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Abstract: This study proposes a two-stage co-optimisation framework for the planning and energy management of a

customer with battery energy storage systems (BESSs) and demand response (DR) programs. The proposed method

can assist a customer to make the most beneficial plans to join DR programs and install BESS in the planning stage,

and optimally schedule the loads, DG outputs and BESS according to the planning decisions made in the first stage.

The novel method considers multiple DR programs, various customer types and demand scenarios, and the integration

of BESS. Case studies on a small commercial building and a large commercial/industrial campus demonstrate the

effectiveness of the proposed method and the impacts of BESS and DGs on customer behaviours. The proposed

method can provide guidance to a customer to make the most beneficial decisions in an electricity market with

multiple DR programs.

Nomenclature

ah,y,w capacity factor of generator
dy,w discomfort index
D days in a year (e.g. 365)
Gmax maximum output of generator
i index for DR programs: 1 – peak-time rebate

(PTR); 2 – time-of use (TOU); and 3 – critical
peak pricing (CPP)

ICs investment cost of batteries
lch,y,w curtailed load

L0h,y,w load consumption without DR programs

Ms maximum charging/discharging of one battery
unit

OCg operation cost of generators
pcurt curtailment payment
pth,y,w carbon tax price

P0
y electricity price without DR programs

Pr reliability cost
ΔPTOUh,y,w price change due to TOU
ry,w reliability index
sh,y,w state of charge of batteries
Ww probability of scenario w

Wd weight for discomfort
y index for year
zs number of batteries to be installed
as
h,w load shifting ratio

g aging factor of batteries
η
l battery leakage

Cl
y,w total cost

Ds charging/discharging duration
gh,y,w output of generators
h index for hour of the day
ICg investment cost of generators
lh,y,w net load consumption

lsh,y,w shifted load

Lmax
y,w max. load consumption without demand response

programs
Ns minimum charging/discharging of one battery unit

ph,y,w net electricity price
pocs operation cost of batteries
PTRh,y,w peak-time rebate
Pd discomfort cost
ΔPCPPh,y,w price change due to CPP

qsch,y,w/q
sd
h,y,w charging/discharging power

RPTR
y,w total PTR

Sdri,w sign-on bonus of program
Wc weight for cost
Wr weight for reliability
zg number of generators to be installed
ac
h,w load curtailment ratio

βy discount factor
η
c/ηd charging/discharging efficiency

w index for scenario

1 Introduction

Energy storage systems (ESSs), demand response (DR) and
distributed generation (DG) play an important role in peak
shaving, demand levelling and load consumption reduction in a
modernised distribution system. As an essential element of a smart
grid, ESSs can store energy in off-peak periods and provide power
support to the system during peak hours. The operation of ESSs
can be combined with DR to increase the economic benefits and
reliability of a smart distribution grid [1].

DR is becoming an important part of smart grids and electricity
markets for the economical and operational considerations. DR
offers a variety of financial and operational benefits such as bill
savings of participants, improved system operation, and better
market performance [2]. In practice, a utility company usually
offers various DR programs for its customers. It is a challenging
problem for a customer to select appropriate DR programs to
participate in. ESSs can provide local capacity to improve
demand–supply balance, so they can be a powerful instrument to
facilitate the implementation of DR programs. There are many
energy storage technologies, such as batteries, pumped
hydroelectric energy storage, flywheels, capacitors and so on. This
paper considers batteries as the energy storage technology, i.e. the
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battery ESSs (BESSs). Although the integration of BESS can
improve the operation, reliability, and economic benefits, it also
adds complexity to the planning and energy management of a
customer with DR programs.

Many studies have been performed on the optimal energy
management with DR programs in the existing literature. The
study in [1] proposed an energy management system to facilitate
power trading among multiple microgrids by using the energy
availability from demand response, DGs and distributed ESSs. The
study in [3] proposed a centralised demand response algorithm to
regulate frequency in a microgrid. The study in [4] introduced
three models to characterise the behaviours and load shifting
capabilities of domestic appliances, so as to facilitate the
implementation of demand response programs. The study in [5]
proposed a demand shifting and peak shaving measures to
improve the generation–load balance for a power system with a
high integration level of wind. The study in [6] proposed a direct
load control scheme for large-scale residential demand response
based on a consensus algorithm. The objective was to achieve the
optimal aggregated demand consumptions in a decentralised way.
The above mentioned literature assumes that a consumer is already
participating in a certain DR program. There are also papers that
consider the selection of multiple DR programs. The study in [7]
provided mathematical models of price–demand elasticity of
various DR programs to help DR regulators select favourite
programs. The study in [8] developed an economical model based
on price elasticity of multiple DR programs. An analytical
hierarchy process was used to select the most effective DR
program. However, the methods proposed in [7, 8] are based on a
predefined demand–price elasticity. In practice, the price elasticity
of a customer may vary a lot from one DR program to another.
Moreover, the models in [7, 8] require that all possible
combinations of DR alternatives be analysed thoroughly before
making an optimal decision to join certain DR programs.
Therefore, the above-mentioned methods cannot be easily applied
to assist customers to make optimal plans to join DR programs.

A list of literatures has studied the coordinated energy
management with ESSs and DR. The study in [9] reviewed the
state-of-the-art of present applications of thermal storage for
demand response. The study in [10] proposed an agent-based
energy management system with demand response and distributed
ESSs to minimise the supply–demand gap in multiple microgrids.
A virtual market with demand side management, DGs and energy
storage were designed to allow neighbouring microgrids to trade
with each other. The study in [11] investigated scenarios of a
household with photovoltaic systems, batteries, and demand side
management in the electricity market of Texas. The battery
capacity and total revenue of the household were optimised with
real-time market prices. The study in [12] proposed a framework
to maximise the payoff of a DR aggregator in a wholesale market
based on a mixed-integer linear program. ESSs, DGs, and DR
programs were used to reduce the load consumption. The study in
[13] discussed the demand side management for large-scale data
centres based on the stochastic optimisation approach. By
optimally shifting the cloud service tasks among data centres, the
financial benefits can be improved. The study in [14, 15]
investigated the demand side management with electrical vehicle
batteries to improve load profiles. The study in [16] proposed an
operation strategy of ESSs to facilitate demand response by
allowing energy storage devices to be controlled jointly by end
customers and network operators. The sizing and placement of
ESSs will impact the system operation. The study in [17] proposed
a discrete Fourier transform-based method for coordinated sizing
of ESSs and diesel generators in a microgrid considering
generation–demand imbalance. The study in [18] proposed a
second-order cone programming approach to optimally allocate
ESSs in a distribution system for energy balance and grid support.

Utilities usually offer many alternatives of DR programs for
customers to select. For example, Pacific Gas and Electric (PG&E)
provides time-of-use (TOU), peak-time rebate (PTR), and critical
time pricing (CPP) [19]. The existing literature only considers one
DR program and cannot assist customers to select the programs to

participate. ESSs play an important role in demand side
management. The joint optimisation of energy storage integration
and DR participations has not been covered in the above literature.
Moreover, if a customer installs ESSs and joins multiple DR
programs, the corresponding energy management problem
becomes more challenging.

In this paper, we propose a two-stage model for the planning and
operation of a customer with BESS and demand response.
Multi-stage optimisation has been widely applied to solve energy
management problems in the literature. Asimakopoulou et al. [20]
studied the energy management of networked MGs by using a
bi-level programming. Wang et al. [21] proposed a two-stage
stochastic model for the coordinated energy management of
networked microgrids. Jiang et al. [22] proposed a double-layer
energy management system for a microgrid with a schedule layer
to obtain an economic operation plan based on forecasted data,
and a dispatch layer to control the DG outputs based on real-time
data. Jabr et al. [23] studied two-stage robust optimisation for
multi-period optimal power flow with storage and renewable
energy. The objectives of our proposed model are to minimise the
investment and operation costs and maximise the profits and
customer satisfaction. The first stage (planning stage) conducts the
co-optimisation of the integration of BESS and the selection of
DR programs. Multiple DR alternatives ranging from price-based
programs to incentive-based ones are considered simultaneously.
The second stage (operation stage) performs scheduling of BESS
and load dispatch according to the decisions made in the first
stage. Different demand scenarios such as summer/winter
weekdays, summer/winter weekends, and event days are
considered in the model. Compared to existing work on the
planning and operation with DR programs and BESS, the
proposed method has the following main contributions: (i) it
co-optimises the planning (i.e. to select beneficial DR programs to
join) and energy management with demand response, (ii) it
considers multiple DR programs simultaneously, and (iii) it takes
into account DGs, BESS and a variety of demand scenarios.

The reminder of the paper is organised as follows. Section 2
proposes the two-stage co-optimisation framework for the planning
and energy management of a customer. Section 3 introduces the
detailed mathematical model. In Section 4, numerical results are
provided. Section 5 concludes the paper with major findings.

2 Two-stage framework for planning and energy
management

In a practical market, utilities provide multiple options of demand
response programs to customers, so as to reduce or shift the
peak-time demand, and improve the system operation and
reliability. On the other hand, customers have various demand
profiles. The integration of customer-owned DGs and BESS brings
further challenges. As shown in Fig. 1, we propose a novel
method to assist various types of end-use customers to make the
most beneficial plan to participate in DR programs, and to
integrate customer-owned DGs and BESS. Meanwhile, the
developed method can also help customers schedule the charging/
discharging of BESS and perform load management accordingly.

Multiple objectives are considered in the decision-making
process, which include costs, reliability, and discomfort. The
costs include electricity purchases and investments of BESS and
DGs. The reliability is defined as the curtailment index of loads.
The discomfort is defined as the index of shifted load
consumption. In the first stage, multiple types of DR programs
are considered, i.e. PTR, TOU, and CPP programs in this paper.
At the same time, the integration of consumer-owned DGs and
BESS is also taken into account. The decisions in the first stage
include the optimal combination of DR programs and the
number of BESS that need to be integrated to coordinate with
the DR operation. An important characteristic of the
decision-making process is that it allows the concurrent opt-in/
out of multiple DR programs.
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In the second stage, dispatches of loads, BESS and DGs are
performed based on the decisions made in the first stage. In
particular, this stage makes hourly decisions on load shifting,
charging/discharging of BESS, and the output of DGs. Five
demand scenarios are taken into account in the proposed
framework, i.e. summer weekdays, summer weekends, winter
weekdays, winter weekends, and event days.

It can be seen that the proposed model can assist various types of
end-use customers to make the most beneficial plan to participate in
demand response programs, and to integrate customer-owned BESS/
DGs in the planning stage, while performing energy management
accordingly in the operation stage. The proposed procedure
accounts for: (i) multiple DR programs; (ii) cost of supplying
loads from external grid and/or local capacities together with the
cost of BESS investment/maintenance; and (iii) load shifting and
load curtailment; and (iv) multiple demand scenarios.

3 Mathematical formulation

This section provides the optimisation formulation of the proposed
two-stage planning and operation framework. The objective is to
minimise the costs and maximise the profits of a customer

min W c ICszs + ICgzg −
∑

i,y

Sdri,y

( )( )

+ D
∑

y,w

Ww(W
cCl

y,w

+W rPrry,w +W dPddy,w) (1)

subject to

Cl
y,w = by

(

∑

h

(OCggh,y,w + ( ph,y,w + pth,y,w)lh,y,w + pcurtlch,y,w

+ pocs(qsdh,y,w + qsch,y,w))− RPTR
y,w

)

, ∀y, w (2)

lh,y,w = L0h,y,w − gh,y,w − lsh,y,w − lch,y,w − Qsd
h,y,w + Qsc

h,y,w, ∀h, y, w

(3)

lh,y,w ≤ Lmax
h,y,w, ∀h, y, w, (4)

∑

h

lsh,y,w = 0, ∀y, w (5)

lsh,y,w ≤ as
h,w

∑

i

zi,y

( )

L0h,y,w, ∀h, y, w, (6)

lch,y,w ≤ ac
h,w(z1,y + z3,y)L

max
y,w , ∀h, y, w, (7)

ph,y,w = P0
y + z2,yDPTOUh,y,w + z3,yDPCPPh,y,w

− z2,yz3,yDPTOUh′ ,y,w, ∀h′ [ [14, 18], h, y, w, (8)

RPTR
y,w = z1,y

∑

h[[14,18]

(L0h,y,w − lh,y,w)PTRh,y,w, ∀y, w, (9)

sh,y,w = hlsh−1,y,w − (hd)−1qsdh,y,w + hcqsch,y,w, ∀h, y, w, (10)

s1,y,w = s24,y,w = gy−1DszsM s, ∀y, w, (11)

qsdh,y,w ≤ gy−1zsM s, ∀h, y, w, (12)

qsch,y,w ≤ gy−1zsM s, ∀h, y, w, (13)

DszsN s
≤ sh,y,w ≤ gy−1DszsM s, ∀h, y, w, (14)

dy,w =
∑

h

lsh,y,w

∣

∣

∣

∣

∣

∣, ∀y, w, (15)

ry,w =
∑

h

lch,y,w, ∀y, w, (16)

gh,y,w ≤ zgah,y,wG
max, ∀h, y, w, (17)

zs [ integer, z [ binary, (18)

C1, r, d, l, g, lc, qsd, qsc, s ≥ 0 (19)

In the above formulation, the objective function (1) minimises the
total costs during the planning horizon. The costs include the
investment and operation costs of ESSs and distributed generators,
the reliability cost, and the discomfort cost. The sign-on bonus is
considered as a negative cost. It is assumed that there are 365 days
in one year. Constraint (2) represents the operation costs, the first
item is the operation cost of distributed generators, the second
item is the cost of load consumption, the third item is the cost of
load curtailment, the fourth item represents the operation cost of
ESSs, and the last item is the total PTR. Constraint (3) represents
the net load consumption. The first item represents the original
load consumption of the customer, the second item represents the
generation of distributed generators, the third item represents
the shifted load, the fourth item represents the curtailed load, and
the last two items represent the charging and discharging of ESSs.
Five representative scenarios are considered, winter weekdays,
winter weekends, summer weekdays, summer weekends, and
critical days (only applicable under certain demand response
programs). Constraint (4) indicates that the net load consumption
with demand response programs should be no larger than the load
consumption without demand response programs. In constraint (5),
the net shifted load in a day should be zero, since all shifted load
consumption can be supplied eventually. Constraint (6) represents
the maximum allowable load shift, which should be a certain
portion of the original load consumption. Constraint (7) represents
the maximum allowable load curtailment. Constraint (8) represents
the net electricity price with demand response programs. The first
item represents the electricity price without any demand response
programs. The second item represents the price adjustment of
TOU program. The third item represents the price adjustment of
CPP program. If a consumer participates in both TOU and CPP,
there exists a duplicate charge during peak hours (i.e. 14:00–
18:00), which is deducted by the last item. Constraint (9)
represents the PTR. Peak time is defined as 2–6 pm in this paper.
The operator can change the settings according to practical
scenarios. Equations (10)–(13) represent the operation constraints
of ESSs. Constraint (10) calculates the state of charge (SOC) of
the ESSs for each time period. According to the operation
requirement of ESSs, the SOC at the end of the day should be
equal to the SOC at the beginning of the day, which is indicated

Fig. 1 Two-stage framework for planning and energy management of a

customer with DR and BESS
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by constraint (11). Constraints (12) and (13) represent the maximum
discharging and charging constraints of ESSs, respectively.
Constraint (14) represents the range of SOC. Constraint (15)
defines the discomfort index as the total shifted load consumption
during a day. In constraint (16), the reliability index is defined as
the total curtailed loads. Constraint (17) represents the maximum
allowable outputs of generators.

The first-stage decision variables are zs, zg, and zi,y; and the
second-stage decision variables are gh,y,w, q

sd
h,y,w, q

sc
h,y,w, lh,y,w, l

s
h,y,w,

and lch,y,w. Therefore, the first stage of the formulation assists
customers in selecting the most beneficial demand response
programs (i.e. TOU, CPP, and PTR). The first stage also makes
decisions on the integration of customer-owned BESS and DGs.
The second stage performs the load management and generation
scheduling according to the decisions made in the first stage. The
proposed formulation is a mixed integer non-linear program which
is solved by BOMIN solver in GAMS [24, 25].

4 Numerical results

The proposed framework has been tested with two types of
customers: small commercial/industrial buildings and large
commercial/industrial campuses. Five demand scenarios are
considered in the case study: (i) summer weekdays, (ii) summer
weekends, (iii) winter weekdays, (iv) winter weekends, and (iv)
critical days (event days). In general, hot summer weekdays and
cold winter weekdays with severe events are considered as critical

days. The probabilities of the five demand scenarios are set to be
W1 = 0.3425, W2 = 0.1370, W3 = 0.3425, W4 = 0.1370, and
W5 = 0.041.Fig. 2 shows the load consumption of five scenarios
for small commercial/industrial buildings and for large
commercial/industrial campuses.

The base electricity price P0
1 is set to be 0.20 $/kWh, the price

deviations of demand response programs are shown in Fig. 3 [26].
TOUA represents the price deviations for summer/winter
weekdays and TOUB represents the price deviations for summer/
winter weekends.

As shown in (8), the electricity price for a certain time slot is the
aggregation of the base price and the corresponding price deviations.
It is assumed that the base electricity price increases linearly by
$0.02 per year. The annual discount rate is 0.9. The planning
horizon is set to be 5 years. Gmax is set to be 80 kW for small
commercial/industrial buildings, and 600 kW for large commercial/
industrial campuses. OCg is set to be $0.1/kWh with the annual
increase of $0.02. Sign-on bonus is applied to the CPP program,
and is set to be $0.5/kW of the maximum load consumption. as

h,w

is set to be 0.05 and ac
h,w is set to be 0.05. For the ESSs, ηl is set

to be 0.95, ηc is set to be 0.90, ηd is set to be 0.90, g is set to be
0.9, Pocs is set to be 0.50 $/kWh, Ds is set to be 4 h, and Ms is set
to be 3 kW. We assume the weights of costs, reliability index, and
discomfort index are 0.45, 0.45, and 0.1, respectively. It should be
noted that all of the simulation settings are for illustration,
operators can change the settings according to the operation and
available information of a system. All the experiments are
implemented using GAMS 22.5 at Intel Quad Core 2.40 GHz with
8 GB memory. The solution time of the formulation defined in
(1)–(19) is within 1 min in the studied two cases, i.e. smaller
commercial/industrial building, and large commercial/industrial
campuses.

4.1 Simulation results for small commercial/industrial
buildings

Simulations are run for a small commercial/industrial building with
load profiles shown in Fig. 2. Table 1 summarises the first-stage
results during the planning horizon.

Fig. 2 Five load scenarios for

a Small commercial/industrial buildings
b Large commercial/industrial campuses

Fig. 3 Price deviations of demand response programs

Table 1 First-stage results for a small commercial/industrial building

Year 1 Year 2 Year 3 Year 4 Year 5 Number of BESS

T, P, C T, P, C T, P, C T, P, C T, P, C 47

T: time-of-use, P: peak-time rebate, C: critical peak pricing
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According to the results, the building installs one DG and 47
battery units, and participates all three DR programs in the five
years. Fig. 4 shows the load shifting results in five demand
scenarios in the first year. A positive value represents the load is
shifted from the corresponding time, and a negative value
represents that the load is shifted to the time period. It can be seen
that the total shifted load consumption during 24 h is zero as
constrained by (5). There is no shifted load in scenarios 2 and 3
since they represent weekend load demand which is usually low.
Load consumption during 11:00 am to 6:00 pm in summer/winter
weekdays and event days has been shifted to off-peak hours.

Fig. 5 shows the aggregated charging/discharging operation of all
installed battery units in the first year. A positive value represents
batteries are operating at the discharging state, and a negative
value indicates that batteries are operating at the charging state. It
can be seen that the operations of batteries in different demand
scenarios are different with each other. In general, the charging/
discharging power in summer/winter weekends is relatively small;
the charging/discharging power in summer/winter weekdays and
event days is larger. Meanwhile, batteries operate in the
discharging state for a longer time in event days. Since grid
electricity price in critical periods is very high, the building tends
to support its load using batteries and DGs.

Fig. 6 shows the net imported power from the grid in the first year
in four demand scenarios, i.e. summer weekdays, summer weekends,
winter weekdays, and critical days. To show the impacts of BESS on
customer behaviours, we compare the net imported power with and
without BESS for the four scenarios. It can be seen that the imported
power in cases without BESS is smaller than those with BESS since
there is no battery unit that needs to be charged. However, for a
building without BESS, its imported power during peak time
(2:00–6:00 pm) becomes larger in summer/winter weekdays
(Figs. 6a and c) and critical days (Fig. 6d ). This is because the
demand can only be supplied by the grid and DG. In Fig. 6d, the
building with BESS can be self-supplied in peak hours in critical
days to avoid buying electricity from grids at a much higher price.
In Fig. 6b, the net imported power of the building without BESS
is close to zero because the load in weekends is small and can be
supplied by the DG. The building with BESS needs to import
relatively cheap electricity from the grid to charge the BESS in the
night.

Table 2 shows the sensitivity analysis of DG sizes to demonstrate
their impacts on planning and operation results. When DG sizes are
small (i.e. <80 kW), the building decides not to participate criticalFig. 5 Aggregated charging/discharging of BESS of a small commercial/

industrial building in the first year

Fig. 4 Load shifting results of a small commercial/industrial building in the

first year

Fig. 6 Power imported from the grid of a small commercial/industrial building in the first year

a Summer weekdays
b Summer weekends
c Winter weekdays
d Critical days
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time pricing program because the self-generation and storage
capacities are not enough to support its load during peak times on
critical days. The number of installed BESS increases with the DG
size since DG generation can be used to charge BESS when the
electricity price is high. After the DG size exceeds 100 kW, the
building installs less BESS because more load consumption can be
supported by the DG. The total operation cost is also impacted by
DG sizes. As the DG size increases, the operation cost decreases
since the DG generation can be used to support more load
consumption and BESS charging during peak hours.

Table 3 shows the sensitivity analysis for electricity prices. The
base prices can be shown in Fig. 3. In the price sensitivity
analysis, the applied TOU and CPP/PTR price is their base price
times the corresponding ratios. When electricity prices are low, the
costs of installing BESS cannot be justified by the potential
benefits. Therefore, no BESS or only a few BESS are installed.
The operation of certain DR programs such as CPP requires a
large number of BESS to reduce the peak-time load. When
electricity prices are high, the building decides to install more
BESS and participate in CPP to receive the rebates.

4.2 Simulation results for large commercial/industrial
campuses

In this case, we run simulations a large commercial/industrial
campus with load profiles shown in Fig. 2b. Table 4 summarises
the first-stage results during the planning horizon.

According to the results, the building installs one DG and 468
battery units, and participates all three DR programs in the five
years. Fig. 7 shows the load shifting results in five demand
scenarios in the first year. Similar to the load shifting results in the
small commercial/industrial building, load consumption is mostly

shifted during peak hours in summer/winter weekdays and event
days.

Fig. 8 shows the aggregated charging/discharging operation of all
installed battery units in the first year. It can be seen that battery units
operate in the discharging mode to support demand during peak
periods in summer/winter weekdays, summer weekends, and event
days. The charging/discharging power in winter weekends is still
small due to the relatively flat and small demand. In all five

Table 2 Sensitivity analysis of DG sizes for a small commercial/industrial building

DG size, kW Year 1 Year 2 Year 3 Year 4 Year 5 Objectives, $ Number of BESS

0 T, P T, P T, P T, P T, P 527,369 6
20 T, P T, P T, P T, P T, P 398,162 18
40 T, P T, P T, P T, P T, P 282,833 27
60 T, P, C T, P, C T, P T, P T, P 188,940 42
80 T, P, C T, P, C T, P, C T, P, C T, P, C 96,588 47
100 T, P, C T, P, C T, P, C T, P, C T, P, C 8883 63
120 T, P, C T, P, C T, P, C T, P, C T, P, C −74,924 55
140 T, P, C T, P, C T, P, C T, P, C T, P, C −15,418 50
160 T, P, C T, P, C T, P, C T, P, C T, P, C −229,837 41
180 T, P, C T, P, C T, P, C T, P, C T, P, C −301,989 35

T: time-of-use, P: peak-time rebate, C: critical peak pricing, objectives are defined in (1)

Table 3 Sensitivity analysis of DR program designs for a small
commercial/industrial building

Year TOU
ratio

CPP/PTR
ratio

DR
programs

Objectives,
$

Number of
BESS

1 0.5 0.25 T, P 382,442 0
2 1.0 0.50 T, P 290,101 0
3 1.5 0.75 T, P 191,313 2
4 2.0 1.00 T, P, C 63,359 75
5 2.5 1.25 T, P, C −115,550 87

T: time-of-use, P: peak-time rebate, C: critical peak pricing, objectives are
defined in (1)

Table 4 First-stage results for a large commercial/industrial campus

Year 1 Year 2 Year 3 Year 4 Year 5 Number of BESS

T, P, C T, P, C T, P, C T, P, C T, P, C 468

T: time-of-use, P: peak-time rebate, C: critical peak pricing

Fig. 7 Load shifting of a large commercial/industrial campus in the first

year

Fig. 8 Aggregated charging/discharging of BESS of a large commercial/

industrial campus in the first year
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scenarios, battery units are operated in the charging state from 8:00
pm to midnight to take advantage of the relatively cheap electricity.

Fig. 9 shows the net imported power from the grid in the first year.
In the night, the campus with BESS imports relatively cheap
electricity from the grid to charge the BESS. It can be seen from

Figs. 9a–d that the campus with BESS can be self-supplied during
peak hours. In contrast, the campus without BESS needs to buy
more electricity at a higher price in the peak periods. The total
operation costs of the customer with and without BESS over a
period of 5 years are $693,517 and $940,560, respectively.
Therefore, the operation costs can be reduced by optimally
integrating BESS.

Fig. 10 shows the hourly payment to the utility of the large
campus in a critical day. During peak hours (2:00–6:00 pm), the
consumer pays much less if BESS is installed. The total daily
payment with and without BESS are $8913 and $10,404,
respectively.

Table 5 shows the sensitivity analysis of DG sizes on the planning
and operation results. When DG sizes are small (i.e. <600 kW), the
campus decides not to participate critical time pricing program
because the self-generation and storage capacities are not enough
to support its load during peak times on critical days. The number
of installed BESS increases with the DG size since DG generation
can be used to charge BESS when the electricity price is high.
After the DG size exceeds 1000 kW, the campus installs less
BESS because more load consumption can be supported by the DG.

Table 6 shows the sensitivity analysis for electricity prices. The
base prices can be shown in Fig. 3. In the sensitivity analysis,
the applied TOU and CPP/PTR price is their base price times the
corresponding ratios. Similar to the results of a small building, no
BESS is installed when electricity prices are low since the costs of
installing BESS cannot be justified by the potential benefits. The

Fig. 9 Power imported from the grid of a large commercial/industrial campus in the first year

a Summer weekdays
b Summer weekends
c Winter weekdays
d Critical days

Fig. 10 Hourly payment to the utility in a critical day

Table 5 Sensitivity analysis of DG sizes for a large commercial/industrial campus

DG size, kW Year 1 Year 2 Year 3 Year 4 Year 5 Objectives, $ Number of BESS

0 T, P T, P T, P T, P T, P 4,425,850 61
200 T, P T, P T, P T, P T, P 3,107,834 179
400 T, P T, P T, P T, P T, P 1,985,705 246
600 T, P, C T, P, C T, P, C T, P, C T, P, C 693,517 468
800 T, P, C T, P, C T, P, C T, P, C T, P, C 31,988 475
1000 T, P, C T, P, C T, P, C T, P, C T, P, C −803,318 481
1200 T, P, C T, P, C T, P, C T, P, C T, P, C −1,560,459 428
1400 T, P, C T, P, C T, P, C T, P, C T, P, C −2,311,725 421
1600 T, P, C T, P, C T, P, C T, P, C T, P, C −3,054,885 337
1800 T, P, C T, P, C T, P, C T, P, C T, P, C −3,714,225 282

T: time-of-use, P: peak-time rebate, C: critical peak pricing, objectives are defined in (1)
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operation of CPP requires a large number of BESS to reduce the
peak-time load. When electricity prices are high, the campus
decides to install more BESS and participate in CPP to receive the
rebates.

5 Conclusions

In this paper, a two-stage framework for the planning and energy
management of a customer with ESSs and demand response
programs is proposed. The first stage is to assist the customer to
select the most beneficial programs to participate and install an
appropriate number of battery units. The second stage is to
perform energy management according to the decisions made in
the first stage, which includes dispatches of loads, DGs and BESS.
The proposed method can be applied to residential, commercial
and industrial customers with various demand scenarios. For
illustration, we consider two types of customers (small
commercial/industrial buildings and large commercial/industrial
campuses) and five demand scenarios (summer/winter weekdays,
summer/winter weekends, and critical days) in the case study.
TOU, critical time pricing and PTR are considered as options of
demand response programs. The numerical results demonstrate the
effectiveness of the proposed method. It has been shown that the
integration of battery units has great impacts on the energy
management with DR programs. Customers can receive more
profits by installing an appropriate amount of BESS while joining
DR programs.
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Table 6 Sensitivity analysis of DR program designs for a large
commercial/industrial campus

Year TOU
ratio

CPP/PTR
ratio

DR
programs

Objectives,
$

Number of
BESS

year
1

0.5 0.25 T, P 3,181,170 0

year
2

1.0 0.50 T, P 2,507,998 0

year
3

1.5 0.75 T, P, C 1,763,372 84

year
4

2.0 1.00 T, P, C 929,166 488

year
5

2.5 1.25 T, P, C 62,856 612

T: time-of-use, P: peak-time rebate, C: critical peak pricing, objectives are
defined in (1)
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