of the paper is as follows. Section II dis-
cusses CVR factors, the time-adaptive exponential load model
and the RLS filter. In Section III, field measurements from
a utility company are introduced, the identified load model
and calculated CVR factors are validated. In Section IV, a
time-adaptive stochastic model of CVR effects is constructed.
Section V concludes the paper with the major findings.

II. CONSERVATION VOLTAGE REDUCTION
AND LOAD MODELING

The CVR factor can be defined as the relating
change in active load consumption to the change in voltage.
The CVR factor can be calculated by comparing load consump-
tions with and without voltage reduction as [10], [19]

(1)
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TABLE I
CVR FACTORS OF DIFFERENT SEASONS

Fig. 1. CVR factors of different times in four seasons [12].

Since active load consumption has a direct economic impact on
DNOs and customers, this paper focuses on active CVR effects.
A similar ratio can be defined for reactive CVR effects. The
CVR factor and CVR effects discussed in the following con-
tents specifically refer to the active CVR factor and active CVR
effects.
Previous test results show that CVR factors may change with

time of the day and seasons [4], [12], [13], [28]. Table I sum-
marizes seasonal CVR factors of several utilities. It can be seen
CVR factors are different from season to season, whichmight be
due to the various load compositions in different seasons (e.g.,
air conditioning loads dominate the summer and heating loads
dominate the winter).
Fig. 1 further shows the detailed CVR factor profile during a

day in four seasons [12]. The changes of CVR factors in Table I
and Fig. 1 necessitate the need to assess CVR effects by time
and season.
Accordingly, CVR factors are calculated in this paper by

identifying the time-varying LTV sensitivities. The first step
is to model the load as a function of voltage. A substation is
composed of thousands of load components, such as lights,
motors and so on [20]. As it is impossible to model every
load component, the load model for a substation is usually an
aggregate model to represent the overall load behaviors of all
downstream load components and associated equipments.
One of the most widely used loadmodels to express the input-

output relationship between power and voltage and capture the
load restoration characteristics is the exponential load model
whose active part is in the following form [29]:

(2)

Since the purpose of this paper is to analyze energy-saving ef-
fects, the steady-state model defined in (2) can be used. As it is
obvious that the load consumption is always changing with time
due to factors such as human behaviors, weather conditions and
continuous on/off switches of different kinds of loads, param-
eters of the load model are not constants. Even for the same

circuit, different load models may be found at different times.
Hence, a time-varying exponential load model (TELM) is pro-
posed as

(3)

where and are time-varying model parameters that
need to be identified.
Let us focus on the TELM defined in (3). is set to be 1.0

p.u. and (3) can be linearized as follows:

(4)

Equation (4) can be written as

(5)

where , and

. represents the parameters needed to be
identified. Assume that the errors betweenmeasured system out-
puts and estimated model outputs to be ,
is the number of measurement points, then the th error

function can be defined as

(6)

where and is the identified .
In order to take advantage of the updated information to per-

form the identification, an RLS method is used. RLS is a widely
used adaptive filtering algorithm and proven to be suitable for
parameter identification and fast in convergence [29]. The iden-
tification procedure tries to tune model parameters by solving
the following problem:

(7)

where is the forgetting factor of the RLS algorithm. The pro-
posed identification algorithm requires only load consumption
data and voltage, which can be easily obtained from utilities.
Fig. 2 shows a schematic of the time-varying framework for

CVR assessment. Measurement devices are installed at substa-
tions to continuously monitor system operations. The measure-
ment devices provide the basic operation data, such as real and
reactive power and voltage. To identify load models in (3), the
identification algorithm, which is RLS in this paper, tunes the
parameter set so as to minimize the difference between
model output and measured system output . The time
step for the time-varying load modeling is set to be 1 min in
this paper. For the identified load parameters, the corresponding
CVR factors can be calculated as

(8a)

(8b)
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Fig. 2. Time-varying load modeling framework for assessing CVR effects.

The calculated CVR factors will be stored in a database and
utilized to find the statistical law behind CVR effects, which will
be discussed in the following sections.

III. FIELD TEST RESULTS AND METHODOLOGY VALIDATION

In this section, field measurements from a substation of
a utility company are introduced, and the CVR factors of
the substation are calculated using the proposed approach
in Section III. The studied utility conducted CVR tests on
one substation from January 2012 to December 2012. During
this period, 210 days are reduced-voltage days, 155 days are
normal-voltage days. Measurement devices are installed at
the substation. The meters can trend kW, kVAR, voltage and
current of the test circuits at 1-min intervals. One-year data

are stored and available
for analysis. Before constructing the time-varying stochastic
model for CVR effects, we first validate the performance of
the proposed method: 1) whether the identified TELM can
represent load behaviors sufficiently; 2) whether the calculated
CVR factors can accurately reflect CVR effects.

A. Validation of Identified Load Model
The identified load models should be validated for their ex-

pected performance. The easiest way for model verification is
to compare the identified load model outputs with measured
system outputs. Fig. 3 shows the measured data, the identifica-
tion results of the active load based on TELM and the traditional
deterministic exponential load model (DELM) on September
28, 2012. In the DELM, the LTV sensitivity is a time-invariant
constant. The active LTV of DELM is set to be 0.7 in this com-
parison, which is the typical value used by utilities for simula-
tion [30]. It can be seen that the identified load by TELM can fit
the measured load curve better than DELM.
Performances of the proposed TELM and traditional DELM

are compared in Table II. In this comparison, the active sensi-
tivity is set to be 0.7. The performance of the identified load
model is quantified with the relative error percentage (REP),
mean absolute percentage error (MAPE) and normalized mean
square error (NMSE). The definitions of these indexes can be
found in [31].
Table II shows the comparison results of the three indexes.

One-year average REP, NMSE, andMAPE as well as maximum

Fig. 3. Measured active power and model outputs on September 28, 2012.

TABLE II
ONE-YEAR AVERAGE MODEL ERRORS

TELMP: active power of TELM, DELMP: active power of DELM,
Avg.: average, REP: relative error percentage, NMSE: normalized
mean square error, MAPE: mean absolute percentage error.

and minimum daily MAPE of the two models are compared.
These results indicate that the TELM provides significantly
better approximation to the actual load than DELM. For ex-
ample, it improves the average REP over the DELM by 55.34%
for active power.

B. Validation of Calculated CVR factors

In order to validate the CVR factors calculated by the
proposed method, peak-hour voltage reduction tests and a
Euclidian distance-based comparison method are developed.
The Euclidian distance has been applied to solve clustering
problem in power systems [32]. Since one of the challenges
in calculating CVR factors is that the load without voltage
reduction during the CVR period cannot be measured, the
Euclidian distance based-comparison method can select a load
profile (control group) from all non-test days so that the profile
can approximate what the load on the test day would be if there
is no CVR. As shown in Fig. 4, load and voltage profiles of
a test day can be divided into three parts: ,

, and .
The Euclidian distance based-indexes for a non-test day are

defined as

(9)

where and can be used to select a non-test day whose
load and voltage profiles are the most similar to the current ones
under estimation. Denote the selected day as , then we can use
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Fig. 4. Typical peak-hour CVR test.

Fig. 5. Calculated Euclidian distance indexes.

as and calculate the CVR factor. The calcu-
lated CVR factor based on this Euclidian distance-based com-
parison method is compared with the one estimated by the pro-
posed load modeling method for validation.
Take October 14, 2012 as an example and the peak-hour CVR

is applied on this day. CVR starts at 4:20 AM (260 min) and
ends at 3:20 PM (920 min). Therefore, represents 0:00–4:19
and represents 3:21–23:59. Power differences and voltage
differences of all non-test days in the same month are calcu-
lated and the results are shown in Fig. 5. It is clear that date
15 should be selected as the control group since the power and
voltage differences are the smallest.
Fig. 6 shows the 24-h (1440-min) active power and voltage

profiles. The solid lines represent the measured load and voltage
profiles of the test day. The dotted lines show the load and
voltage profiles of the selected control group.
The RLS algorithm is then applied to estimate LTV sensi-

tivities and the CVR factor is calculated from . The solid
line in Fig. 7 shows the CVR factors during the test period. The
dotted line in Fig. 7 shows the CVR factors calculated by the Eu-
clidian distance-based comparison method. It can be seen that
the two CVR factors are similar, which can validate the accu-
racy of the proposed method.

Fig. 6. Voltage and load profiles with and without CVR.

Fig. 7. CVR factors calculated by load modeling and comparison methods.

IV. TIME-VARYING STOCHASTIC MODEL OF CVR EFFECTS

The one-year time-varying identification results make it pos-
sible to reveal the statistical law behind the seemingly irrelevant
CVR factors. In this section, the one-year identification results
are summarized and used to construct a time-adaptive stochastic
model for CVR factors, so as to quantitatively analyze the un-
certainties of CVR effects.

A. Analysis of One-Year Identification Results
In order to better represent the time-varying nature of CVR

effects, one year is firstly divided into four seasons: spring
(March, April, and May), summer (June, July, and August), fall
(September, October, and November) and winter (December,
January, and February). Then, every day of each season is
divided into 24 1-h intervals.
Fig. 8 shows the color mapping plots of identified CVR fac-

tors of four seasons. Take spring as an example, there are 20, 17,
and 21 randomly selected CVR test days in January, February,
and March, respectively. Thus, there are k

test data points in spring. The k data
points are classified into M groups
according to their time tags. Each group has n
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Fig. 8. 24-h color mapping plots of CVR factors in four seasons.

Fig. 9. 24-h box plot of CVR factors in spring.

data points. The CVR factors of each are
calculated and subplotted for spring. It is clear that CVR factors
are changing with time. The peak values of CVR factors usually
appear around noon in spring. The basic trends of each can
be seen from the figure. However, more quantitative analysis is
still necessary to determine which probability density function
can best fit the data.
Figs. 9–12 show the boxplots of for four seasons. For ex-

ample, the boxplot in Fig. 9 shows the mean, lower quartile and
upper quartile of CVR factors during every hour in spring. For
0:00 to 1:00, the mean value is 0.786, the lower quartile is 0.764,
which means 25 percent of data are lower than this value during
the first hour; the upper quartile is 0.791, which means 25 per-
cent of data are higher than this value. Thus, there is a certain
level of variation. However, due to the small time interval, CVR
factors do not vary a lot.
Figs. 9–12 also show the tendency of CVR factors. It can be

seen that CVR factors of spring and winter are higher, and those
of summer are lower. Throughout the year, CVR factors are rela-
tively high in the morning, noon and early evening. Take Fig. 10
as an example. There are two peaks in the figure: one is in the
morning, the other is in the evening. This phenomenon may be

Fig. 10. 24-h box plot of CVR factors in summer.

Fig. 11. 24-h box plot of CVR factors in fall.

ascribed to the increase of electric cooking appliances, while
the lower values in the afternoon may be due to the increase of
working air-conditioners and refrigerators. It should be noted
that more load information is needed to identify the actual rea-
sons.

B. Construction of Time-Varying Stochastic Model of CVR
Factors

In order to identify the most suitable probability distributions
for CVR factors of each time interval, the Kolmogorov-Smirnov
(K-S) goodness-of-fit test [27] is carried out. The K-S test com-
putes the test error , which is the maximum vertical distance
between a sample cumulative distribution function (CDF) and a
fitted CDF. This error is compared to a critical value , and
any distribution probability fit satisfying could be ac-
cepted. can be calculated based on the sample size and the
selected level of significance [33]. The K-S test can be repeated
for each data group to construct a time-varying probability dis-
tribution. In fact, the calculated CVR factors are at 1-min in-
terval, since the measured data are at 1-min resolution. How-
ever, the time window of the created time-varying stochastic
model is set to be one-hour so as to collect more data in a time
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Fig. 12. 24-h box plot of CVR factors in winter.

Fig. 13. Histogram of CVR factors during 0:00–1:00 in spring.

window for K-S tests and to better capture the statistical char-
acteristics of CVR effects. It should be noted the time window
can be smaller as long as there are enough data to perform the
K-S test.
Fig. 13 shows the histogram of CVR factors during 0:00–1:00

in spring. After running the K-S test, it is found that the normal
distribution exhibits the most promising goodness-of-fit for
each time interval.
Fig. 14 shows the differences between the CDF of CVR

factors during 0:00–1:00 in spring and various other CDFs
(Normal, Weibull, Rayleigh, and Exponential). It is clear that
Normal distribution can fit the original CDF better.
Fig. 15 shows the K-S test errors with normal distribution,

with for the normal distribution fit with a level
of significance 5%. It can be seen that the test error of each time
interval in every season is under the critical value.
Detailed quantitative analysis of CVR effects is highly desir-

able by utilities. The above time-varying stochastic model for
CVR effects can assist utilities to select suitable substations and
times to implement voltage reduction. Moreover, since the elec-
tricity prices and load consumptions are time-variant and sto-
chastic, the constructed model of CVR effects can be used for
more detailed cost/benefit analysis. The benefits of CVR can be
analyzed more realistically by using the proposed model.

Fig. 14. CDF of CVR factors during 0:00–1:00 in spring and various proba-
bility distributions.

Fig. 15. K-S test errors for CVR factors.

V. CONCLUSION

A time-varying stochastic model is developed in this paper to
represent the time-dependent nature and uncertainties of CVR
effects. The first step of the proposed method is to calculate the
load model parameters, which is completed by using TELM to
represent loads and RLS to recursively identify model parame-
ters. Comparison results show that the proposed TELM is better
than traditional exponential load models. The second step is to
calculate CVR factors using the identified model parameters.
The results confirm that CVR factors change with season and
time of the day. A Euclidian distance-based comparison method
is developed to validate the calculated CVR factors. The third
step is to split the CVR factors into each time window and per-
form K-S tests to find the most suitable probability distribution
representing CVR factors in each time window. We find normal
distribution is shown to be the best choice.
Compared with previous efforts to assess CVR effects, the

proposed method has several advantages: 1) it does not depend
on the selection of control groups or assumption of a simple
linear relationship between load and its impact factors; 2) it
captures the nature of CVR by modeling LTV sensitivities; 3)
it considers the time-varying and uncertain nature of CVR ef-
fects. The proposed assessment method can potentially be used
to guide the selection of suitable substations and appropriate
time to implement voltage reduction. It can also be used to as-
sist utilities to perform cost/benefit analysis.
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