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Abstract—This paper proposes a novel Microgrid (MG) plan-
ning methodology to decide optimal locations, sizes and mix of
dispatchable and intermittent distributed generators (DGs). The
long-term costs in the proposed planning model include invest-
ment, operation and maintenance (O&M), fuel and emission costs
of DGswhile the revenue includes payment byMG loads and utility
grid. The problem is formulated as amixed-integer program (MIP)
considering the probabilistic nature of DG outputs and load con-
sumption, wherein the costs are minimized and profits are maxi-
mized. Themodel is transformed to be a two-stage robust optimiza-
tion problem. A column and constraint generation (CCG) frame-
work is used to solve the problem. Compared with conventional
MG planning approaches, the proposed model is more practical in
that it fully considers the system uncertainties and only requires
a deterministic uncertainty set, rather than a probability distribu-
tion of uncertain data which is difficult to obtain. Case studies of
a MG with wind turbines, photovoltaic generators (PVs) and mi-
croturbines (MTs) demonstrate the effectiveness of the proposed
methodology.

Index Terms—Distributed Generator (DG), distribution net-
work, microgrid (MG), mixed integer program (MIP), robust
optimization.

NOMENCLATURE
A. Sets

Uncertainty set for wind power, solar
power and load consumption.

Set of nodes that have WT, PV and LD,
respectively.

B. Acronyms

wt Wind turbine.

pv Photovoltaic generator.

mt Micro turbine.

ld Load consumption.
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C. Parameters

Line resistance between nodes and .

Line reactance between nodes and .

Investment cost for a certain type of DG
($).

Present worth factor in year .

Annual discount rate.

Total operation hours in year .

O&M cost in year ($).

Weight that transforms the hour-based costs
to year-based costs.

One discrete increment of DG size (kVA).

Emission factor for MT (kg/kWh).

Fuel price of microturbines in year .

Emission price of microturbines at time
in year .

Price for selling/buying electricity to utility
grid at time in year .

Price for selling electricity to consumers in
MG at time in year .

Maximum allowed voltage deviation.

Percentage of excess reserve margin for
islanded operation.

Planning horizon.

Total number of nodes that have WT, PV
and LD, respectively.

Uncertain power output of at time
in year .

Uncertain load consumption of node at
time in year .

Upper and lower bounds of .

Mean values of .

Budget of uncertainty of forecasted wind
power, solar power and load consumption.

D. Variables

Voltage magnitude of node at time in
year .
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Active/reactive power flow from node to
at time in year .

Active/reactive load consumption of node
at time in year .

Reactive load consumption of node at
time in year .

Active power output of a certain type of
DG at node at time in year .

Investment cost ($).

Operation and maintenance (O&M) cost
($).

Fuel cost ($).

Emission cost ($).

Revenue of the MG ($).

Binary indicator represents whether a
certain type of DG exists at node (1-yes,
0-no).

0 if the th increment in size is not
necessary to compose the DG at node .

1 if the th increment in size is necessary to
compose the DG at node .

.

Power deficiency of the MG at time in
year .

Power surplus of the MG at time in year .

Optimality gap.

Maximum allowable Gap.

I. INTRODUCTION

M ICROGRIDs (MGs) are active distribution networks in-
tegrating distributed generators (DGs), loads and en-

ergy storage and other onsite electric components. MGs are usu-
ally intended for the local production of power with islanding
capabilities (islanded, or autonomous mode) and have capacity
available for selling power back to the utility grid (grid-con-
nected mode) [1].
MGs usually consist of various types of DGs such as wind tur-

bines, photovoltaic generators (PVs), biomass, micro turbines
and fuel cells. Proper planning of MGs is critical to the opera-
tions, return of investments (ROI) and environmental impacts
of MGs. As one of the most important aspects of MG plan-
ning, the deployment of DGs is to decide the locations, sizes
and mix of DGs in a MG. A lot of studies have been made in
the deployment of DGs in distribution networks. The study in
[2] identified the voltage sensitivity of each bus using contin-
uous power flow analysis, and then deployed DG at the most
sensitive bus to improve the voltage security margin and reduce
power losses. The study in [3] proposed analytical methods to

determine the optimal location to place a DG in radial as well
as networked systems to minimize power losses. The study in
[4] applied Genetic algorithm (GA) to determine the sizes and
locations of DGs considering exponential load models. How-
ever, all the above existing works assume that DGs are dispatch-
able and controllable, which is not accurate since renewable
energy-based DGs are mostly non-dispatchable power sources
with intermittent output. Only a few papers have considered the
uncertain nature of DGs in system planning. The authors in [5]
presented a probabilistic planning method to determine the op-
timal mix of wind, solar, and biomass units to minimize annual
energy losses, but the placement of DG units was not consid-
ered. The authors in [6] deployed DGs to improve voltage sta-
bility. The probabilistic nature of DG output is mentioned but
not taken into account in the solution algorithm. In [7], Particle
SwarmOptimization (PSO) and ordinal optimization (OO)were
combined to obtain optimal deployment of DGs in a distribution
system considering the uncertainties of DG outputs and loads.
A scenario-aggregation method is proposed to reduce the com-
putational burden.
Although MGs are essential elements in a smart grid, only a

few approaches have been reported in the literature in relation
to MG planning. Reference [8] presented an algorithm for the
MG planning as an alternative to the co-optimization of genera-
tion and transmission expansion planning. Reference [9] devel-
oped a tool for economic MG planning. It finds the minimum
cost of energy and optimal mix of DGs. The uncertainties of
DG outputs and load demands were not considered. Reference
[10] used PSO to solve the deployment problem of DGs in a
MG with the purpose to maximize the benefit-to-cost ratio of
MG owners. Only the combined-heat-and-power (CHP)-based
DGs were considered, and the environmental impacts were not
taken into account. The study in [11] applied GA and PSO to de-
cide the locations and sizes of DGs so as to transform existing
distribution networks to MGs. The issues relating to DG types
and probabilistic outputs of DGs were not included in the work.
The studies in [12]–[14] applied various algorithms such as sim-
ulated annealing, PSO and dynamic programming to obtain the
optimal sizes and locations of DGs in MGs. However, none of
the above papers has considered the stochastic nature of renew-
able sources (RES)-based DGs and load consumptions in a MG
context.
In this paper, we present a two-stage robust optimization-

based MG planning model that takes into account uncertainties
of DG outputs and load consumptions. The proposedmethod as-
sumes a centralized decision maker such as the MG owner can
make the DG allocation plan in the MG [15]–[17]. The robust
optimization (RO) has been applied to solve the unit commit-
ment (UC) problem [18]–[21]. RO has also been used to solve
Transmission Network Expansion Planning (TNEP) problem
[22]–[24]. Compared with traditional stochastic optimization
approaches which rely on a probability distribution of the uncer-
tainty data and sampled scenarios of the uncertainty realizations,
RO has several advantages: first, RO only requires limited infor-
mation of the uncertainty set such as the mean, lower and upper
bounds of the uncertain data which are easier to obtain from
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the historical data or estimated with certain confidence inter-
vals in practice; second, RO calculates an optimal solution that
is immune against all realizations of the uncertain data within
a predetermined uncertainty set by considering the worst sce-
nario [18], which is also in contrast to stochastic programming
that provides probabilistic guarantees for constraint satisfaction
[22]. The random parameters are represented by corresponding
uncertainty sets in the deterministic formulation [20]. These fea-
tures make RO highly applicable in solving the MG planning
problem where long-term explicit information of uncertain DG
outputs and loads is difficult to obtain and a large number of
scenarios may be needed for the stochastic program approach
to represent the uncertainties during the overall planning period.
Meanwhile, RO also has some disadvantages [21]: the solutions
of RO are often considered to be conservative; if the exact distri-
bution of the uncertainty data could be known, such information
may not be fully used.
In our model, the costs of constructing and operating a MG

can be classified into investment costs, operation and mainte-
nance (O&M) costs, fuel and emission costs of DGs; the rev-
enues of a MG result from selling electricity to MG consumers
and the utility grid. All these costs and revenues are represented
by their net present values (NPV), which are compounded over
a period of economic life of DGs [25]. The deployment of DGs
in a MG is formulated as a two-stage mixed-integer program-
ming problem with the objective of minimizing the total costs
and maximizing the profits by selecting optimal locations, sizes
and mix of DGs. The uncertain power outputs of wind turbines
and PVs as well as load consumptions in each period are de-
scribed by corresponding polyhedral uncertainty sets. A column
and constraint generation (CCG) framework is developed and
applied to solve the problem.
The major contributions of this paper are summarized as

follows:
• Multi-objective MG planning model with long-term eco-
nomic, operational and environmental considerations is a
new topic with limited existing works

• Uncertainty and variability of DG outputs and load con-
sumptions are fully considered

• Two-stage robust formulation of the MG planning model
and the corresponding solution methodology

The remainder of this paper is organized as follows. Section II
introduces the distribution network model and the deterministic
formulation of theMG planning problem. Section III transforms
the MG planning problem into a two-stage robust formulation
and proposes the solution methodology. In Section IV, the com-
putational results are provided. Section V concludes the paper
with the major findings.

II. MATHEMATICAL FORMULATION FOR MG PLANNING

This section introduces a widely used electrical network
model and provides the deterministic formulation of MG
planning. The formulation is then transformed to be a bi-level
robust optimization model in the next section.

Fig. 1. Diagram of a radial electrical network.

A. Distribution System Model

Consider an electrical network as shown in Fig. 1, there are
buses indexed by . DistFlow [26] equations can
be used to describe the complex power flows at each node :

(1)

(2)

(3)

(4)

In the above equation, is generated by DG units which are
subject to uncertainties, is generated by var compensation de-
vices. The DistFlow equations can be simplified using lineariza-
tion. The linearized power flow equations have been extensively
used and justified in both traditional distribution systems and
MGs [26]–[28].

(5)

(6)

(7)

(8)

B. Mathematical Formulation of MG Planning Problem

The optimal integration of DGs into a MG demonstrates var-
ious advantages in operational, environmental and economic
aspects. This paper assumes that the planned MG consists of
three types of DGs: wind turbines (WTs), PVs and microtur-
bines (MTs). The reconfiguration of a MG is not considered
in the formulation. This paper focuses on radial networks. For
a meshed distribution network, it can be converted to a radial
network by breaking the loops through adding dummy nodes
[29]. The objective is to determine the optimal locations, sizes
and mix of DGs in the MG with the purpose to maximize the
long-term economic profits of MG owners. The MG planning
problem can be formulated as follows (denote the formulation
as ):

(9)

(10)
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(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

In the above formulation, the objective function (9) consists
of costs and revenues of the planned MG. The costs include in-
vestment, O&M costs of DG, emission costs of fossil source-
based DG (MT in this paper) and the costs of buying electricity
from the utility grid. The revenues include selling electricity to
the utility grid and consumers in the MG. Equation (10) rep-
resents the total investment cost (purchase and installation) of
each type of DGs. All the costs and profits are represented in
NPV except for the investment cost since the investment is made
only in the reference year. Constraint (11) represents the O&M
costs of all DGs during the planning period. The annual O&M
cost of a DG can be evaluated based on its size and operation

hours. Constraint (12) estimates the total fuel cost of MTs based
on the energy generation in a planning horizon. is the weight
to transform hour-based costs to year-based costs, e.g., if we
use typical 24-hour system states to represent the overall system
behaviors during each year , then .
Constraint (13) represents the emission cost ofMTs, which is as-
sociated with the total power generated by MTs during the plan-
ning horizon. Equation (14) describes the total revenues of the
MG including selling electricity to the utility grid and customers
within the MG. Buying electricity from the utility grid is de-
fined as negative revenue. Equation (15) represents the present
worth factor for the th future year. Constraint (16) represents
the power flow at the point of common coupling (PCC) (i.e., if

, MG is buying electricity from the utility grid).
Constraints (17)–(19) are linearized DistFlow equations as dis-
cussed in the previous subsection. Constraint (20) guarantees
that the voltage level of each node is within a predefined range,
is usually set to be 0.05 pu. DG capacities are discretized at a
definite step which is in this paper. Constraints (21)
and (22) describe the outputs of WTs and PVs. Since WTs and
PVs are non-dispatchable, a forecast is usually used for plan-
ning purposes. The uncertain nature of prediction errors will
be discussed in the next section. The sizes of a WT and a PV
can be represented as and , respectively.
In constraint (23), the size of the MT at node is described
as . Since MTs are dispatchable, the actual power
output of a MT can be adjusted to optimize the operation of the
MG. Thus, the output of a MT should be equal to or less than
the rated size. When an outage happens in the utility grid, the
MG should be able to operate in the islanded mode. Currently,
there is no standard for the required reserve margin within the
island, it is assumed that the island is reliable if the sum of the
generated power from all DGs within the MG equals or exceeds
a certain percentage of the total load consumption [30], [31].
In this paper, we assume the percentage to be 115% as a re-
serve margin is required due to the variability and uncertainty
of RES-based DGs [30]. Equations (21)–(24) include multipli-
cations of two binary variables and . In order to reduce the
non-linearity of the problem, the bi-linear term can be re-
placed by

(25)

The formulation is a mixed-integer linear program (MILP).

III. SOLUTION METHODOLOGY

A. Robust Optimization

Before introducing the detailed RO based formulation, it is
necessary to construct uncertainty sets. The probabilistic nature
of the formulated MG planning problem results from the inter-
mittent outputs of RES-based DGs (WTs and PVs in this paper)
and uncertain load consumptions. The predicted wind power,
solar power and loads are normally used in the MG planning
problem. However, it is known that errors always exist in pre-
diction models. In stochastic optimization approaches, proba-
bilistic distributions are used to represent prediction errors. For
example, the normal distribution and beta distribution are used
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by previous papers to represent the wind and solar power pre-
diction errors [32]–[34]. In RO, we introduce polyhedral uncer-
tainty sets for wind and solar energy generations as well as load
consumptions. We consider the following uncertainty set for the
load consumption at each time period in the planning horizon
:

(26a)

The range of the load consumption of node at time in year
is described by the interval . Aggregated load over
all nodes at time in year is constrained by the “budget of un-
certainty” and . As increases and decreases,
the size of the uncertainty set enlarges. Thus, the resulting plan-
ning solutions are more conservative. The uncertainty set for

can be defined as

(26b)

A similar uncertainty set can be defined for the PV.
The formulation can be reformulated as a min-max-min

robust optimization problem as follows

(27)

where is the feasible set for
the binary variables , and , represents all un-
certainty sets for uncertain quantities , and the set

is the fea-
sible region for power generation of MTs and power flows. For
notational simplicity, we group first-stage binary variables to be
, with . Meanwhile, we group the uncertain
variables in the second-stage problem (i.e., , and )
to be , with as the uncertainty set; other continuous
variables such as are grouped to be , . The
corresponding abstract MG planning model can be shown as
follows (let us denote the formulation as ):

(28)

(29)

where is defined by constraints (10)–(15); represents the
uncertainty sets of load, wind power and solar power defined as
in (26a) and (26b); is the feasible set for the second-
stage decision defined by constraints (16)–(24). Note that is
parametrized by and .

(30)

where , and are given matrices, and and are given
vectors of parameters. The optimal solution to works well for
the worst scenario and is feasible for all possible scenarios due
to the min-max-min form of its objective function [19].

B. Solution Algorithm

The proposed min-max-min formulation cannot be solved di-
rectly using GAMS or CPLEX. Benders decomposition-type al-
gorithms are one of the most popular ways to solve this kind of
problems. Benders decomposition is the one of the most com-
monly used methods to solve RO optimization problems with
a min-max-min structure [18]–[21]. The Benders decomposi-
tion method decomposes the problem into a master problem and
a subproblem. Optimality cuts based on the dual variables of
the subproblem are added to the master problem iteratively. In
this paper, we used a Column-and-Constraint Generation (CCG)
framework to solve the proposed formulation. CCG was firstly
introduced and applied to solve UC problems by [19]. The Ben-
ders cuts are usually much less powerful than the primal cuts
used in our algorithm and more iterations are needed for the
Benders approach to converge [19].
To apply CCG in theMG planning problem, we need to refor-

mulate the formulation as a master problem and subproblems.
The master problem can be defined as follows:

(31)

(32)

(33)

(34)

It can be seen that the master problem is a relaxation of the
first-stage problem of . Thus, it yields a lower bound for .
Denote the solution of the master problem as . The subproblem
can be defined as:

(35)

(36)

(37)

For any given solution that is not optimal, the objective value
of the subproblem would be larger than the true optimal solu-
tion of . Therefore, the subproblem yields an upper bound for
. However, the subproblem is still a bi-level problem which is

difficult to solve. We can reformulate the constraints (35)–(37)
into complementary constraints using the KKT optimality con-
ditions [35] as follows:

(38)

(39)

(40)

where and are dual variables of the problem defined in
(35)–(37). Constraint (40) can be transformed by the Big-M
method as follows:

(41)

(42)
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Fig. 2. Test microgrid system.

where is a large value and is a binary variable. Thus, the
constraints of the subproblem become (38), (39) and (41), (42),
which is a mixed-integer linear program.
In the th iteration of CCG algorithm, we add new unknown

variables , known variables and corresponding con-
straints defined as (32)–(34) into the master problem. The
basic idea of CCG is to creating a set of new variables and
corresponding constraints and add them to the master problem
to refine the first stage decisions. The comprehensive procedure
of CCG can be summarized as follows (In the th iteration,
denote the master problem as and the subproblem as ):

Step 0: Initialization. Set the lower bound , the
upper bound , the tolerance and ,

.
Step 1: Solve the master problem , denote the
optimal solution as , update the lower bound

.
Step 2: Solve the subproblem , denote the op-
timal solution as , update the upper bound

; update
the formulation of the master problem by adding new
variables and corresponding constraints.
Step 3: Denote the optimality gap as

, if , terminate, output the
optimal decision . Else, and go to Step 1.

IV. NUMERICAL RESULTS

An IEEE 33-bus distribution system as shown in Fig. 2 is used
in this paper. The system has been used as a MG in solving its
planning problem in the literature (e.g., [11], [36]). Details about
the test system can be found in [26]. The proposed methodology
is applied to transform the 33-bus system into a MG. The power
base of the system is set to be 1 MVA and the planning horizon
is set to be 20 years. All the experiments are implemented using
CPLEX 12.1 at Intel Quad Core 2.40 GHz with 8 GB memory.
Table I shows the parameters used in the case study, which

are obtained from [7]. All the costs and electricity prices are
presented in U.S. dollars. Only the first-year values of the O&M
costs, fuel costs, emission costs and electricity prices are shown.
It is assumed that the annual increasing rate for these monetary
parameters is 6% during the planning horizon and these param-
eters remain the same in each year. The annual discount rate
is set to be 5%.
In this case study, one discrete increment of WT, PV and MT

is set to be 30 kVA. and are set to

be and . Fig. 3 shows the 24-hour

TABLE I
PARAMETERS FOR CALCULATING CORRESPONDING COSTS

Fig. 3. Load shape multiplier.

profiles of load shape multipliers for all nodes in the first year.
The mean load of each node can be calculated by multiplying
the multipliers with the load consumptions of the IEEE 33-bus
distribution system. It is assumed the annual rate of increase rate
of load consumption is 3%.
Figs. 4 and 5 show the 24-hour profiles of mean values of

wind and solar power outputs. We also assume the wind speed
and solar irradiance do not increase during the planning horizon
since a long-term forecasting of wind speed and solar irradi-
ance is beyond the scope of this paper. However, the planner
can easily change all the above algorithm settings if enough in-
formation is available.
Table II shows the deployment of three types of DGs with dif-

ferent uncertainty budgets. Since it is assumed that the budget
remains the same for all corresponding nodes at different times,
we use and to denote budgets for notational brevity. It can
be seen that the locations are similar but the DG sizes associated
with each location are relatively different. The locations in de-
ployment plans are similar since the topology of the test system
remains the same for all instances and DGs should be integrated
to certain nodes to meet the system operation requirements such
as voltage ranges. However, the demand, wind speed and solar
irradiance vary from one instance to another, which result in the
relatively different DG sizes.
Table III shows the computational results with different

uncertainty budgets. It shows the upper bound and lower bound
in each iteration. The data in dark is the final result of the
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Fig. 4. Wind power output.

Fig. 5. Solar power output.

corresponding instance. Since the objective of the MG planning
problem is to minimize “costs”, the calculated objective values
are negative. The values shown in this section are absolute
values, which represent “profits”. It can be seen from the results
that the proposed algorithm provides a feasible solution for all
instances with the uncertainty budgets. In the five instances,
the optimality gap decreases and the profit of the planned
MG slightly increases as the degree of uncertainty decreases,
which means the decision becomes less conservative. The final
optimality gaps of all instances are less than 0.2%. Meanwhile,
it takes only a few iterations for the algorithm to converge; the
CPU times are less than 10 minutes in all cases. Therefore, the
presented methodology can provide a near-optimal solution
within reasonable time such as one hour [20], [21], [37].
In order to obtain a better understanding of the proposed ro-

bust model, we compare the robust deployment plans with the
results of the deterministic method as used in [5]. In the de-
terministic method the formulation is the same as , the wind
power, solar power and demand are set to be their mean values
as shown in Fig. 3–5. Table IV shows the deterministic results.
The objective value shown in this table also represents “profits”
as in Table III. It can be seen that the deterministic profits are

TABLE II
UNCERTAINTY LEVELS AND DG DEPLOYMENTS

larger than those of the five instances shown in Table III. Mean-
while, the deployment plan is also different from those of the
five instances. This shows that although the robust formulation
can guarantee the feasibility of the deployment plan with real-
izations of all scenarios within the uncertainty set, it is more
conservative than the deterministic formulation. Table V shows
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TABLE III
OPTIMAL VALUES (IN MILLION DOLLARS) AND GAPS

WITH DIFFERENT UNCERTAINTY LEVELS

TABLE IV
DETERMINISTIC OPTIMAL VALUE AND DEPLOYMENT PLAN

TABLE V
FIRST-STAGE COSTS (IN MILLION DOLLARS) OF ROBUST AND

DETERMINISTIC DEPLOYMENT PLANS

the first-stage costs of the robust and deterministic deployment
plans. It can be observed in Table IV and V that although the
profit of the deterministic model is larger than the robust model,
the deterministic model deploys more DG capacities and has
larger first-stage costs than the robust model. This is because the
robust model considers the worst-case scenario and is conserva-
tive.When the wind power and solar power are highly uncertain,
the algorithm deploys less DGs and buys more electricity from
the upstream utility grid. In contrast, when the outputs of re-
newable energy sources are less stochastic or deterministic, it is
better to deploy more DGs.
In (27), all objectives are equally weighted. It is necessary

to show the sensitivity of the weights on the robust solutions.
Since the O&M cost is associated with the DG size in this paper,
the costs in the objective function can be categorized into one-
time costs including and as well as potential costs

TABLE VI
ROBUST DEPLOYMENT PLANS WITH DIFFERENT WEIGHT FACTORS

including and . We add a weight factor to and
as follows:

(43)

If the planner is more concerned with and due to
the potential large fluctuations of fuel and emission costs in the
future, the weight factor can be increased. Table VI shows the
planning results with different weight factors. and are set to
be 0.8 and 1.2, respectively. It can be seen that the planning
results change with different weight factors. For example, the
total size of the installed DGs when is 0.8 is almost 30%
smaller than that of the case with equal to 1.2. This is because
the formulation concerns more on one-time investment costs
when is small. Meanwhile, it can be seen that more RES-
based DGs are installed for higher values of . This is due to the
fact that the formulation concerns more on the fuel cost and the
emission cost as becomes larger, and thus more RES-based
DGs are deployed.

V. CONCLUSION

This paper proposed a novel methodology that incorporates
Robust Optimization (RO) to solve Microgrid (MG) planning
problem. The main objective of the optimization is to minimize
the investment, O&M, fuel and emission costs of the MG, while
maximizing the MG profits during the planning horizon. Both
dispatchable and RES-based DGs are considered to compose
the MG. The MG planning problem is subject to system uncer-
tainties associated with the time-varying load consumptions and
intermittent outputs of RES-DGs. The proposed method takes
into account these uncertainties by defining uncertainty sets in
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RO. The degree of uncertainty can be adjusted by the planners
to make a tradeoff between the robustness and conservative-
ness of the solution. Case studies verify the effectiveness of the
proposed method and the robustness of the solution under dif-
ferent simulation settings. Compared with previous efforts on
DG placement and MG planning, the proposed method con-
siders the probabilistic nature of the planning problem and does
not require the hard-to-obtain distributions of random variables.
Therefore, the proposed MG planning method is more suitable
to be used in practice.
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