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Robust Optimization for Transmission Expansion
Planning: Minimax Cost vs. Minimax Regret

Bokan Chen, Jianhui Wang, Senior Member, IEEE, Lizhi Wang, Yanyi He, and
Zhaoyu Wang, Student Member, IEEE

Abstract—Due to the long planning horizon, transmission ex-
pansion planning is typically subjected to a lot of uncertainties
including load growth, renewable energy penetration, policy
changes, etc. In addition, deregulation of the power industry
and pressure from climate change introduced new sources of
uncertainties on the generation side of the system. Generation
expansion and retirement become highly uncertain as well. Some
of the uncertainties do not have probability distributions, making
it difficult to use stochastic programming. Techniques like robust
optimization that do not require a probability distribution became
desirable. To address these challenges, we study two optimization
criteria for the transmission expansion planning problem under
the robust optimization paradigm, where the maximum cost and
maximum regret of the expansion plan over all uncertainties are
minimized, respectively. With these models, our objective is to
make planning decisions that are robust against all scenarios.
We use a two-layer algorithm to solve the resulting tri-level op-
timization problems. Then, in our case studies, we compare the
performance of the minimax cost approach and the minimax re-
gret approach under different characterizations of uncertainties.

Index Terms—Generation retirement, load growth, minimax
cost, minimax regret, robust optimization, transmission expansion
planning.

NOMENCLATURE

Sets and Indices:

Polyhedron uncertainty set of demand and new
generation capacity profile.

Set of nodes.

Set of existing transmission lines.

Set of candidate transmission lines.

Set of years in the planning horizon.
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Set of load blocks.

Set of technology types.

Parameters:

Capacity of existing generator of technology
at node at time .

Cost of building the new transmission line at
time .

Cost of load curtailment at node at time .

Cost of power production of technology at node
.

Average capacity factor of generation technology
at year load block .

Maximum power flow on transmission line .

Susceptance of transmission line .

Big constant used to linearize the power flow
constraint.

Average amount of demand at year load block
at node .

Average amount of generation expansion of
technology at node at time .

Lower bound of voltage angles.

Upper bound of voltage angles.

Market interest rate (inflation included).

Minimum amount of new generation at a node

Maximum amount of new generation at a node.

Lower bound on the total amount of generation at
all the nodes.

Upper bound on the total amount of generation at
all the nodes.

Decision Variables:

Binary variables indicating whether a transmission
line is built.

Amount of new generation capacity of technology
at node at time .

Negative in the case of power plant retirement.
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Power flow from node to node at year load
block .

Power production of technology at node at
year load block .

Amount of load shedding at node at year load
block .

Voltage angle at node at year load block .

Demand at year load block at node .

I. INTRODUCTION

T RANSMISSION expansion planning is very challenging
due to various uncertainties planners need to consider.

Besides typical high-frequency uncertainties including demand
variations and renewable energy intermittency faced by system
operators in short-term scheduling, planners also need to take
into consideration low-frequency uncertain events like policy
changes, technological advancements, natural disasters, etc.
[1]. Such uncertainties cannot be characterized by probability
distributions. For example, to cope with challenges of climate
change, the power generation industry is facing increasing
pressure to reduce greenhouse gas emissions. In addition, a
large amount of coal plants are anticipated to retire in response
to government regulations and fuel price changes [2], replaced
partially by gas-fired plants. Many of such retirements could
be announced on relative short notice and unexpected by the
system operator. Moreover, after the deregulation of the power
system, strategic behavior of generation companies in genera-
tion expansion becomes an uncertain factor as well.
Currently, the most common practices in dealing with un-

certainties in optimization include stochastic programming and
robust optimization. In stochastic programming, scenarios are
generated based on a certain probability distribution of the
uncertain data. The weighted sum of the total cost under dif-
ferent scenarios is usually optimized. Stochastic programming
has been successfully applied to power system capacity ex-
pansion planning problems. In [3]–[6], uncertainties including
load prediction inaccuracies, transmission line and generator
outages, generation and transmission line capacity factors are
considered. All of those uncertainties can be described by
probability distributions and can be effectively modeled with
stochastic programming techniques. However, most of those
works only focus on uncertainties in the operation phase and
do not address uncertainties in the planning phase. The reason
is that it is difficult to obtain probability distributions of the
non-random [7] or epistemic uncertainties caused by factors
including policy changes, investment behavior of market
players, etc. In this paper, besides load uncertainty, we also take
into consideration uncertain generation expansion behavior of
generating companies and coal power plants retirement.
As an alternative tool to address uncertainties, robust opti-

mization [8]–[10] can avoid some of the difficulties arising from
stochastic programming approaches. With robust optimization,
uncertainty is described by parametric sets, which contain an
infinite number of scenarios. Such uncertainty sets can be con-
structed with information like the lower and upper bounds of
a random variable, which are much easier to derive than prob-
ability distributions. This approach can identify a set of deci-

sions that is robust under the worst-case scenario contained in
the uncertainty sets, which is desirable in planning problems
where reliability is important. The conservativeness of the so-
lution can be adjusted by changing the uncertainty sets [11],
depending on how much uncertainty is desired to capture. Ro-
bust optimization has been applied to many problems in power
systems. In [12], robust unit commitment with the secu-
rity criterion is studied. The problem is then reformulated into
a single-level problem with the help of dual variables. In [13],
[14], the two-stage robust unit commitment problems under un-
certainty are studied. Both papers propose to use Bender’s de-
composition to solve the problem. A similar model is used in
[15] where demand response is considered. A robust minimax
regret model is proposed in [16] to solve the unit commitment
problem under uncertainty. However, all those works study op-
eration problems. In long term power system planning problems
where more uncertainties need to be considered, application of
robust optimization is limited. In [17], a robust transmission ex-
pansion planning model is proposed considering load and gen-
eration uncertainty. Bender’s decomposition is also used.
In this paper, we propose two robust optimization models

to address two main sources of uncertainty: load and genera-
tion expansion behavior of generating companies. Two criteria,
minimax cost (MMC) and minimax regret (MMR), are used as
the objective of our models. The MMC criterion has been used
widely in robust optimization applications [13]. The MMR cri-
terion is considered in [16] for the unit commitment problem.
In comparison with the MMC criterion, it is concluded that
MMR outperforms MMC for certain unit commitment prob-
lems. However, the same conclusion may not apply to transmis-
sion expansion planning problems due to the different structures
of such problems. In [18], regret is considered as one of the ob-
jectives in a multi-objective optimization framework. It is ap-
plied to handle non-random uncertainties in [19] and [20]. Both
criteria use the performance of a decision under the worst pos-
sible scenario as the objective for optimization, but their main
difference is how the “worst scenario” is defined. TheMMC cri-
terion focuses on the cost associated with a decision under a sce-
nario, so the scenario that results in the highest cost is identified
as the worst scenario. On the other hand, the MMR criterion de-
fines the worst scenario as the one that leads to the highest regret
for the decision maker. For a given decision and a given sce-
nario , the regret is the highest potential cost savings had the
decision maker known that scenario would occur and made
a decision accordingly. More rigorously

where is the cost associated with and is the
set of all feasible decisions, and is the regret associ-
ated with and . Using these notations, the MMC andMMR
criteria can be respectively formulated as

We use two simple examples in Tables I and II to demonstrate
the differences between MMC and MMR. In the first example,
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TABLE I
MOTIVATING EXAMPLE FOR THE MINIMAX REGRET MODEL

TABLE II
MOTIVATING EXAMPLE FOR THE MINIMAX COST MODEL

under MMC, is the optimal decision because its worst sce-
nario cost, $8, is lower than that of , $9. Under MMR,
is the optimal decision because its worst scenario regret, $1, is
lower than that of , $5. The argument for MMR is that since
scenario is a “bad” scenario anyway because and
both lead to higher costs in than , the difference between
the costs associated with the two decisions, which is the regret,
may provide more information for decision making than the ab-
solute value of the cost itself. In the second example, decision

is obviously a bad choice because of its high cost in sce-
nario . Decision will be selected under MMC because its
worst cost, $18, is lower than that of , $40, and , $19.
Under MMR, decision will be selected since its worst-case
regret is $13 while the regret of is $14. We argue the MMC
solution is better in this example because it is only slightly
worse than the MMR decision in terms of regret in scenario
only because of the existence of decision , which cannot

be selected anyway, but has a much lower cost in scenario .
From the previous two examples, we can see that there are

no clear cut answers as to which criterion is superior. Each of
them has advantages and disadvantages. The examples above
can shed some light on which criterion may perform better in
what situations. In the first example, both decisions perform
better in one scenario and worse in the other. In this case, it
makes sense to use MMR as the criterion because the MMC
criterion is too conservative and does not consider non-extreme
scenarios. On the other hand, in the second example, there exists
a very risky decision that performs well under one scenario and
extremely poorly under the other. In a planning problem where
risks should be controlled, such decisions are usually not desir-
able, but they may affect the maximum regret of other decisions
and distort the final decision.
The two-stage structure of our robust optimization models

can capture both the planning and operation stages of the trans-
mission expansion planning problem very well. They can be
formulated as special cases of trilevel optimization problems.
However, due to their non-linear, non-convex structure, they are
very difficult to solve. In previous researches [13], [14], the au-
thors use Bender’s decomposition to reformulate the problem
into a master problem and a bilinear subproblem, which is then
solved with outer approximation. However, the outer approxi-
mation approach cannot handle the binary variables in the sub-
problem when the MMR criterion is used. In [16], statistical
upper bounds are used to complement the outer approxima-
tion approach. We propose a two-layer algorithm where we de-
compose our problem into a master problem and a bilevel sub-

problem. The master problem is updated with a branch and
cut type procedure, where new constraints and variables are
iteratively generated and then solved as a mixed-integer pro-
gram. This algorithm is a special case of the bilevel optimiza-
tion algorithm [21]. Similar algorithms are proposed in [15]
and [22]. It works faster than the traditional Bender’s decom-
position approach with the use of primal information instead of
dual variables. The subproblem is a mixed-integer bilevel op-
timization problem, which is more difficult to solve. In [23],
the difficulty of solving a bilevel linear optimization program
is discussed and several heuristics are proposed. We use the
Karush-Kuhn-Tucker (KKT) conditions [24] to reformulate the
bilevel problem into a single level problem with complemen-
tarity constraints, which is then reformulated into a mixed-in-
teger programming problem [25].
The contribution of this paper can be summarized as fol-

lows. Firstly, we propose two robust optimization models that
use two criteria to assess decisions. Both load uncertainties and
generation expansion uncertainties are considered. Then, effec-
tive algorithms are proposed to solve the resulting trilevel opti-
mization problems. Finally, in our case studies, the two models
and their corresponding algorithms are tested with a modified
IEEE 118-bus test system. We then analyze the results and com-
pare the performances of the expansion plans under different
scenarios.
The rest of the paper is structured as follows. Section III

presents the mathematical formulation of the transmission
expansion planning problems. In Section IV, we present the
trilevel optimization algorithm. Numerical results are presented
in Section V. Finally, Section VI concludes this paper.

II. MODEL FORMULATION

Transmission expansion planning problems are usually mod-
eled as two-stage problems to account for the long planning
horizon, where the expansion planning decisions are made in
the first stage when there is limited information on uncertain pa-
rameters and the operational decisions are made in the second
stage after uncertainty realizations are observed. In this section,
we first present the deterministic model, and then introduce two
robust optimization models under the MMC and MMR criteria.

A. Deterministic Model

In the deterministic model, consideration of uncertainty is
avoided by assuming perfect information for all parameters. For
example, in the following deterministic model, the load is fixed
as and the new generation capacity is fixed as :

(1)

(2)

(3)

(4)
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(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

The objective function (1) is the transmission capital invest-
ment cost and total operational cost (including cost of power
production and load shedding) over the planning horizon. This
model is a static model, in which the total operational cost over
the planning horizon is estimated by extrapolating from
years. A similar approach has been used by several other related
studies [4], [6], [26]. Constraint (2) requires that the net influx at
a node should be equal to the net outflow. Constraints (3) and (4)
are equivalent to the equation ,
which is nonlinear and complicates the model. We introduce the
constant to linearize this equation [26]. When , then
the two constraints are reduced to ,
where the value of does not matter. When , then we
need to make sure that is large enough so that no additional
constraints are imposed. On the other hand, if is too large, it
may cause computational difficulties. In our experiments, we set
it to be ten times the largest value of . Equation (5) calcu-
lates the power flow on existing transmission lines. Constraints
(6)–(9) dictate that the power flow on transmission lines does
not exceed their limits. Constraint (10) specifies the generation
capacity on each node. Constraint (11) limits the range of phase
angles at a node.
To facilitate algorithmic development and simplify the nota-

tions, we abstract the deterministic model as follows:

(13)

(14)

(15)

(16)

In this more concise abstract formulation, we use to represent
the binary variable indicating whether or not a transmission line
should be built, to represent the amount of new generation
and to represent operational variables including power pro-
duction, phase angles, power flow and load curtailment. Vectors
and represent coefficients of variables in the objective func-
tion. Matrices are the coefficients of variables
in the constraints. Vectors are the right-hand-side param-
eters in the constraints. Constraint (14) corresponds to (3)–(11).
Constraint (15) corresponds to (10). Constraint (16) corresponds
to (2).

B. MMC Model

In the two-stage MMCmodel, given the first-stage decisions,
the second-stage problem is commonly known as the recourse

problem [27], where the optimal operation decisions are iden-
tified. The feasible set of the recourse problem is defined as
follows:

The uncertainty set is defined as

The matrices are the coefficients of and in the un-
certainty set. Vectors are the right-hand-side parameters.
They can contain information including the lower and upper
bounds of the uncertain parameters, the lower and upper bounds
of the linear combination of the uncertain parameters, etc. Such
information can be obtained from historical data or statistical
tests on historical data. In this paper we consider both the un-
certainty caused by load forecast and the uncertainty caused by
future generation expansion. In addition, other types of uncer-
tainties can be easily plugged into the model without affecting
the algorithm.
The MMC model can be formulated as

(17)

C. MMR Model

Unlike the MMC model, the MMR model aims to minimize
the worst-case regret under all possible scenarios. Before pre-
senting the MMR model, we first define the feasible set of the
perfect information solution and the perfect information
cost as follows:

We can see that is only dependent on the uncertain
parameters and can only be known after the uncertainty
realizations are observed. We call it the perfect information so-
lution because can only be achieved if perfect informa-
tion about the uncertainties is available.
Then we can define the MMR model as follows:

(18)

Comparing the MMC model and MMR model side by side,
their similarities are very noticeable. The difference between
them lies in their definition of the “worst-case scenario”. With
the MMC criterion, the worst-case scenario is defined as the
scenario with the highest cost, while the MMR criterion defines
the worst-case scenario where regret is the highest.
To shed more light on which criterion is more appropriate

under different situations, we can classify scenarios into two cat-
egories: regretful vs. regretless. We use to denote the MMC
solution and to denote the MMR solution. is the
regret of decision under scenario . If ,
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then we call scenario a regretful scenario for decision . Oth-
erwise, we say it is regretless. When MMR is used, regret is
redistributed among the scenarios. The regretful ones become
less regretful and the costs in the regretless scenarios increase.
As an uncertainty set consists of both regretful scenarios and re-
gretless scenarios, it is unpractical to predict accurately which
type of scenario will occur in the future. However, the classifi-
cation of scenarios compares and illustrates the advantages of
the MMR and MMC approaches for decision-makers to choose
the criterion more appropriately for their specific problem. For
example, if they are more confident that regretful scenarios will
occur, they can choose theMMR criterion. Otherwise, they may
choose the MMC criterion.

III. ALGORITHM DEVELOPMENT

In this section, we develop a new trilevel optimization algo-
rithm to solve the two robust optimization problems, which we
decompose into two levels: the master problem and the sub-
problem. We first present the algorithm for the MMC model.
This algorithm is then modified for the MMR model. Since we
use a cutting plane procedure that does not require duality infor-
mation, we can reformulate the sub-problem as a mixed-integer
linear programming problem. In [16], the worst-case scenarios
are identified via statistical upper bounds withMonte Carlo sim-
ulation. In contrast, our algorithm provides a theoretical global
optimality guarantee to find the worst-case scenarios as the en-
tire problem is solved as a mixed-integer linear programming
problem after reformulating the sub-problem.

A. Master Problem for the MMC Model

The master problem is designed to provide a relaxation of
the MMC model (17), in which the search for the worst-case
scenario is restricted to be within a given finite set of scenarios,

, rather than the complete
set of scenarios, . As such, the master problem yields a lower
bound of the MMC model (17). We denote the master problem
as , and it is formulated as the following single level
mixed integer linear program:

(19)

(20)

(21)

(22)

(23)

(24)

B. Subproblem for the MMC Model

The subproblem is defined as the MMC model (17) with a
given first-stage decision, . As such, the subproblem yields
an upper bound of the MMC model (17). We denote the sub-
problem as , and it is formulated as the following bilevel
linear program:

(25)

This model can be further reformulated as the following linear
program with complementarity constraints (LPCC):

(26)

(27)

(28)

(29)

(30)

(31)

(32)

LPCC problems can be solved by several algorithms ([25]
Branch-and-Bound, Bender’s, Big-M). The big-M approach
[25] was found to be one of the most computationally efficient
in our computational experiments. This approach reformu-
lates (26)–(32) as the following mixed-integer linear program
(MILP):

(33)

(34)

(35)

(36)

(37)

(38)

Here, is a sufficiently large constant (big-M) and and
are auxiliary binary variables that are introduced to enforce the
complementarity conditions in (29) and (30).

C. Algorithm for the MMC Model

The proposed algorithm for the MMC model, which we call
, is an iterative one, in which the master problem is

solved to provide an increasing series of lower bound solu-
tions, and then the subproblem is solved to provide a series
of decreasing upper bound solutions using the solution from
the master problem, , as an input. The input for the master
problem, , is iteratively enriched by the solutions from the
subproblem until the gap between the lower and upper bounds
falls below a tolerance, . Detailed steps of this algorithm are
described as follows:

Step 0: Initialization. Create that contains at least
one selected scenario. Set , and

. Go to Step 1.
Step 1: Update . Solve the master problem

and let denote its optimal solution.
Update the lower bound as and go
to Step 2.
Step 2: Solve the sub-problem and let

denote its optimal solution. Update
, and .

Step 3: If , go to Step 1; otherwise
return as the optimal solution to (17)
and as the optimal value.
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D. Algorithm for the MMR Model

The MMR model can be solved using a similar algorithmic
framework to after the following simplifying yet
equivalent reformulation:

To solve this reformulation of the MMR model, which is
structurally similar to the MMC model (17), only slight modifi-
cations to the master and sub-problems are required. The master
problem is defined for a different set of input scenarios,

, in which the two additional
variables, and , represent the optimal investment and re-
course decisions with hindsight of the uncertainty realization

. We denote the master problem as , and it is
formulated as the following single level mixed integer linear
program:

(39)

(40)

(41)

(42)

(43)

(44)

We denote the subproblem as , and it is formulated as
the following bilevel linear program:

which can be solved using the same big-M approach with the
following MILP:

(45)

– (46)

(47)

(48)

(49)

(50)

With the new definitions of master and sub-problems, the
same algorithm can be used to solve the MMR model
with the following minor modification to Step 2, besides the ap-
parent need to change the superscript “C” to “R”:

Step 2: Solve the sub-problem and let
denote its optimal solution. Up-

date , and
.

TABLE III
GENERATION PARAMETERS

TABLE IV
CANDIDATE LINE PARAMETERS

IV. CASE STUDY

In this section, we present numerical experiments of our
model and algorithm on an IEEE 118-bus test system, which
consists of 186 transmission lines, 5 wind farms, 5 coal plants,
5 gas plants, and 33 loads. The network data is available in [28].
We consider 10 candidate lines. The operation costs are cal-

culated based on the data of 4 load blocks. We consider a plan-
ning horizon of 20 years, with the operation cost extrapolated
from the cost of year 1. Then the operation cost is assumed to
increase at the same rate each year. The characteristics of gen-
eration and candidate lines are summarized in Tables III and IV,
respectively. In our case study, generation capacity data in the
system is set to be able to satisfy all demand levels if there is no
network congestion.
Uncertainty in future generation capacity consists of two

parts, expansion and retirement. For wind and natural gas fired
plants, we set the lower and upper bounds for new capacity.
For coal plants, the range of reduced capacity is also provided.
We use negative capacity to depict coal retirement. In addition
to bounds on individual plants, we also set the lower bound and
upper bound on total new generation capacity to control the
randomness of the uncertainty set. The mean of our demand

and the capacity factor are modified based on the real data
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TABLE V
NUMBER OF ITERATIONS FOR EACH INSTANCE

from WECC [29]. We generate four instances by changing the
uncertainty sets. Their definitions are listed as follows:

(51)

(52)

(53)

(54)

– (55)

(56)

(57)

(58)

(59)

– (60)

where and are listed in the
last two columns in Table III, with in the last
row. The load curtailment cost is set as 2000$/MWh. The in-
terest rate is set to be 0.1. The experiment is implemented on a
computer with Intel Core i5 3.30 GHz with 4 GB memory and
CPLEX 12.5. The computation time of each instance is around
9 hours. The numbers of iterations for solving each instance are
summarized in Table V.
The transmission expansion plans, investment costs and ob-

jective values of each criterion under the four uncertainty sets
are summarized in Tables VI and VII. We then compare the per-
formances of the MMC solution and the MMR solution under
various scenarios in Tables VIII and IX, where we use ,
and to denote the optimal MMC solution, the optimal MMR
solution, and the optimal deterministic solution. The lower cost
and regret between and are highlighted. The determin-
istic solution is derived by setting the mean demand as the load
levels and the median of new capacity as the future expan-
sion plans. The scenarios are generated by our algorithms when
solving the MMR problems and MMC problems. Each scenario
corresponds to an optimal solution to a sub-problem at an itera-
tion of our algorithm and is the worst-case scenario for the first-
stage solution obtained at the same iteration. Scenarios
and are generated by solving the MMR problems.
Scenarios , and are generated when solving the

TABLE VI
EXPANSION PLAN OF THE MMC APPROACH

TABLE VII
EXPANSION PLAN OF THE MMR APPROACH

TABLE VIII
COMPARISON OF THE MMC, MMR, AND DETERMINISTIC

SOLUTIONS FOR UNCERTAINTY SET

MMC problems. Those scenarios typically have very high costs
or regrets, thus are representative of bad scenarios that robust
optimization tries to hedge against. The investment and oper-
ational costs of both the MMC and MMR decisions under the
above scenarios are summarized in Table X.
From Tables VI and VII, we can see that as the uncertainty

in demand increases, although the numerical value of the max-
imum regret and worst-case cost increases, the change in the
transmission expansion plan is not very substantial. It means
many of the candidate lines are necessary regardless of the de-
mand levels with our unchanged depiction of generation ca-
pacity uncertainties. The reason is that those candidate lines
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TABLE IX
COMPARISON OF THE MMC, MMR, AND DETERMINISTIC

SOLUTIONS FOR UNCERTAINTY SET

TABLE X
INVESTMENT AND OPERATIONAL COSTS FOR SCENARIOS ($M)

connect regions with very high locational marginal price dif-
ferences due to the presence of large amount of wind energy.
On the other hand, when uncertainty in generation expansion
is increased, although the total cost also increases, fewer lines
are actually built with the MMC criterion. That is because in
the worst-case scenarios, the system contains less renewable
energy capacity and the differences in the locational marginal
prices between the otherwise connected regions are not substan-
tial enough to justify new transmission lines. When the MMR
criterion is used, however, the final expansion plan does not
seem to be sensitive to the change of uncertainty in generation
expansion. One possible explanation is that since the MMR cri-
terion does not make decisions only based on the boundary sce-
narios, it is less sensitive to the changes in uncertainty sets.
From the more detailed comparisons of results from the

MMC and MMR approaches in Tables VIII and IX, we can
gain more insights about which criterion is more appropriate
under different situations. Both robust optimization solutions
outperform the deterministic solution under most of the sce-
narios. When the uncertainty set is , the MMC solution out-
performs the MMR solution under most of the listed scenarios.
When the uncertainty set is , on the other hand, the MMR
solution has a lower total cost under more listed scenarios. The
solutions of the cases when the uncertainty sets are and
yield similar results. According to our definition at the end of
Section III, scenarios in Table VIII and scenario in
Table IX are regretless scenarios for the MMC decision, while
scenarios and are regretful ones. Which criterion
should be used depends on the decision-maker’s perception on
the uncertainty sets. In typical regretless scenarios for MMC
decisions, there usually exists high demand and low renewable
energy penetration. If decision-makers care more about such

scenarios or believe they are more likely, then MMC should be
used. Otherwise, choosing MMR might be better. Both criteria
provide good upper bounds for the total costs under scenarios
contained in an uncertainty set. The MMC criterion provides
a smaller upper bound with higher average costs while the
costs of MMR decisions are lower on average but have higher
variability.
From the above results, it is obvious that both the future gen-

eration expansion behavior of generation companies and de-
mand uncertainty play important roles in transmission expan-
sion planning. In addition, we can also conclude that both cri-
teria have their merits and can yield relatively reliable expan-
sion plans that guarantee zero curtailment for uncertainty real-
izations contained in the uncertainty sets. However, depending
on the characteristics of uncertainty sets and the preference of
decision-makers, they may outperform each other under dif-
ferent situations. Thus, a comparative analysis of the MMC and
MMR criteria can shed more light on better utilization of both
approaches.

V. CONCLUSION

In this paper, we propose two robust optimization models for
the transmission expansion planning problem under uncertainty,
where we take into consideration both the high-frequency uncer-
tainty caused by load forecast errors and the low-frequency un-
certainty caused by future generation expansion and retirement.
We use two criteria: minimax cost andminimax regret, and com-
pare their performances. The uncertain parameters are described
by a polyhedral uncertainty set. With this approach, we can de-
rive an expansion plan that is robust under all scenarios. The
resulting models can be formulated as trilevel mixed-integer
problems. We use a branch and cut type mechanism to decom-
pose the problem into a master problem and a subproblem. The
subproblem generates scenarios and returns them to the master
problem to cut off sub-optimal solutions. The bilevel mixed-in-
teger subproblem is reformulated into a single level mixed-in-
teger-programming problem with the KKT conditions to obtain
the global optimal solution. Our model and algorithm are then
tested on an IEEE 118-bus system, where we compare the re-
sults of our MMR and MMC models and analyze their differ-
ences. We conclude that the MMR and MMC criteria may out-
perform each other depending on the uncertainty set and deci-
sion-maker’s preference. Interesting topics for future research
include developing effective heuristics and parallel computing
mechanisms to speed up our algorithms and implementing our
algorithms on high performance machines to test larger systems
with more candidate lines.
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