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Abstract—This paper proposes a decentralized energy man-
agement system for the coordinated operation of networked
microgirds (MGs) in a distribution system. In the grid-connected
mode, the distribution network operator and each MG are con-
sidered as distinct entities with individual objectives to minimize
their own operation costs. It is assumed that both dispatchable
and renewable energy source-based distributed generators (DGs)
exist in the distribution network and the networked MGs. In
order to coordinate the operation of all entities, we apply a decen-
tralized bi-level algorithm to solve the problem with the first
level to conduct negotiations among all entities and the sec-
ond level to update the non-converging penalties. In the islanded
mode, the objective of each MG is to maintain a reliable power
supply to its customers. In order to take into account the
uncertainties of DG outputs and load consumption, we for-
mulate the problems as two-stage stochastic programs. The
first stage is to determine base generation setpoints based on
the forecasts and the second stage is to adjust the genera-
tion outputs based on the realized scenarios. Case studies of
a distribution system with networked MGs demonstrate the effec-
tiveness of the proposed methodology in both grid-connected and
islanded modes.

Index Terms—Distributed generator (DG), microgrids (MGs),
power distribution system, stochastic optimization.

NOMENCLATURE

Acronyms

WT Wind turbine.
PV Photovoltaic generator.
MT Micro turbine.
MG Microgrid.
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Sets

S Set of scenarios.
Mm/D Set of nodes in mth MG/distribution net-

work operator (DNO).

Indices

m Index for MGs.
i Index for nodes.
g Index for distributed generator (DG) types

(WTs and solar panels).
s Index for scenarios.
j Iteration step in the first level.
k Iteration step in the second level.

Parameters

ri Line resistance between nodes i and i + 1.
xi Line reactance between nodes i and i + 1.
pD

i Active demand at node i.
qD

i Reactive demand at node i.
Sbase Power base for the system.
pR

i,g Predicted active power output of a DG.

pmax
i Maximum allowed active output of an MT.

qmax
i Maximum allowed reactive output of

an MT.
ε Maximum allowed voltage deviation.
γs Probability of sth scenario.
cG Generation cost of an MT ($/kW).
c�G Redispatch cost of an MT ($/kW).
cE Power exchange price.
cD Price for selling electricity to consumers.
�pR

i,s,g Prediction error of DG output.
ωi Priority index of the load at node i.
α, β Shape parameters of beta distribution.
ς Convergence error.
ψ Updating factor for penalty function.
cl/dl/bl/Al/Bl Parameter vectors of lth entity.

Variables

Vi Voltage magnitude at node i.
Pi Active power flow from node i to i + 1.
Qi Reactive power flow from node i to i + 1.
pG

i Active power generation at node i.
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qG
i Reactive power generation at node i.

pG,MT
i Base active power output of the MT at

node i.
qG,MT

i Base reactive output of the MT at node i.
φ/ηm Power deficiency of DNO/mth MG.
μ/θm Power surplus of DNO/mth MG.
πm Penalty function for mth MG.
λ Penalty factor.
�(·)s Adjustment of (·) in scenario s.
xs Shared variable vector in scenario s.
yl,s Unique variable vector of lth entity in

scenario s.

I. INTRODUCTION

M ICROGRIDS (MGs) are integrated distribution sys-
tems consisting of DGs, loads, energy storage systems,

and other onsite electric components. MGs can be consid-
ered as intelligent distribution systems with two different
modes of operation: the islanded mode and the grid-connected
mode [1], [2].

An MG may consist of both dispatchable and renewable
energy source (RES)-based DGs. An energy management sys-
tem (EMS) is essential for the operation of MGs in both
grid-connected and islanded modes. The main responsibilities
of an EMS are to assign generation references to dispatchable
DGs and manage controllable loads so as to control the power
production and energy consumption in an MG [3]. Many stud-
ies have been made in the literature on the intelligent energy
management of MGs. Falahi et al. [3] proposed a model pre-
dictive control-based EMS to regulate the active and reactive
power in an MG. Jiang et al. [4] proposed a double-layer
EMS for an MG with a schedule layer to obtain an eco-
nomic operation plan based on forecasted data, and a dispatch
layer to control the DG outputs based on real-time data.
Palma-Behnke et al. [5] presented an EMS based on a rolling
horizon algorithm for an MG. The optimal dispatch of DGs
was formulated as a mixed integer program and solved based
on forecasting models. It should be noted that the above work
assumes that DGs are dispatchable. However, RES-based DGs
are mostly nondispatchable power sources with intermittent
output. Arefifar et al. [6] presented a systematic approach for
optimal construction of MGs in a distribution system. The
distribution system was decomposed into several MGs con-
sidering the importance of both reliability and supply-security
aspects. Su et al. [7] proposed a stochastic energy scheduling
model for an MG with intermittent RESs and plug-in elec-
tric vehicles so as to minimize the operation costs and power
losses. Chaouachi et al. [8] presented a generalized formu-
lation for the EMS of an MG considering the uncertainties
related to the forecasted RES-based DG outputs. A fuzzy logic
expert system was used to solve the problem. Tan et al. [9]
combined the MG power dispatch and network reconfigura-
tion to benefit the whole system. The bio-inspired algorithms
were adopted to solve the problem.

The above studies only considered one single MG, the inter-
actions among different MGs and between MGs and DNOs
were not taken into account. A smart distribution system may

consist of multiple MGs. It has been shown that connect-
ing multiple MGs to a distribution system can facilitate the
powerful and reliable control and operation in the future dis-
tribution systems [6], [10]. The DNO and MG owners can
benefit from the lower operation costs. The customers can
benefit from a more reliable and economical power supply.
Therefore, it is necessary to consider the DNO and networked
MGs altogether. Kumar Nunna and Doolla [11] applied multia-
gent systems (MASs) to the energy management of networked
MGs so that different entities could participate in the market.
Marvasti et al. [12] proposed a hierarchical deterministic opti-
mization algorithm to coordinate the operations of DNO and
multiple MGs. This paper only considered the grid-connected
mode. Moreover, the uncertainties of RES-based DGs and load
consumption were not taken into account. Wu and Guan [13]
proposed a decentralized Markov decision process to model
the optimal control problem of networked MGs and to min-
imize the operation costs of MGs. Nunna and Doolla [14]
proposed an MAS-based EMS to control the operation
of networked MGs and allow customers to participate in
demand response. Fathi and Bevrani [15] presented a cooper-
ative power dispatching algorithm to minimize the operational
costs of networked MGs. The coordination between DNO and
the connected networked MGs brings new challenges to the
power system operation. The uncertainties introduced by the
RES-based DG outputs and load consumption make it more
difficult to realize optimal energy management. Since all enti-
ties (DNO or MGs) are interconnected and have their own
operation objectives, the operating decisions made by one
entity may impact the operation of others. Therefore, the tra-
ditional centralized EMS is not suitable be used for the energy
scheduling of a distribution system with networked MGs due
to the operational independence of different entities. At the
same time, it can be seen that the stochasticity of RES-based
DGs and load consumptions as well as the decentralized coor-
dinated control of networked MGs and DNOs have not been
captured simultaneously in the above-mentioned literature.

In this paper, the energy management of MGs is divided into
grid-connected mode and islanded mode for different opera-
tion requirements. In the grid-connected mode, the DNO and
MGs are considered as different entities with their individ-
ual objectives. Since the supply-demand balance can always
be met for MGs connected with a utility system, the main
objective of the DNO and each MG is to minimize the opera-
tion costs. The costs of an MG include the operation costs of
MG-owned DGs and the cost of purchasing electricity from
the DNO; the revenues of an MG result from selling electric-
ity to MG consumers and the DNO. The costs of a DNO can
be classified into operation costs of DNO-owned DGs and the
cost of purchasing electricity from MGs and the connected
higher-level system; the revenues include selling electricity to
DNO consumers and MGs. The interrelating variables between
DNO and MGs are power exchanges. In the islanded mode,
the operating priority is to maintain the sound power supply
to consumers.

This paper proposes a decentralized EMS for the coordi-
nated control of the distribution system and the networked
MGs. The EMS is based on a decentralized bi-level stochastic



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: DECENTRALIZED EMS FOR NETWORKED MICROGRIDS IN GRID-CONNECTED AND ISLANDED MODES 3

Fig. 1. Distribution system with networked MGs.

optimization algorithm that offers autonomy to each entity to
optimize its own objectives subject to an entity-specific set
of constraints. The algorithm has two levels: the first level
is to solve the optimization problem of each entity and con-
duct negotiations based on the current penalty factor until no
further negotiations can be achieved; the second level is to
update the penalty functions representing the mutual impacts
between different entities until the optimal coordinated opera-
tion point is found. Three types of DGs are considered in this
paper: 1) MTs; 2) WTs; and 3) PVs. In order to consider the
stochasticity of RES-based DGs and load consumption, the
power outputs of WTs and PVs and the load consumption are
described by scenarios generated from Monte Carlo simula-
tions. A scenario reduction method is applied to increase the
calculation speed while maintaining the accuracy of the solu-
tion. When an MG is separated from the upstream utility grid
and operated in the islanded mode, the operational objective
is to provide a stable and reliable power supply to customers
instead of increasing its economic profits. The loads can be
divided into sensitive loads and interruptible loads with differ-
ent penalty factors. The optimization objectives of the EMS
are to minimize bus voltage deviations and the penalty cost
of load shedding while taking into account the constraints of
power balance. The major contribution of this paper is to pro-
pose a stochastic bi-level optimization algorithm to coordinate
the operation of MGs and DNO in a completely distributed
fashion.

The remainder of this paper is organized as follows.
Section II introduces the decentralized EMS and the corre-
sponding bi-level algorithm. Section III presents the local
stochastic optimization problems of the DNO and MGs. In
Section IV, the numerical results on a test distribution system
with networked MGs are provided. Section V concludes this
paper with the major findings.

II. DECENTRALIZED ENERGY MANAGEMENT SYSTEM

As shown in Fig. 1, both DNO and MGs have generators
and consumers. Because of the close connection of DNO and
grid-connected MGs, the decision-making problem of DNO is
interrelated with the ones of MGs. The decisions of one entity
will impact those of others. The interrelating variables are the

power exchanges between DNO and the networked MGs. Each
independent system has its distinct variables and objectives. It
has been shown that the all-in-one optimization problem can
be decomposed into several local optimization problems cor-
responding to different independent systems [16], [17]. The
general formulation of lth entity in a stochastic multientity
problem can be described as follows:

min
x,yl

cT
l xs + dT

l yl,s

s.t. Alxs + Blyl,s ≤ bl. (1)

In this paper, we propose an algorithm based on the deter-
ministic decomposition algorithm introduced in [16] and the
concept of progressive hedging [18]. Progressive hedging is
used to solve two-stage stochastic programming problems. It
decomposes the stochastic program into several sub-problems
where decisions are made for each scenario. Penalty is added
to the objective function of each scenario to force the first-
stage solutions of all scenarios to converge to the same
point.

In our algorithm, instead of decomposing the problem based
on scenarios, we decompose it based on entities. Each entity
makes its own optimal decisions. Penalty is added to the objec-
tive function of each entity to force the shared variables xs of
the interconnected entities to converge to the same point under
all scenarios.

The interactions among entities will be modeled using
a stochastic decentralized bi-level optimization method.
Different convergence conditions are applied to the two lev-
els. When both levels converge, the shared variables (power
exchanges) between systems are identified and the optimal
coordinated operation point can be found. In order to consider
the stochasticity of RES-based DGs and load consumption,
Monte Carlo simulations are run based on the forecasted power
and uncertain prediction errors to generate scenarios for DG
outputs and the load consumption. Fig. 2 shows the flowchart
of the algorithm.

The complete steps can be described as follows.
Step 1: Initialization. Set the initial values for θm∗

k,j,s, η
m∗
k,j,s,

θm
k,j,s, η

m
k,j,s, and λk.

Step 2: Solve the stochastic optimization problems for the
networked MGs with θm

k,j−1,s and ηm
k,j−1,s to obtain

θm∗
k,j,s and ηm∗

k,j,s. θ
m∗
k,j,s and ηm∗

k,j,s represent the power

exchange requested by the mth MG in the sth sce-
nario in the current iteration, θm

k,j−1,s and ηm
k,j−1,s

represent the power exchange requested by the
DNO in the previous first-level iteration.

Step 3: Solve the stochastic optimization problems for the
DNO with θm∗

k,j,s and ηm∗
k,j,s to obtain θm

k,j,s and ηm
k,j,s.

Step 4: Check the convergence of the first level as follows:
∣
∣
∣θ

m∗
k,j,s − θm∗

k,j−1,s

∣
∣
∣ ≤ ς1

∣
∣
∣η

m∗
k,j,s − ηm∗

k,j−1,s

∣
∣
∣ ≤ ς1, ∀m, s (2a)

∣
∣
∣θ

m
k,j,s − θm

k,j−1,s

∣
∣
∣ ≤ ς1

∣
∣
∣η

m
k,j,s − ηm

k,j−1,s

∣
∣
∣ ≤ ς1, ∀m, s. (2b)
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Fig. 2. Flowchart of the algorithm.

It can be seen that the first-level convergence
checks whether the negotiation between DNO and
MGs finishes (no further negotiation can be con-
ducted) with the current penalty factor, the algo-
rithm goes back to step 2 if it is not converged.

Step 5: Check the convergence of the second level as
follows:
∣
∣
∣θ

m∗
k,j,s − θm

k,j,s

∣
∣
∣ ≤ ς2,

∣
∣
∣η

m∗
k,j,s − ηm

k,j,s

∣
∣
∣ ≤ ς2, ∀m, s.

(3)

It can be seen that the second-level convergence
checks whether agreements between DNO and
MGs are reached, the algorithm goes to step 6 if it
is not converged.

Step 6: Update the penalty factor and go to step 2.
More details on penalty functions will be discussed in

Section III-D.

III. MATHEMATICAL MODELING OF

INDIVIDUAL SYSTEMS

This section introduces a widely used electrical network
model and provides the local optimization formulation for

Fig. 3. Diagram of a radial electrical network.

individual systems. The uncertainties of RES-DGs are also
discussed.

A. Distribution System Model

Consider an electrical network as shown in Fig. 3, there are
n buses indexed by i. DistFlow [19] equations can be used to
describe the complex power flows at each node i

Pi+1 = Pi − ri

(

P2
i + Q2

i

)/

V2
i − pi+1 (4)

Qi+1 = Qi − xi

(

P2
i + Q2

i

)/

V2
i − qi+1 (5)

V2
i+1 = V2

i − 2(riPi + xiQi)+
(

r2
i + x2

i

)(

P2
i + Q2

i

)/

V2
i (6)

pi = pD
i − pG

i , qi = qD
i − qG

i . (7)

In the above equations, we assume pG
i is generated by

both RES-based DG units which are subject to uncertainties
and controllable DG units, qG

i is generated by controllable
DG units [20]. The DistFlow equations can be simplified
using linearization. The linearized power flow equations have
been extensively used and justified in both traditional distri-
bution systems and MGs [9], [19], [21]. Details on applying
DistFlow equations to a feeder with laterals can be found
in [19]

Pi+1 = Pi − pi+1 (8)

Qi+1 = Qi − qi+1 (9)

Vi+1 = Vi − (riPi + xiQi)/V1 (10)

pi = pD
i − pG

i , qi = qD
i − qG

i . (11)

B. Optimization Problem for MGs in Grid-Connected Mode

In this paper, WTs and PVs are considered as RES-based DGs,
while MTs are considered as dispatchable DGs. The general
optimization problem of the mth MG in the grid-connected mode
can be formulated as follows (denote the formulation as M):

min
∑

i

cGpG,MT
i −

∑

i

cDpD
i + (

cEηm − cEθm)

+ πm +
∑

s

γs

∑

i

(

C�G
i,s + cD�pD

i,s

)

+
∑

s

γs
(

cE�ηm
s − cE�θm

s

) +
∑

s

γs�π
m
s (12)

s.t. Pi+1 = Pi − pD
i+1 + pR

i+1,g + pG,MT
i+1 ∀i ∈ Mm,∀g (13)

Qi+1 = Qi − qD
i+1 + qG,MT

i+1 , ∀i ∈ Mm (14)

Vi+1 = Vi − (riPi + xiQi)/V1, ∀i ∈ Mm (15)

1 − ε ≤ Vi ≤ 1 + ε, ∀i ∈ Mm (16)

0 ≤ pG,MT
i ≤ pmax

i , ∀i ∈ Mm (17)
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∑

i

pG,MT
i +

∑

i,g

pR
i,g + ηm ≥

∑

i

pD
i + θm (18)

�Pi+1,s = �Pi,s +�pR
i+1,s,g +�pG,MT

i+1,s −�pD
i+1,s

∀i ∈ Mm,∀s ∈ S,∀g (19)

�Qi+1,s = �Qi,s +�qG,MT
i+1,s −�qD

i+1,s

∀i ∈ Mm,∀s ∈ S (20)

�Vi+1,s = �Vi,s − (

ri�Pi,s + xi�Qi,s
)/

V1

∀i ∈ Mm,∀s ∈ S (21)

1 − ε ≤ Vi +�Vi,s ≤ 1 + ε, ∀i ∈ Mm,∀s ∈ S (22)

0 ≤ pG,MT
i +�pG,MT

i,s ≤ pmax
i , ∀i ∈ Mm,∀s ∈ S (23)

0 ≤ qG,MT
i +�qG,MT

i,s ≤ qmax
i , ∀i ∈ Mm,∀s ∈ S (24)

∑

i

�pG,MT
i,s +

∑

i,g

�pR
i,g,s +�ηm

s ≥
∑

i

�pD
i,s +�θm

s

∀s ∈ S (25)

C�G
i,s ≥ c�G�pG,MT

i,s , ∀i ∈ Mm,∀s ∈ S (26a)

C�G
i,s ≥ −c�G�pG,MT

i,s , ∀i ∈ Mm,∀s ∈ S. (26b)

In the above formulation, the objective function (12) con-
sists of costs and revenues (C&R) as well as the penalty
function of the MG. The first four items in the objective func-
tion represent C&R relative to the base generation schedule
made based on the forecasts of loads and RES generation.
The first item in (12) represents the generation costs of all
MTs in the MG. The second item in (12) describes the rev-
enue of the MG by selling electricity to customers within the
MG. The third and fourth items in (12) represent the costs
of power exchange between the MG and DNO. Buying elec-
tricity from the DNO is considered as positive cost, while
selling electricity to the utility grid is considered as negative
cost. The fifth item represents the penalty function with the
base generation. However, RES generation outputs and load
consumptions are stochastic in nature. The outputs of dispatch-
able DGs should be adjusted according to the realized scenario
of RES-based DG outputs and load consumptions. The sixth
to ninth items in (12) represent the expected adjustments of
C&R. The tenth item in (12) represents the adjustments of the
penalty function. In other words, if loads and RES genera-
tion are deterministic and can be accurately forecasted, the
last five items should be zero. The details of the penalty
function will be discussed later. Constraints (13)–(15) are
linearized DistFlow equations as discussed in the previous sec-
tion. Constraint (16) guarantees that the voltage level of each
node is within a predefined range, ε is usually set to be 0.05.
Constraint (17) guarantees the active output of an MT is within
its maximum allowable value. Constraint (18) describes that
the total generation should be equal to or larger than the total
load. In the formulation (13)–(18), P, Q, V , pG, qG, η, and θ
are first-stage variables determined based on the forecasts.
Since the output of RES-based DGs and load consumption
are stochastic, a forecast is usually used for scheduling pur-
poses. In this paper, the uncertain nature of prediction errors
is considered as random variables with certain distributions,
e.g., the normal distribution and beta distribution are used
by previous papers to represent the load consumption and

wind/solar power prediction errors [22]–[24], respectively. The
second-stage variables should be adjustable in order to deal
with the variations of loads and RES generation [25], [26].

Constraints (19)–(26) describe the second-stage variables
�P, �Q, �V , �pG, �qG, �η, and �θ which are adjusted
with the realization of scenarios. Constraints (19)–(21) are
adjustable linearized DistFlow equations for the sth scenario.
Constraint (22) guarantees the voltage level at each node is
within the permissible range after the generation is adjusted.
In constraints (23) and (24), the sum of the base genera-
tion schedule and the adjusted outputs should be less than
or equal to the rated capacity of an MT. Constraint (25)
describes that the total adjusted generation should be equal
to or larger than the total adjusted load. We also consider
the redispatch cost which is for the generation adjustment
between the base generation and the generation in scenarios.
Constraints (26a) and (26b) guarantee the redispatch cost of
an MT is positive [e.g., if �pG

i,s ≥ 0, which indicates a gen-
eration increase, constraint (26b) becomes redundant and the
redispatch cost C�G

i,s becomes equal to c�G�pG
i,s due to the

minimization formulation].

C. Optimization Problem for MGs in Islanded Mode

In the islanded mode, the highest priority it to maintain
a reliable and stable power supply to customers. Thus, the
optimization problem of an islanded MG can be formulated
as follows:

min ωip
D
i (1 − yi)+

∑

s

γs

∑

i

∣
∣Vi +�Vi,s − Vn

∣
∣

s.t. (13)–(17) and (19)–(24). (27)

In the objective function (27), the first item represents the
voltage deviations from the nominal voltage. The second item
is the penalty function for load shedding according to their
importance. The first and second items are based on the fore-
casted load consumptions and DG outputs. The third item
represents adjusted voltage deviations. The details of con-
straints can be found in the previous section. pD

i and qD
i in

constraints (13), (14), and (18)–(20) need to be updated by
yipD

i and yiqD
i , respectively.

D. Optimization Problem for DNO

It is assumed that the DNO also owns both dispatchable
DGs and RES-based DGs [27]. The optimization problem of
a DNO can be formulated as follows (denote the formulation
as D):

min
∑

i

cGpG,MT
i −

∑

i

cDpD
i

+
(

cEφ +
∑

m

cEθm − cEμ−
∑

m

cEηm

)

+
∑

m

πm +
∑

s

γs

∑

i

(

cD�pD
i,s + C�G

i,s

)

+
∑

s

γs

(

cE�φs +
∑

m

cE�θm
s − cE�μs −

∑

m

cE�ηm
s

)

+
∑

s

γs

∑

m

�πm
s (28)
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s.t. (13)–(17), (19)–(24), and (26), ∀i ∈ D,∀s ∈ S
∑

i

pG,MT
i +

∑

i,g

pR
i,g +

∑

m

ηm + φ

≥
∑

i

pD
i +

∑

m

θm + μ (29)

∑

i

�pG,MT
i,s +

∑

i,g

�pR
i,g,s +

∑

m

�ηm
s +�φs

≥
∑

i

�pD
i,s +

∑

m

�θm
s +�μs, ∀s ∈ S. (30)

In the objective function (28), costs of DG operation and
buying electricity from the HV system and MGs are positive,
while selling electricity to the HV system, DNO customers
and MGs is considered as the negative costs. The first six
items in (28) represent C&R relative to the base genera-
tion schedule made based on the forecasts of loads and RES
generation. The seventh item represents the penalty func-
tions between DNO and MGs. The remaining items in (28)
represent the adjustable C&R and penalties according to sce-
narios. Constraints (29) and (30) represent the generation-load
balance.

As discussed in Section I, the only information exchanged
between DNO and the networked MGs in the decentralized
EMS is the power exchange at the point of common coupling.
In order to model the mutual impacts of operational conditions
among all entities, we need to introduce penalty functions in
the negotiation process

πm
k,j = λk

(∣
∣
∣θ

m
k,j − θm∗

k,j

∣
∣
∣ +

∣
∣
∣η

m
k,j − ηm∗

k,j

∣
∣
∣

)

. (31)

The above penalty function is for the mth MG with base
generation. It represents the penalty for the MG related to
the shared variables with the DNO. The index j represents
the jth iteration in the first level. The index k represents the
kth iteration in the second level. θm∗

k,j and ηm∗
k,j are the power

exchange requested by the mth MG in the jth first-level itera-
tion and kth second-level iteration. θm

k,j and ηm
k,j are the power

exchange requested by the DNO. λk is a penalty factor and
updated according to the following rule in each iteration:

λk = ψλk−1,∀k. (32)

Larger ψ represents more aggressive penalty and may lead to
suboptimal solutions; smaller ψ indicates that more iterations
are needed for the algorithm to converge. In this paper, we
set ψ = 2. The operator can change the settings according to
a specific system. It can be seen the penalty is increasing until
the power exchanges requested by the two entities become
equal. Similarly, the penalty function for the mth MG with
adjusted generation in the sth scenario can be designed as
follows:

�πm
k,j,s = λk

(∣
∣
∣�θ

m
k,j,s −�θm∗

k,j,s

∣
∣
∣ +

∣
∣
∣�η

m
k,j,s −�ηm∗

k,j,s

∣
∣
∣

)

. (33)

E. Uncertainty and Scenario Reduction

In this paper, two kinds of RES-based DGs are considered:
1) WTs; and 2) PVs. The predicted wind and solar power
will be used. It is known that errors always exist in predic-
tion models. The beta function is shown to be an appropriate

Fig. 4. Test distribution system with networked MGs.

distribution to represent prediction errors of wind and solar
power [22], [28]. For a predicted power level PR

i of the DG at
node i, the beta function can be defined by two corresponding
parameters α and β [28]

f (x) = xα−1(1 − x)β−1. (34)

The above beta function models the occurrence of real
power values x when a certain prediction value PR

i has
been forecasted. The shape parameters of the corresponding
beta function α and β can be calculated as [28]

PR
i

/

Sbase = αi
/

(αi + βi) (35)

σ 2
i = αiβi

/

(αi + βi)
2(αi + βi + 1). (36)

The relationship between the predicted power and its error
variance can be represented as [24] and [28]

σi = 0.2 × PR
i

/

Pmax
i + 0.21. (37)

Using the predicted DG outputs and (34)–(37), the param-
eters of beta functions for the current prediction data can be
calculated. The number of scenarios generated by Monte Carlo
simulations is reduced by the simultaneous backward reduc-
tion method [21].

IV. NUMERICAL RESULTS

As shown in Fig. 4, a modified IEEE 33-bus distribution
system with three MGs is used in this paper. Details about the
IEEE 33-bus test system can be found in [19]. The power base
of the system is set to be 10 MVA. The line resistance and
reactance of all MGs are set to be 0.006 and 0.01 p.u., respec-
tively. Table I summarizes the system description of MGs.
For an MG, it is assumed that the load consumption at each
load bus is equal. Table II shows the parameters used in the
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TABLE I
DESCRIPTION OF NETWORKED MGS

TABLE II
PARAMETERS FOR CALCULATING CORRESPONDING COSTS

TABLE III
FORECASTED OUTPUTS OF RES-BASED DGS FOR ONE TIME PERIOD

TABLE IV
MT DISPATCHES IN ITERATIONS

case study, which are obtained from [29]. All the costs and
electricity prices are presented in U.S. dollars.

Table III shows the forecasted outputs of RES-based DGs
for one time period. The probabilistic distributions of fore-
cast errors can be estimated using the method described in
Section III-E. It is of note that the proposed method is not
limited to the energy management of a single period. It can
be straightforwardly extended to consider multiple periods
without loss of generality.

One thousand scenarios are generated using Monte Carlo
simulation to represent the prediction errors in the predic-
tion horizon. As discussed in the previous section, scenario
reduction is applied to reduce the computation efforts while
maintaining the solution accuracy.

In the grid-connected mode, earning economic profit is
a major objective for all entities. Table IV shows the stochastic
dispatch results of MTs. It can be seen that the results change
with the iterations and remain the same after five iterations,

TABLE V
TOTAL PROFIT OF EACH ENTITY IN STOCHASTIC PROGRAMMING

TABLE VI
POWER EXCHANGES IN DETERMINISTIC PROGRAMMING

TABLE VII
MT DISPATCHES IN ISLANDED MODE

which indicates that the negotiation among all entities ends.
Fig. 5 shows the power exchanges among all entities in the
iterations, which clearly describes the process of the negoti-
ation. For the DNO, positive values indicate that the DNO
would like to buy electricity from other entities, while nega-
tive values indicate selling electricity. For the MGs, positive
values represent selling electricity to the DNO, while nega-
tive values represent buying electricity from the DNO. It can
be seen from Fig. 5 that all entities want to sell electricity
to others at the beginning. After five iterations, the agree-
ments among all entities are achieved. The DNO is buying
electricity from the HV system, MG1 and MG2, while sell-
ing electricity to MG3. The power exchanges and total profits
of all entities can be found in Table V. Table VI shows the
power exchanges if uncertainties of DG outputs are not taken
into account. Compared to the stochastic programming, the
deterministic problem takes less iteration (only two iterations)
to converge. The power exchange results without consider-
ing uncertainties are also different from Table V. Since the
outputs of RES-based DGs are stochastic in nature, it is more
practical to apply the proposed stochastic bi-level optimization
algorithm to coordinate the operations.

In the islanded mode, it is assumed that the outputs of RES-
based DGs are the same as shown in Table III. The objective
is to maintain the technical operation of all MGs. Table VII
shows the dispatch and load shedding results. Since we have
enough generation capacity in the current situation, no load
shedding is necessary. Fig. 6 shows the lowest and highest
voltages in all MGs. It can be seen that the lowest and highest
voltage levels are always within the safe range (±5%) [30].
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Fig. 5. Power exchange between DNO and MGs in iterations.

Fig. 6. Highest and lowest voltage levels in each MG in islanded mode.

V. CONCLUSION

This paper proposes a decentralized EMS for a distri-
bution system with networked MGs. Both dispatchable and
RES-based DGs are considered to be part of MGs. In the
grid-connected mode, the DNO and MGs are considered as
self-managed entities with distinct objectives to minimize their
own operation costs. A stochastic decentralized bi-level algo-
rithm is applied to solve the problem taking into account
the intermittent outputs of RES-based DGs, the uncertain
load consumption and the coordinated operating points of all
interdependent systems. In the islanded mode, the operational
objectives are to maintain the voltage stability and the reli-
able power supply to customers in an MG. A modified 33-bus
test system with three MGs is studied. The simulation results
show that the negotiation among all entities converges in a few
iterations in the grid-connected mode and all MGs maintain
stable operations in the islanded-mode. Compared to previous
efforts on MG operation, the proposed model considers the
interactions between the networked MGs and DNO while the
stochastic DG outputs are also taken into account.
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