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Abstract—This paper proposes a model predictive control
(MPC)-based voltage/var optimization (VVO) technique consider-
ing the integration of distributed generators and load-to-voltage
sensitivities. The paper schedules optimal tap positions of on-
load tap changer and switch statuses of capacitor banks based
on predictive outputs of wind turbines and photovoltaic gen-
erators. Compared with previous efforts on VVO which used
constant-power load model, the exponential load model is used
to capture the various load behaviors in this paper. Different
customer types such as industrial, residential, and commercial
loads are also considered. The uncertainties of model prediction
errors are taken into account in the proposed model. A scenario
reduction technique is applied to enhance a tradeoff between
the accuracy of the solution and the computational burden. The
MPC-based VVO problem is formulated as a mixed-integer non-
linear program with reduced scenarios. Case studies show the
effectiveness of the proposed method.

Index Terms—Distributed generators, exponential load model,
mixed-integer program, model predictive control, scenario reduc-
tion, voltage/var optimization.

NOMENCLATURE

B Set of nodes in the distribution system.
S Set of initial scenarios.
J Set of scenarios to be deleted.
Pi Active power flow from node i to i + 1.
Qi Reactive power flow from node i to i + 1.
Vi Voltage at node i.
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pl
i Active load consumption at node i.

ql
i Reactive load consumption at node i.

pg
i Active power generation at node i.

qg
i Reactive power generation at node i.

ri + jxi Impedance of the line between nodes i and i + 1.
� Active power losses of the distribution system.
�Vi,t Voltage deviation of node i from the first node at

time t.
ε Maximum allowable voltage deviation.
kpi Active power exponent for the exponential load

model at node i.
kqi Reactive power exponent for the exponential load

model at node i.
Pb,pred

i,t Predicted active load component at nominal volt-
age for the exponential load model at node i and
time t.

Qb,pred
i,t Predicted reactive load component at nominal

voltage for the exponential load model at node
i and time t.

Mp
t Multiplier for active load at time t.

Mq
t Multiplier for reactive load at time t.

Tp Prediction horizon in MPC.
Tc Control horizon in MPC.
tk Discrete time instant of MPC.
TAPt Tap position of OLTC during time interval t.
TAPmax Maximum number of OLTC operations during

time t to time t + Tp.
ci,t Binary indicator of the switch status of the capac-

itor at node i during at time t (1-ON, 0-OFF).
Qcap

i Size of the capacitor at node i.
CAPmax Maximum switch times of capacitors during time

t to time t + Tp.
ai,t ai,t = ci,tci,t+Tc .
si,t Binary indicator for switch status change of the

capacitor at node i from time t to t + Tc.
ϕt Integer represents tap changes of the OLTC from

time t to t + Tc.
ωt Scenario set of prediction errors at time t, ωt ={

ω
j
t

}
j=1,...,N

.

Ppred
i,t Predicted output of the DG at node i and time t.

Sbase Power base for the system.
αi,tβi,t Shape parameters of Beta function.
σi,t Standard deviation of the prediction error.
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N Number of initial scenarios.
n Number of reduced scenarios.
ωs

t Prediction error in scenario s at time t.
ρs Original probability of scenario s.
ρ′

s Aggregated probability of scenario s.

I. INTRODUCTION

VOLTAGE and var optimization (VVO) is a secondary
control scheme to the daily operation of distribution sys-

tems. VVO is achieved by on-load tap changers (OLTCs)
and var compensation devices such as capacitors. The main
purpose of VVO is to coordinate the schedules of tap posi-
tions of OLTCs and statuses of switched capacitors to improve
the power quality and operations of distribution systems. The
increasing penetration of distributed generators (DGs) has
great impacts on conventional VVO due to the uncertain
outputs of renewable energy sources (RES)-based DGs [1], [2].

Many papers in the literature have investigated the VVO
problem in distribution networks [3]–[7]. Reference [3] treated
the regulation of OLTC and capacitors as two decoupled
problems and provided an optimal real-time control scheme.
Reference [4] studied the coordination of voltage regula-
tors and capacitors. A multiobjective genetic algorithm (GA)
was used to deal with the integrated VVO so as to mini-
mize power losses and voltage deviations. In [5], OLTC and
capacitors were dispatched hourly based on day-ahead load
forecast. Reference [6] proposed a two-stage coordinated con-
trol between OLTC and capacitor banks (CBs). The dispatch
schedules of CBs were generated using a heuristic algorithm
based on the forecasted load, and the OLTC was controlled
in real time. Reference [7] presented an artificial neural net-
work (ANN)-based optimal coordination control scheme for
OLTC and STATCOM in a distribution system. However, the
existence of DGs was not considered in these papers.

As the penetration level of DGs grows, their impacts on volt-
age and reactive power in distribution systems have attracted
more and more attention [8]. The outputs of RES-based DGs
can be highly stochastic. Meanwhile, the value of resistance
can be close to that of reactance in a distribution circuit, which
highlights impacts of DG outputs on VVO [1]. Reference [9]
investigated the coordination of OLTC and capacitors to min-
imize power losses in a distribution system with DGs. The
DGs were assumed to be synchronous machine-based ones
whose outputs were controllable. Reference [10] proposed a
combined centralized and local control scheme for VVO to
minimize losses in the presence of induction machine-based
DGs. Loads were assumed to be constant power loads. It was
also assumed that the wind power can be forecasted with-
out errors. Reference [11] proposed an optimal control of
distribution voltages with the coordination of voltage regu-
lators, capacitors, shunt reactors and static var compensators
(SVCs) in a distribution system with photovoltaic (PV) gener-
ation. However, the output of PV was assumed to be known.
Reference [12] proposed an optimal reactive power coordina-
tion strategy to minimize the number of tap operations of line
voltage regulators in distribution systems with high PV pene-
tration. Reference [13] proposed a hybrid voltage/var control

for a distribution system with PV generation. There are only
a few papers considering the stochastic nature of RES-based
DGs in solving the VVO problem. Reference [1] applied a
teaching-learning algorithm (TLA) to schedule VVO dispatch,
the stochastic outputs of DGs were converted to a series of
equivalent deterministic scenarios. The study in [14] used GA
for optimal var control considering wind farms to minimize
system losses.

All of the above literature ignores the load-to-voltage (LTV)
relationship and use constant-power models to represent load
behaviors, which may not be accurate in practice [15]. Load
models have significant impacts on power system operation
and analysis [16], [17]. The studies of power system stability,
operation, and planning strongly depend on the accuracy of
load models and their parameters. The conventional constant-
power load models which are normally used in previous
studies assume that the load is insensitive to voltage, which
may not be realistic and lead to inaccurate VVO dispatches.
This is especially true in distribution systems since the LTV
sensitivities may vary from one node to another due to the
complicated load compositions. The LTV will greatly impact
the effectiveness of VVO. Meanwhile, the ever-increasing pen-
etration of DGs has introduced additional constraints and
uncertainties into the voltage control of power systems. The
voltage control of power systems is a multiobjective optimiza-
tion problem that requires more effective and robust control
strategies [18]. The control strategies based on prediction
of system behaviors are receiving more interest due to the
flexibility of online optimization in explicitly incorporating
voltage control specifications and operational constraints; such
methods are usually referred to as model predictive control
(MPC).

MPC has been applied in power system operations and con-
trols [19]. Reference [20] applied MPC in voltage coordination
of multiarea power systems. Reference [21] used a central-
ized MPC and a heuristic algorithm to coordinate generator
voltage set-points, LTC, and load shedding. Reference [22]
employed MPC to select a combination of shunt capacitors,
load shedding, and generator voltage set-points to correct non-
viable transmission voltages. However, the stochastic nature of
model prediction errors was not considered in these papers.

This paper proposes a MPC-based formulation for the opti-
mal dispatch of OLTC and CBs considering the load models
and the uncertainty of DG outputs. The exponential load model
is used to represent LTV relationships. A practical distribu-
tion system may consist of various types of customers such
as residential, commercial and industrial loads. Thus, each
type of customer is assigned with assumed exponents in the
exponential load models [23]. The uncertainties of predic-
tion errors in the MPC-based VVO are taken into account
using a scenario-based approach. The probabilistic prediction
errors result from the integration of RES-based DGs (wind
turbines and PVs). Monte-Carlo simulations are used to gen-
erate scenarios. The simultaneous backward scenario reduction
method [24] is applied to increase the calculation speed while
maintaining the accuracy of the solution. The MPC-based
VVO problem is formulated as a mixed-integer nonlinear pro-
gram (MINLP) with reduced scenarios and then solved by
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Fig. 1. Schematic diagram of a radial distribution system.

GAMS/DICOPT [25]. Case studies show that load models and
probabilistic prediction errors of DG outputs can significantly
impact the optimal VVO schedule.

The remainder of this paper is organized as follows.
Section II introduces the distribution system, load models, and
MPC theory as well as the mathematical formulation of the
stochastic MPC-based VVO problem. Section III introduces
scenario generation and reduction for the problem. Section IV
provides case studies to show the effectiveness of the proposed
method. Section V concludes the paper with major findings.

II. MPC-BASED VOLTAGE/VAR CONTROL

A. Distribution System Model

Consider a distribution system as shown in Fig. 1, there
are m buses indexed by i = 0, 1, . . . ,m. The following equa-
tions can be used to describe the complex power flows at each
node i [26], [27]:

Pi+1 = Pi − ri
P2

i + Q2
i

V2
i

− pi+1 (1)

Qi+1 = Qi − xi
P2

i + Q2
i

V2
i

− qi+1 (2)

V2
i+1 = V2

i − 2(riPi + xiQi)+ (r2
i + x2

i )
P2

i + Q2
i

V2
i

(3)

pi = pl
i − pg

i , qi = ql
i − qg

i . (4)

In this paper, we assume that pg
i is generated by DG units at

node i, qg
i is generated by VAr compensation devices which

are capacitors. qg
i can be negative if DGs draw reactive power

from the distribution system.

B. Load Models

Many load models have been developed in the past, among
which, exponential load model (ELM) is widely used to
represent LTV relationship [23]. The ELM is defined as

pl
i = Pb

i V
kpi
i (5)

ql
i = Qb

i V
kqi
i . (6)

TABLE I
LOAD TYPES AND EXPONENT VALUES

Fig. 2. Demonstration of MPC.

In the constant power load model, kpi and kqi are assumed to
be zero. In fact, the exponents kpi and kqi are related with load
compositions. Table I shows the example exponent values for
different types of loads [23], which will be used in this paper
for illustration. In practice, a feeder is not explicitly residential,
commercial or industrial [17]. Thus, a load class mix will be
implemented; the details are discussed in Section IV.

C. Model Predictive Control

MPC refers to algorithms that solve a finite-horizon optimal
control problem over the prediction horizon Tp, the obtained
control variables are applied to the system over the control
horizon Tc (Tc ≤ Tp). At the end of the control hori-
zon, the rest of the predicted control variables are discarded
and the entire procedure is repeated [20]. Fig. 2 demon-
strates the processes of MPC. At a discrete time instant tk,
the future system behavior is predicted over a finite window[
tk, . . . , tk + Tp

]
. The optimal control problem is solved based

on the prediction data to obtain a sequence of control signals[
u(tk), u(tk+1), . . . , u(tk + Tp)

]
. The control signals beyond

tk + Tc will be discarded (shown in dotted line) and others
will be implemented into the system (shown in bold line).
The above process is repeated using new observations at tk+1.
In this paper, we assume Tc = tk+1 − tk [20].

In practice, the prediction errors ω should be considered,
especially when highly variable components such as DGs exist
in the system. The details on prediction errors of MPC will
be discussed in Section III.

D. Mathematical Formulation of MPC

Consider using power losses of the distribution system and
voltage deviations along the feeder as control objectives, the
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multiobjective VVO problem for a certain control period can
be formulated as follows:

min E

⎡
⎣

tk+Tp∑
t=tk

(�t(ωt)+�Vt(ωt))

⎤
⎦ (7)

subject to

�Vt(ωt) = max
i

{
�Vi,t(ωt)

}
, �Vi,t(ωt)

= ∣∣Vi,t(ωt)− V1,t(ωt)
∣∣ (8)

�t(ωt) =
∑

i

ri
P2

i,t(ωt)+ Q2
i,t(ωt)

V2
1,t(ωt)

, ∀i ∈ B (9)

Pi+1,t(ωt) = Pi,t(ωt)− pi+1,t(ωt) (10)

Qi+1,t(ωt) = Qi,t(ωt)− qi+1,t(ωt) (11)

Vi+1,t(ωt) = Vi,t(ωt)− riPi,t(ωt)+ xiQi,t(ωt)

V1,t(ωt)
(12)

pi,t(ωt) = pl
i,t − pg

i,t(ωt) (13)

qi,t(ωt) = ql
i,t − qg

i,t(ωt) (14)

pg
i,t(ωt) = Ppred

i,t + ωi,t (15)

qg
i,t = ci,tQ

cap
i (16)

V1,t = TAPtVs (17)

pl
i,t =

(
Pb,pred

i,t + ωt

)
V

kpi
i,t (ωt) (18)

ql
i,t =

(
Qb,pred

i,t + ωt

)
V

kqi
i,t (ωt) (19)

1 − ε ≤ Vi,t(ωt) ≤ 1 + ε (20)
tk+Tp−Tc∑

t=tk

∣∣ci,t+Tc − ci,t
∣∣ ≤ CAPmax (21a)

tk+Tp−Tc∑
t=tk

∣∣TAPt+Tc − TAPt
∣∣ ≤ TAPmax. (21b)

In the above formulation, the objective function (7) min-
imizes the expectation of active power losses and voltage
deviations along the feeder during the prediction horizon.
For illustration, we assume the two objectives are equally
weighted. However, the distribution system operators (DSOs)
can change the weighting factors (priorities) according to
the specific operational requirements. Equation (8) represents
the maximum voltage deviation of all nodes. Equation (9)
describes active power losses of the distribution network.
Equations (10)–(12) are the linear form of the DistFlow equa-
tions defined in (1)–(4), which have been extensively verified
and used in the literature [26]–[29]. The linearization is based
on the fact that the nonlinear terms in (1)–(4) are much
smaller than the linear terms [29], [30]. The outputs of DG
units and capacitors are represented as negative loads in con-
straints (13)–(14). Equation (15) assumes outputs of DG units
equal the predicted values plus the predicted errors ω. ω
belongs to an uncertainty set, which may vary with predicted
values and will be discussed in next section. In constraint (16),
ci,t represents the on/off status of the capacitor at node i during
the time interval t. For nodes without capacitors, Qcap

i equals
zero. In constraint (17), Vs represents the primary voltage of
the transformer at the substation, which is assumed to be

1.0 p.u. in this paper. The secondary voltage is modeled as
a function of the primary voltage [3], [4]. The detailed model
can be found in [4]. Voltage regulators (VRs) are voltage con-
trol devices often used on long lines and can participate in
VVO. A single-phase VR with an open-delta configuration, 32
taps ([−16, . . . ,+16]) and ±10% tap range can be modeled as
follows [4]:

Vi,t = Vr

√
1 + 3(TAPi,t/16)+ 3(TAPi,t/16)2 (22)

where Vr is the input voltage of the VR, TAPi,t represents the
tap position of the VR of node i at time t. Equation (22) can
be integrated into the VVO formulation when VRs exist in the
distribution system.

Constraints (18) and (19) use the exponential load model to
represent active and reactive load consumptions. Pb,pred

i,t and

Qb,pred
i,t change with a load profile which can be obtained by

using short-term load forecasting techniques. Constraint (20)
indicates the voltage of each node should be within a cer-
tain range for proper operation of the distribution circuit, ε is
usually set to be 0.05. Constraints (21a) and (21b) describe
the max. number of daily switching operations of OLTC and
capacitors, respectively. In some practical cases, a bank of
capacitors may be installed at node i. Then, the discrete
output of the CB at node i can be represented as (23a)
and constraint (21a) can be modified accordingly as shown
in (23b).

qg
i,t =

∑
k

cik,tQ
cap
ik (23a)

tk+Tp−Tc∑
t=tk

∣∣cik,t+Tc − cik,t
∣∣ ≤ CAPmax (23b)

where cik is a binary indicator of the switch status of the kth
capacitor in the CB at node i and Qcap

ik represents the size of
the kth capacitor in the CB at node i. This paper considers
the case that one capacitor is installed at one node. However,
it is clear that the proposed method can be applied to solve
the VVO problem with CBs. The maximum number of daily
switching operations of OLTC and capacitors should be less
than the predefined values. For illustration, CAPmax is set to
be 3 and TAPmax is set to be 5 in this paper. The DSOs can
change these settings according to the characteristics of a spe-
cific system. To further reduce the nonlinearity of the above
problem, some constraints can be reformulated. Equation (8)
can be reformulated as follows:

λt(ωt) ≥ Vi,t(ωt)− V0,t(ωt), ∀i ∈ B (24a)

λt(ωt) ≥ V0,t(ωt)− Vi,t(ωt), ∀i ∈ B. (24b)

In constraint (21), assume si,t = (ci,t+Tc − ci,t)
2, since ci,t

is a binary, c2
i,t = ci,t, we have

si,t = ci,t+Tc + ci,t − 2ci,t+Tc ci,t. (25)

si,t indicates whether the capacitor at node i has changed
its status from time t to time t + Tc (si,t = 1, if the status
has changed). To linearize the multiplication of ci,t+�tci,t, we
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TABLE II
RELATIONSHIP AMONG si,t , ai,t , AND ci,t

denote ai,t = ci,t+Tc ci,t, and ai,t is a binary. Equation (25) can
be represented as

si,t = ci,t+Tc + ci,t − 2ai,t (26)

ai,t ≤ ci,t, ai,t ≤ ci,t+Tc , ai,t ≥ ci,t + ci,t+Tc − 1. (27)

Table II illustrates the effectiveness of (26) and (27). It can
be seen that si,t can represent the switch status of the capacitor.
The constraint (21a) can be reformulated as a linear constraint

tk+Tp−Tc∑
t=tk

si,t =
tk+Tp−Tc∑

t=tk

(ci,t+Tc + ci,t − 2ai,t) ≤ CAPmax. (28)

In constraints (21b), TAPt is an integer whose range is
dependent on the number of taps of the OLTC. Equation (22)
can be reformulated as follows:

ϕt ≥ TAPt+Tc − TAPt (29)

ϕt ≥ TAPt − TAPt+Tc (30)
tk+Tp−Tc∑

t=tk

ϕt ≤ TAPmax. (31)

The stochastic optimization problem can be represented as
follows:

min E

[∑tk+Tp
t=tk (�t(ωt)+ λ(ωt))

]

s.t. (9)−(20), (24)−(31)
. (32)

III. SOLUTION METHODOLOGY

A. Prediction Error and Scenario Generation

In this paper, two kinds of DGs are considered: wind tur-
bines and PVs, the predicted wind and solar power will be
used. It is known that errors always exist in prediction mod-
els. The normal distribution and beta distribution are used
by previous papers to represent the wind power prediction
errors [31], [32]. It has been shown that the beta function is
more appropriate than the standard normal distribution in rep-
resenting predication errors of wind power [31], [33]. The
prediction errors of solar power are still under study. In [1],
the beta function has also been used in representing the pre-
diction errors of solar power. Since the purpose of this paper
is to calculate dispatches of VVO devices based on predicted
DG outputs, each prediction horizon corresponds to two beta
functions for predication errors: one for wind power and the
other for solar power.

For a predicted power Ppred
i,t , the beta function can be defined

by two corresponding parameters α and β [33]

f
ppred

i,t
(x) = xα−1(1 − x)β−1. (33)

The above beta function models the occurrence of real power
values x when a certain prediction value Ppred

i,t has been
forecasted. Shape parameters α and β can be calculated as

Ppred
i,t

Sbase
= αi,t

αi,t + βi,t
(34)

σ 2
i,t = αi,tβi,t

(αi,t + βi,t)2(αi,t + βi,t + 1)
. (35)

The relationship between the predicted power and its error
variance can be represented as [1], [33]

σi,t = 0.2 × Ppred
i,t

Pcap
i

+ 0.21. (36)

Using the predicted DG outputs and the (34)–(36), the
parameters of beta functions for the current prediction hori-
zon can be calculated. A normal distribution is frequently used
to represent the forecasting uncertainty of load consumptions,
in which, the mean value of the normal distribution is the
forecasted load and the stand deviation is set to be 2% of
the expected load [34]. Monte-Carlo simulation (MCs) is run
based on forecasted power and uncertain prediction errors to
generate scenarios for DG outputs and load consumptions.
All of the above distributions and parameters settings can be
changed according to the available information of a system.

B. Scenario Reduction

In order to reduce the computation efforts, a scenario
reduction technique is implemented to reduce the number
of scenarios while maintaining a good approximation of the
system uncertainty. In this paper, the simultaneous backward
reduction method [24] will be used for scenario reduction.
Let τs(s = 1, . . . ,N) denote N different scenarios, each with
a probability of ρs, we define a distance function d(τs, τs′) for
the scenario pair (τs, τs′)

d(τs, τs′): = max{1, ‖τs − τ̄‖ , ‖τs′ − τ̄‖} ‖τs − τs′ ‖ (37)

where τ̄ is the average value of scenarios. Denote S as the ini-
tial set of scenarios (N initial elements) and J (initially null) as
the set of scenarios to be deleted. Assume there are N scenar-
ios and we would like to reduce them into n scenarios. The
steps can be summarized as follows.

Step 1: Compute the distances of all scenario pairs
ds,s′ = d(τs, τs′)(s, s′ = 1, . . . ,N). For each sce-
nario l, φ

[1]
l := minj 	=l dl,j (j = 1, . . . ,N), let l1 ∈

arg minl∈{1,...,N} ρlφ
[1]
l , we can obtain the first element of J,

J[1] = {l1} and S is updated by S[1] = S
/{l1}.

Step i (i > 1): For each scenario l, l ∈ S[i−1], compute
φ

[i]
kl := mink′ /∈J[i−1]

⋃{l} dk,k′ , k ∈ J[i−1] ⋃{l}, then compute

z[i]
l := ∑

k∈J[i−1]
⋃{l} ρkφ

[i]
kl , letli ∈ arg min z[i]

l , update J and

S by J[i] = J[i−1] ⋃{li}, Si = Si−1/{li}, repeat this step for
N − n times.

Step N − n + 1: After obtaining the final J set (with N ele-
ments) and the S set (with n elements), for the each remaining
scenario s ∈ S, its new probability ρ′

s can be calculated as

ρ′
s = ρs +

∑
j∈Jj

ρj (38)
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where Jj can be calculated as follows: for each j ∈ J, Jj =
{ψ |ψ ∈ arg minh/∈J d(τh, τj)}.

The number of scenarios can be reduced from N to n
through the above procedures. The problem defined in (32)
can be reformulated using the reduced scenarios as follows:

min
∑n

s=1 ρ
′
s [

∑tk+Tp
t=tk (�t(ω

s
t )+ λ(ωs

t ))]
s.t. (9)−(20), (24)−(31)

. (39)

The problem is MINLP, which can be solved by commercial
solvers, such as DICOPT [25]. The above formulation sched-
ules the dispatches of VVO devices for the current prediction
horizon based on predicted DG outputs so as to minimize
active power losses and voltage deviations. The process is
repeated when new observations come at tk+1. DG outputs can
be predicted by regression-based methods or machine learning-
based techniques, which are beyond the contents of this paper.
The comprehensive procedure for MPC-based VVO can be
summarized as (start from t = tk).

Step 1: Predict DG outputs for the time period [t, t + Tp].
Step 2: Calculate corresponding beta functions for the pre-

dicted DG outputs; obtain N scenarios of prediction
errors using MCs; reduce the number of scenarios
to n.

Step 3: Solve the MINLP problem in (38) and obtain the
VVO schedule for the time period [t, t + Tp].

Step 4: Implement the VVO schedule for the time period
[t, t + Tc]. When t = tk + Tc = tk+1, go to step 1.

It is necessary to show how much improvement can be
achieved if the stochastic prediction errors are taken into
account in MPC. We define the solution of (39) as x̂. For
the problem defined in (32), we replace the random error ω
by its expected value, and then the expected value problem
(EV), which is a deterministic optimization problem, can be
defined as

EV = min

tk+Tp∑
t=tk

(�t(ω̄t)+ λ(ω̄t)) (40)

where ω̄t = E(ωt) denotes the expectation of ωt. The expected
value solution can be defined as x̄. The expected results of
using the EV solution can be represented as

EEV = 1

N′
N′∑

h=1

(�t(x̄, ω
h)+ λ(x̄, ωh)). (41)

EEV measures the performance of x̄, allowing second-stage
decision variables to be chosen optimally as functions of
x̄ and ω. The N′ scenarios of prediction errors are gener-
ated by MCs. We can compare EEV and the objective value
of (39) to see how the stochastic programming outperforms
the deterministic programming.

IV. CASE STUDY

The proposed methodology has been examined on the mod-
ified IEEE 33-bus radial distribution network as shown in
Fig. 3. Details about the test system can be found in [26].
Assume the substation transformer is with ±10% tap range.
Switched capacitors are installed at nodes 2, 3, 6, 11, 21

Fig. 3. Test distribution system.

TABLE III
NODE TYPES

and 23, each is 30 kvar. PV panels are installed at node 21,
wind turbines are located at nodes 11 and 27. The node types
are listed in Table III. In this example, we set Tp to be 6
h, Tc to be 15 min. For every 15 min, the MPC predicts the
DG outputs and load consumptions for the next 6 h and makes
control decisions. 100 scenarios (N = 100) are generated using
Monte-Carlo simulation to represent the prediction errors in
the prediction horizon. As discussed in the previous section,
scenario reduction is applied to reduce the computation efforts
while maintaining the solution accuracy. The 100 generated
scenarios are reduced to 15 scenarios (n = 15) in this case.
The above procedure is repeated for the whole day.

All loads are represented by ELM, the load consumption of
node i at time t can be represented as

pl
i,t = Pb

i Mp
t V

kpi
i,t (42)

ql
i,t = Qb

i Mq
t V

kqi
i,t . (43)

The values of basic components Pb
i and Qb

i can be found
in [26], the exponents of each type of load are shown in
Table I. The multipliers Mp

t and Mq
t , as shown in Fig. 4, are

used to make the load profile change with time. It is assumed
that multipliers of all nodes are the same.

Fig. 5 shows the normalized predicted wind and solar power
that will be used in this paper. The power base of the system
Sbase is set to be 1 MVA.

The stochastic VVO problem defined in (39) is solved with
the 15 scenarios for every prediction horizon. Fig. 6 shows the
daily optimal dispatch of OLTC tap positions, in which, Tap



2418 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 5, SEPTEMBER 2014

Fig. 4. Load shape multipliers.

Fig. 5. Predicted wind and solar power.

Fig. 6. Tap positions with exponential model and constant power model.

EXL refers to tap positions with ELM and Tap CP refers to
tap positions with the constant-power model. It can be seen
that the optimal taps of OLTC are quite different for ELM and
the constant-power model.

Figs. 7–9 show the switch statuses of capacitors, where
EXL represents the results with the ELM, CP represents the
results with the constant-power load model. It can be seen that

Fig. 7. Switch statuses of capacitor 2 and 3 with exponential model and
constant power model.

Fig. 8. Switch statuses of capacitor 6 and 11 with exponential model and
constant power model.

Fig. 9. Switch statuses of capacitor 20 and 23 with exponential model and
constant power model.

daily dispatches of most capacitors change with different load
models (capacitor at node 3 does not change).

Fig. 10 shows the voltages of all nodes. Voltage levels at
6:00, 12:00, 18:00, and 24:00 are selected to be shown due to
the space limit. EXL represents the voltages with the ELM,
CP represents the voltages with the constant-power load model
and Base represents the voltages with DGs and ELM, but with-
out OLTC or capacitors. Compared with the base case, the
proposed stochastic VVO method considering DGs can largely
improve the voltage profile no matter which kind of load mod-
els is used. All the voltages are within 0.95 to 1.05 p.u., which
satisfies the voltage constraint. The optimal voltage levels with
the constant-power load model are relatively higher than those



WANG et al.: MPC-BASED VOLTAGE/VAR OPTIMIZATION FOR DISTRIBUTION CIRCUITS 2419

Fig. 10. Voltage profiles.

Fig. 11. Active power losses and max voltage deviations.

with ELM. The reason is that losses are proportional to the
square of the current, and the current of a constant-power load
is inversely proportional to the voltage [10]. Thus, the OLTC
will operate the feeder in the upper bound of the allowable
voltage range to reduce losses.

Fig. 11 shows the active power losses and maximum volt-
age deviation of VVO with ELM, constant-power load model,
EEV, and the base case without VVO. It can be seen that
the MPC-based VVO method can improve the system opera-
tion. For example, compared with the base case with DGs and
without VVO, the MPC-based VVO with ELM reduces the
maximum voltage deviation by 65%, and power losses by
77%. Compared with the deterministic MPC (labeled as EEV
in Fig. 11), the proposed stochastic MPC considering predic-
tion errors and ELM (labeled as exponential model in Fig. 11)
can reduce the maximum voltage deviation by 49% and power
losses by 72%. Meanwhile, the objective function values of
systems with ELM and the constant-power model are different.
Since loads are sensitive to voltage in practice and different
types of loads may have various LTV sensitivities, the pro-
posed VVO with DGs and different load models are more
realistic and effective.

V. CONCLUSION

In this paper, a MPC-based model for VVO dispatch based
on forecasted DG outputs is proposed. The model consid-
ers exponential load models and the probabilistic nature of
prediction errors of DG outputs and load consumptions. The
VVO problem is formulated as a stochastic MINLP with the
purposes to minimize power losses and feeder voltage devi-
ations. Different types of customers (residential, commercial

and industrial customers) in a distribution system are taken
into account by assigning corresponding exponents in the load
models. Monte-Carlo simulations are run to generate scenarios
of DG outputs. The MINLP is solved with reduced scenarios.

Case studies on the modified 33-bus test system with two
wind turbines, one PV and different types of loads verify the
effectiveness of the proposed VVO technique. The proposed
VVO can reduce losses by up to 77% and reduce maxi-
mum voltage deviations by up to 65%. It should be noted
that the stochastic MPC produces from two to three times
greater benefits than the deterministic MPC approach. Finally,
it appears that significant differences exist in VVO dispatches
when load models are taken into account. Fig. 11 shows that
using the exponential load model, the analysis estimates both
active power losses and maximum voltage deviations to be
lower compared to simulations using constant power loads.
Compared with previous studies on VVO dispatch, the paper
considers both improved load models and uncertain DG out-
puts. Thus, the proposed VVO model is more realistic and
suitable to be used in practice.
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