
IET Generation, Transmission & Distribution

Research Article

Voltage stability assessment based on
improved coupled single-port method

ISSN 1751-8687
Received on 18th December 2016
Revised 17th April 2017
Accepted on 2nd May 2017
doi: 10.1049/iet-gtd.2016.2067
www.ietdl.org

Bai Cui1, Zhaoyu Wang2 
1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA

 E-mail: wzy@iastate.edu

Abstract: This study proposes an improved coupled single-port method for the assessment of voltage stability based on phasor
measurement unit (PMU) data. The impedance matching condition, i.e. the condition that the local load impedance and the
Thévenin equivalent impedance are equal in magnitude at the loadability limit point, has been a fundamental assumption of
many existing studies on voltage stability assessment. However, it is shown in this study that the impedance matching can
happen either before or after the loadability limit point in certain cases. The authors have proven that the inaccuracy of the
conventional impedance matching condition is due to the time-varying equivalent parameters of a power system. To deal with
the dynamic nature of grid equivalence, they propose an innovative method to improve the conventional coupled single-port
method. In the new method, voltage magnitude-to-load consumption sensitivity is used to adjust the equivalent parameters
calculated by the coupled single-port method. Compared to conventional methods, the proposed method requires fewer PMU
measurements and provides more accurate margin estimates. Case studies on extensive test systems validate the accuracy of
the proposed method. The comparison between the conventional coupled single-port method and the developed method is also
provided to demonstrate the effectiveness of the new method.
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1 Introduction
The ability to maintain voltage stability is an important property of
a secure and resilient power system. With the increasing load
consumption and penetration of renewable energy resources, power
systems are being operated with less margin to voltage stability
limits [1]. The assessment of voltage stability has become a major
concern for the power system planning and operation. Voltage
stability can be classified into two categories: dynamic stability and
static stability. The dynamic instability of voltage is analysed by
time-domain simulations. The static voltage instability, which is
generally triggered by transmission and/or generation outages or by
severe load increases, is assessed by steady-state analysis [2]. This
paper focuses on the assessment of static voltage stability.

Many approaches have been proposed in the literature on the
assessment of static voltage stability, which can be categorised into
model-based methods and measurement-based methods [3, 4].
Representative model-based methods include continuation power
flow (CPF) [5, 6] and optimal power flow (OPF) [7, 8]. CPF
employs a predictor–corrector scheme to systematically trace the
solutions of a set of parameterised equations along the bifurcation
manifold by increasing the loading level until a voltage stability
limit is encountered. OPF-based methods find the loading margin
to voltage instability by adopting optimisation-based methods
which maximise the loading factor while satisfying a set of
operation constraints such as the power flow equations, bus-voltage
limits, thermal limits of transmission lines and reactive power
limits of generators. The complexity of system models and the
computational burden make these methods difficult to be
implemented in real-time or a decentralised manner.

In recent years, the wide deployment of phasor measurement
units (PMUs) and the advancement in communication
infrastructures have facilitated the development of measurement-
based stability assessment. Many measurement-based methods rely
on the impedance matching condition, i.e. a Thévenin-like
equivalent system model can be derived at load buses, voltage
instability occurs if the identified load impedance matches the
estimated system Thévenin impedance according to the maximum
power transfer principle [9]. The measurement-based methods can
be further classified into decentralised and centralised ones. The

decentralised methods are based on local measurements from a
single PMU with few or no information exchange with its
neighbouring PMUs. The study in [10] proposes a local voltage
stability assessment method by estimating Thévenin equivalent
parameters based on phasor measurements. This work is extended
in [11] by measuring the load impedances in the direction of the
bulk load instead of the local load. A method to quantify
uncertainties of phasor measurements in stability assessment is
proposed in [12], and a robust state estimation-based technique is
introduced in [13] to mitigate the effect of measurement noise.
Tellegen's theorem is applied to calculate Thévenin parameters
based on two consecutive phasor measurements of voltage and
current in [14]. The authors of [15] propose a real-time algorithm
to identify Thévenin parameters by updating the Thévenin voltage
per the load impedance variation. Parniani and Vanouni [16]
propose a local voltage stability index that relies on scalar local
measurements. The centralised assessment methods leverage the
wide-area measurements from networked PMUs to monitor voltage
stability. The study in [17] integrates the information of reactive
power reserves of generators with the local voltage stability
assessment to improve the stability margin estimation. Necessary
conditions that ensuring the voltage stability in distribution systems
have been proposed in [18, 19]. The authors in [2] proposed a
method to fit a set of algebraic equations to the sampled states and
perform sensitivity analysis to detect the operating point with the
maximum load power.

The studies in [9, 20, 21] propose a coupled single-port model
which decouples a meshed power system into individual single
generator versus single bus network and directly calculates
Thévenin parameters using phasor measurements at all load and
generator buses. The method has been modified in [22, 23] by
considering disproportionally-increasing loads and generation
equivalent models. The coupled single-port model is also referred
to as multi-port Thévenin equivalent since it maintains the
characteristics of individual generators and loads instead of
lumping them into a single equivalent [3, 11].

In this paper, it is identified that the prevailing impedance
matching condition fails to detect the onset of voltage instability in
certain cases. In particular, the impedance matching condition is
not applicable to cases where equivalent parameters are obtained
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from static system equivalencing techniques. A major issue with
the coupled single-port method is that voltage instability may
happen before or after the impedance matching point in certain
cases, which leads to inaccurate estimation of the voltage stability
margin. In this paper, this phenomenon is named as impedance
crossing. To reveal the nature of the impedance crossing issue, we
provide a detailed sensitivity analysis of load consumption with
respect to system loading factors. It is shown that the impedance
matching condition holds when system equivalent parameters are
constant. However, the condition may not hold when both the
equivalent voltage and equivalent impedance are functions of the
system parameters. An improved coupled single-port method is
proposed in this paper to improve the accuracy of the coupled
single-port method. Adjustments to the equivalent parameters of a
load bus are calculated from two consecutive phasor measurements
at the corresponding bus to capture the power system evolution.
The objectives of the proposed method are to improve the accuracy
of margin estimates and to ensure that the impedance matching
condition is met at the loadability point. The proposed method only
requires communications with PMUs at generator buses, which
reduces the complexity of communication infrastructures. Since the
proposed method does not require the implicit assumption of
proportional load increase as in [9], we expect the margin estimates
to be more accurate when load powers change disproportionally.

The remaining of this paper is organised as follows. Section 2
presents the technical background and gives a brief introduction to
the coupled single-port method. Section 3 identifies the problems
associated with the coupled single-port method and proposes an
improved method with theoretical foundations. In Section 4,
numerical results demonstrating the problems with the
conventional method and the effectiveness of the proposed method
are provided. Section 5 concludes the paper with the major
findings.

2 Background
2.1 System modelling

The general power system model used in voltage stability analysis
can be described as a set of differential-algebraic equations (DAE)

ẋ = f (x, y, λ, p), (1a)

0 = f (x, y, λ, p), (1b)

where x ∈ ℝm is a vector of system states associated with
dynamics of system elements, such as generator and load
dynamics. y ∈ ℝn is a vector of steady-state system states, such as
load voltage magnitudes and angles, and generator voltage angles.
λ ∈ ℝq is a vector of uncontrollable system variables, such as
system loading factors. p ∈ ℝp is a vector of controllable system
variables, such as the real and reactive powers of base load, the real
power output and voltage magnitudes of generators, and the tap
positions of load tap changers. f :ℝm × ℝn × ℝq × ℝp → ℝm,
g:ℝm × ℝn × ℝq × ℝp → ℝn + p + q are C∞ (smooth) functions.

The equilibria of the above DAE model satisfy

0 = f (x, y, λ, p), (2a)

0 = f (x, y, λ, p) . (2b)

Assume the Jacobian Dx f  is invertible for every solution
(x0, y0, λ0, p0) of (2a), we have the following conclusion based on
the implicit function theorem: there exists a function h and a radius
r > 0 such that for solutions (x, y, λ, p) ∈ Ball((x0, y0, λ0, p0), r),
x = h(y, λ, p).

Let g(h(y, λ, p), y, λ, p) = g~(y, λ, p) and assume y ∈ ℝn

represents voltage magnitudes and angles of loads, as well as
voltage angles of all generators except the one at the slack bus. In
addition, let λ ∈ ℝq be a parameter vector of real and reactive load
powers. Then the system is modelled by

Q3

0 = g~(y, λ, p) (3)

which is the well-known power flow model of a power system.
Proportional load increasing model is assumed throughout the
paper such that given a base case operating point (y0, λ0, p0), the
loading parameter λ at any operating point is a scalar multiple of λ0,
i.e. there exists κ > 0 such that λ = κλ0. In this case q = 1 and
λ ∈ ℝ.

Dobson [24] shows that in general (1) has a saddle-node
bifurcation at (x∗, y∗, λ∗, p∗) if and only if (3) has a saddle-node
bifurcation at (y∗, λ∗, p∗). Since voltage stability is primarily related
to the saddle-node bifurcation of dynamical systems, without loss
of generality, (3) is used in this paper for voltage stability analysis.

A power system represented by (3) undergoes a saddle-node
bifurcation at λ = λ∗ when

0 = g~(z∗), (4a)

0 = Dyg
~(z∗)Tv = Dyg

~(z∗)w, (4b)

0 ≠ Dλg
~(z∗)w, (4c)

0 ≠ wT[Dy(Dyg
~(z∗))v]v, (4d)

where v and w are normalised right and left eigenvectors of the
Jacobian Dyg

~(z∗), and z∗ = (y∗, λ∗, p∗) is the bifurcation point.
Equations (4c) and (4d) are the transversality and non-degeneracy
conditions, respectively [25]. The set of all such λ∗ amounts to the
q-dimensional loadability surface Σ.

At an operating point (y, λ, p), the system loading margin is
defined as the real number k > 0 such that λ∗ = (1 + k)λ0 ∈ Σ.

2.2 Sensitivity analysis

Sensitivity analysis is used to analyse the variation of equivalent
parameters with respect to the system loading condition [26]. Let η
be an element in the set of equivalent parameters, e.g.
η ∈ ( |Zeq | , |Eeq | , ∠Zeq) where Eeq and Zeq are the vectors of
equivalent voltages and equivalent impedances seen from all load
buses, respectively. Assume that p is constant, we have η = η(y, λ).

The incremental change of η(y, λ) with respect to y and λ is

dη = (dy)T ∂η
∂y + ∂η

∂λdλ = dλ ∂η
∂λ − (Dλ

Tg~)(Dy
Tg~)−1 ∂η

∂y . (5)

The inverse of the Jacobian Dyg
~ is

(Dyg
~)−1 = VΣ−1W = ∑

i = 1

n viwi
T

σi
, (6)

where V and W are the matrices of right and left eigenvectors of
Dyg

~, respectively, Σ is a diagonal matrix containing eigenvalues of
Dyg

~, and vi and wi are the ith right and left eigenvectors of Dyg
~,

respectively.
Substituting the transpose of (6) into (5) yields

dη = dλ ∂η
∂λ − (Dλ

Tg~) ∑
i = 1

n wivi
T

σi

∂η
∂y . (7)

Therefore, the sensitivity of η with respect to λ is

dη
dλ = ∂η

∂λ − (Dλ
Tg~) ∑

i = 1

n wivi
T

σi

∂η
∂y . (8)

Since the Jacobian Dyg
~ is singular at the bifurcation point

according to (4b) and 1/σmin → + ∞ as det Dyg
~ → 0, we have

dη/dλ → + ∞ as det Dyg
~ → 0.
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2.3 Coupled single-port method

Equation (3) can be explicitly described by the following coupled
single-port form as:

−IL

IG
= Y

VL

VG
=

YLL YLG

YGL YGG

VL

VG
(9)

where Y is the system admittance matrix, V and I are bus voltage
and current vectors, respectively, and the subscript L and G
represent load and generator buses, respectively.

Let 𝒩 = {1, 2, …, N} be the set of load buses and
𝒢 = {N + 1, N + 2, …, N + M} be the set of generator buses. Then
VL ∈ ℂN and VG ∈ ℂM.

The load voltage vectorVL can be expressed as a function of VG
and IL as shown below:

VL = KVG − ZLLIL, (10)

where K = − YLL
−1 YLG ∈ ℂN × M and ZLL = YLL

−1 ∈ ℂN × N.
For a load bus j ∈ 𝒩, the bus voltage can be calculated as

VL, j = [KVG] j − ∑
i = 1

k
ZLL, j jIL, i

= [KVG] j − ZLL, j j + ∑
i = 1, i ≠ j

N
ZLL, ji

IL, i
IL, j

IL, j,
(11)

where [KVG] j and ZLL, j j + ∑i = 1, i ≠ j
N ZLL, jiIL, i/IL, j are the system

equivalent voltage and impedance seen from bus j, respectively.
K and ZLL are matrices derived from the system admittance

matrix, and are constant as long as the system topology remains the
same. The magnitude of generator voltage |VG| is constant if the
PV–PQ transition of generators is not taken into account. Thus, the
magnitude of the system equivalent voltage seen from a load bus j,
i.e. Eeq, j = [KVG] j, is relatively constant. In addition, the system
equivalent impedance Zeq, j = ZLL, j j + ∑i = 1, i ≠ j

N ZLL, jiIL, i/IL, j is
relatively constant when proportional load increasing model is used
[9].

The load consumption cannot be further increased beyond the
loadability limit point because of the system constraints, and the
point corresponds to the saddle-node bifurcation point of the
system [26]. A load bus reaches its loadability limit when the load
impedance and the system equivalent impedance seen from the
local load are equal in magnitude ( |ZL | = |Zeq | ), which is known
as the impedance matching condition [9].

3 Improved coupled single-port method
3.1 Issue with impedance matching condition

The impedance matching condition is satisfied at the loadability
limit for a radial two-bus system, as demonstrated in [26, 27],

where the equivalent voltage and the equivalent impedance are
constant. However, the equivalent voltage and impedance derived
from the coupled single-port model for a multi-bus system are
system-dependent, i.e. the equivalent voltage and impedance vary
with the system loading condition. There is no guarantee that the
loadability limit coincides with the impedance matching condition
when system equivalent parameters are not constant.

3.1.1 Example: To demonstrate the above mentioned argument,
numerical results based on an example system are provided.
Consider a radial three-bus system with one generator and two
constant power loads in Fig. 1. Suppose V1 = 1,
Zline1 = Zline2 = j0.1, V2 = 0.7 − j0.3, and V3 = 0.5 − j0.5. Given
the operating condition, load powers, currents and impedances are
SL, 2 = 1 + j0.4, SL, 3 = 2, IL, 2 = 1 − j, IL, 3 = 2 − j2,
ZL, 2 = 0.5 + j0.2, ZL, 3 = 0.25. 

The equivalent impedances seen from buses 2 and 3 are
calculated as

Zeq, 2 = ZLL, 11 + ZLL, 12
I3

I2
= j0.3 (12a)

Zeq, 3 = ZLL, 22 + ZLL, 21
I2

I3
= j0.25 (12b)

The magnitudes of the load impedance and the equivalent
impedance at bus 3 are equal. Based on the coupled single-port
method, the loadability limit point is encountered under the current
operating condition. However, the determinant of the power flow
Jacobian is

det J =

12 −5 −1.3131 2.8284
−5 5 −2.6261 −2.8284
−1 −2 14.7063 −7.0711
2 −2 6.5653 7.0711

= 301.57 ≠ 0. (13)

Since the determinant is non-zero, the system has yet reached
its loadability limit under the given operating condition, even
though the impedance matching condition is met.

Recently, we have shown in [18] that the singularity of the
power flow Jacobian for the above system coincides with the
singularity of the complex Jacobian matrix defined as (see (14)) 

Plugging in the values given above, we have

Fig. 1  Three-bus system
 

Jc =

V2 0 −Zline1IL, 2 −Zline1IL, 3

0 V3 −Zline1IL, 2 −(Zline1 + Zline2)IL, 3

−Zline1
∗ IL, 2

∗ −Zline1
∗ IL, 3

∗ V2
∗ 0

−Zline1
∗ IL, 2

∗ −(Zline1 + Zline2)
∗IL, 3

∗ 0 V3
∗

. (14)
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Jc =

0.7 − j0.3 0 −(0.1 + j0.1) −(0.2 + j0.2)
0 0.5 − j0.5 −(0.1 + j0.1) −(0.4 + j0.4)

−(0.1 − j0.1) −(0.2 − j0.2) 0.7 + j0.3 0
−(0.1 − j0.1) −(0.4 − j0.4) 0 0.5 + j0.5

.

(15)

It is easy to see that the Jacobian matrix (15) is diagonally
dominance but not strictly diagonally dominance, since
|Jc, 22 | = |Jc, 23 | + |Jc, 24|. We notice that the sum of off-diagonal
elements is in fact the voltage drop across the equivalent
impedance. Realising the impedance matching condition is
satisfied when the voltage drop and load voltage have the same
magnitude, we see that when all off-diagonal elements are in phase,
the impedance matching condition is simply the condition of weak
diagonal dominance of the Jacobian matrix Jc. For example, in a
DC system, the off-diagonal element are always in phase, thus the
impedance matching condition becomes a necessary condition for
system instability. For an AC system the situation is different from
the off-diagonal elements are not necessarily in phase, and the
presence of PV buses further complicates the problem, as discussed
in [18].

3.1.2 Theoretical analysis: For a two-bus system as shown in
Fig. 2, the load voltage V can be described as a function of load
power P and Q:

|V |4 − [ |E |2 − 2(RP + XQ)] |V |2 + (P2 + Q2)(R2 + X2) = 0. (16)

According to [26], the loadability point of the two-bus system
coincides with the maximum power transfer point, and is achieved
when (16) has repeated roots

[ |E |2 − 2(RP + XQ)]2 − 4(P2 + Q2)(R2 + X2) = 0. (17)

By solving (16) for V at the loadability point, we have

|V |2 = (P2 + Q2)(R2 + X2) = |S | |Z | , (18)

where |Z | = R2 + X2 and |S | = P2 + Q2.
On the other hand, let the magnitude of the load impedance be

|ZL|, the load voltage can be represented as

|V |2 = |S | |ZL | . (19)

By comparing (18) and (19), it is concluded that for the two-bus
system, the load impedance and the line impedance are equal in
magnitude at the loadability point

|Z | = |ZL | . (20)

We will show in the sequel that, in general, the above maximum
power transfer condition (17) and the impedance matching
condition (20) cannot be generalised to multi-bus systems with
varying equivalent voltages and impedances.

The real power delivered to a load bus i at any time can be
expressed by the equivalent voltage Eeq, i and the impedance Zeq, i
seen from the load bus as

Pi = | Ii | |Zi | cos θi

=
|Eeq, i |

2 cos θi

|Zeq, i |
2 / |Zi | + |Zi | + 2 |Zeq, i | cos(αi − θi)

,
(21)

where αi is the angle of equivalent impedance, and cos θi is the load
power factor.

The real power consumption at bus j ∈ 𝒩 is a scalar multiple
of λ. Let the multiplier be ℓ, then P j = ℓλ. Hence

dP j( |Eeq, j | , |Zeq, j | , |Z j | , α j)
dλ =

∂P j
∂ |Eeq, j|

d |Eeq, j|
dλ +

∂P j
∂ |Zeq, j|

d |Zeq, j|
dλ

+
∂P j

∂ |Z j|
d |Z j|

dλ +
∂P j
∂α j

dα j
dλ

= ℓ .
(22)

From (21)

∂P j
∂ |Eeq, j|

=
2 |Eeq, j | cos θ j

|Zeq, j |
2 / |Z j | + |Z j | + 2 |Zeq, j | cos(α j − θ j)

> 0,(23a)

∂P j
∂ |Zeq, j|

= − γ
2 |Zeq, j|

|Z j|
+ 2cos(α j − θ j) < 0, (23b)

∂P j
∂ |Z j|

= γ
|Zeq, j|

2

|Z j|
2 − 1 < 0, (23c)

∂P j
∂α j

= 2γ |Zeq, j | sin(α j − θ j), (23d)

where

γ =
|Eeq, j |

2 cos θ j

( |Zeq, j |
2 / |Z j | + |Z j | + 2 |Zeq, j | cos(α j − θ j))

2 > 0. (24)

The signs of (23) are determined based on the assumptions that
0 < θ j < α j < π /2 and |Zeq, j | < |Z j|.

If Eeq, j and Zeq, j are constant, then (22) reduces to

dP j( |Z j | )
dλ =

dP j
d |Z j|

d |Z j|
dλ = ℓ, (25)

at the loadability point. We know from the sensitivity analysis that
d |Z j | /dλ → − ∞ as the system approaches the loadability point.
Therefore, dP j/d |Z j | → 0 as the loadability limit is approached,
which implies |Zeq, j | = |Z j| based on (23c).

However, when Eeq, j and Zeq, j are functions of λ, ∂P j/∂ |Z j| may
not approach zero as the system approaches the loadability limit.

For example, we may assume that d |Eeq, j | /dλ < 0 and that Zeq, j
is a constant. Based on (22), we have

Fig. 2  Two-bus system
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∂P j
∂ |Eeq, j|

d |Eeq, j|
dλ +

∂P j
∂ |Z j|

d |Z j|
dλ = ℓ . (26)

It is known from the sensitivity analysis that
d |Eeq, j | /dλ → − ∞ and d |Z j | /dλ → − ∞ as the system
approaches the loadability limit. In addition, we know from (23a)
that ∂P j/∂ |Eeq, j | > 0 always holds. By inspection, we know that

∂P j
∂ |Z j|

=
d |Z j|

dλ

−1

ℓ −
∂P j

∂ |Eeq, j|
d |Eeq, j|

dλ < 0 (27)

holds as the loadability limit is approached, which implies

|Zeq, j|
|Z j|

= 1 +
∂P j/∂ |Z j|

γ < 1. (28)

Equation (28) indicates that the magnitude of the load
impedance |Z j| is larger than the magnitude of the equivalent
impedance |Zeq, j| at the loadability point.

Similarly, by assuming that dα j/dλ → ∞ as the system
approaches the loadability point, and |Eeq, j| and |Zeq, j| are constant,
we may find that |Z j | < |Zeq, j| at the loadability point.

In general, when both Eeq and Zeq are functions of λ, the
impedance matching condition (20) does not necessarily hold at the
loadability point. The load impedance and the equivalent
impedance can match either before or after the loadability limit,
which depends on the sensitivities of magnitude of equivalent
voltage and angle of equivalent impedance. Therefore, the
conventional coupled single-port-based voltage stability indicator
may overestimate or underestimate voltage stability margins.

3.2 Proposed method and solution algorithm

The conventional coupled single-port method is a steady-state
system equivalencing technique. However, we have shown in
Section 3.1 that this method cannot model system responses to load
variations. To obtain a better voltage stability margin estimate, it is
necessary to find an equivalent voltage Eeq, j′  and an equivalent
impedance Zeq, j′  seen from the load bus j that not only satisfy the
static network flow given by (16), but also reflect the system's
responses to load variations.

Let the voltage phasors measured at bus j at two consecutive
time stamps t0 and t1 be V j(t0) and V j(t1), the real power
consumption at load bus j at the two time stamps be P j(t0) and
P j(t1). If t1 − t0 is small, the voltage sensitivity with respect to the
loading factor λ is approximated by

d |V j|
dλ =

|V j(t0) | − |V j(t1)|
P j(t0) − P j(t1)

. (29)

Specifically

∂P j(Eeq, j′ , Zeq, j′ , V j)
∂ |V j|

−1

=
d|V j|

dλ (30)

In (29) and (30), the use of real power in capturing the system
response to load variation is equivalent to using reactive power
when the ratio of load real and reactive power variations is known.
As commonly seen in the voltage stability analysis, we assume that
the load real and reactive powers increases proportionally in the
study, so the variation of real and reactive powers has the same
implication in terms of load changes. This assumption is well-
justified for large-scale power systems where the single loads are
actually aggregations of smaller loads. Therefore the power factors
are almost constant statistically. In fact, an almost identical
algorithm can be derived with the use of reactive power variation.

While PMUs sample at tens of samples per second, long-term
voltage instability occurs over tens of seconds to tens of minutes.

So there is a large separation of time-scales between PMU
sampling and the evolution of voltage instability. We have assumed
throughout the paper that high-quality measurements are available
and we do not distinguish between measured and true values.
However, in practical systems, it has been shown that frequent
sampling may bring adverse effects to system equivalent parameter
estimation due to insufficient system dynamic evolution and high
proportion of measurement noise [28]. When PMU measurement
quality is determined to be an issue, a state estimation and filtering
layer [29] can be implemented between the raw measurements and
our algorithm to improve signal-to-noise ratios and reject bad data.
In the context of voltage stability monitoring through system
equivalents, least square and recursive least square estimation have
been proposed to deal with measurement noise and system
transients [2, 17]. The determination of sampling rate should be
conducted on a case-by-case basis, but we argue that it should not
be less than once per few seconds to allow for appreciable system
load variation.

In addition to (30), Eeq, j′  and Zeq, j′  should also satisfy the power
flow (16) for the equivalent two-bus system

|V j |
4 − [ |Eeq, j′ |2 − 2(Req, jP j + Xeq, jQ j)] |V j |

2 + (P j
2 + Q j

2)
(Req, j

2 + Xeq, j
2 ) = 0, (31)

where Zeq, j′ = Req, j + jXeq, j, and the load power consumption is
S j = P j + jQ j.

The equivalent voltage and impedance that satisfy (30) and (31)
provide accurate system responses to local load variations.
Equation (31) describes the power flow equation of the equivalent
two-bus system. However, there are infinite number of equivalent
parameter pairs (Eeq, Zeq) that satisfy the power flow equations,
including the one given by the conventional coupled single-port
method. Among them, we would like to find one that also describes
the voltage variation with respect to load variation. That is, we
want to find the pair of equivalent parameters that satisfies (30),
which describes the fact that the equivalent parameters should
behave such that when taking partial derivatives of the real power
with respect to voltage, the response given by the equivalent
parameters should match that given by the measurement. The
parameters estimated in this way have certain advantages over the
conventional ones. First, as will be shown in the sequel, the
improved model guarantees that the loadability point detection is
exact. Second, the incorporation of the load response information
facilitates the estimation of equivalent parameters from a limited
number of PMUs with comparable (or even better) margin
estimation accuracy. The comparison of stability margin is deferred
to Section 4.

Let the left hand side of (31) be F, then the total derivative of F
is

dF = ∂F
∂P j

dP j + ∂F
∂ |V j|

d |V j | = 0. (32)

Then

γ =
dP j

d |V j|
= −

∂F /∂ |V j|
∂F /∂P j

, (33)

where

∂F
∂ |V j|

= 4 |V j |
3 − 2( |Eeq, j′ |2 − 2(Req, jP j + Xeq, jQ j)) |V j | , (34a)

∂F
∂P j

= 2|V j |
2 (Req, j + qXeq, j) + |Zeq, j′ | (2P j + 2q2P j), (34b)

where q = Q j/P j.
Substitute (29) and (34) into (33), we have
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|Eeq, j′ | =
2 − γ |V j | /P j
1 − γ |V j | /P j

|V j | cos(θe − θ), (35)

where θ and θe are the phase angles of the load voltage V j and the
equivalent voltage Eeq, j, respectively. The detailed derivation of
(35) is provided in the Appendix.

Since γ ≤ 0 and |θe − θ | ≤ π /2, the magnitude of the equivalent
voltage |Eeq, j′ | given by (35) is well defined.

The equivalent impedance can be derived from the equivalent
voltage as

Zeq, j′ =
Eeq, j′ − V j

I j
, (36)

where I j = S j
∗/V j

∗ is the load current. We note that there is a
connection between the proposed method of calculating system
equivalent parameters and that in [22], which is the use of
sensitivity information in equivalent parameter estimation.
However, we also note that in order to obtain the system equivalent
parameter estimation seen from a load bus, in addition to local
measurements, our method requires only the voltage phasor
measurements at generator buses, as opposed to all other load
buses in [22]. This simplification amounts to the reduction of PMU
communication complexity by an order of magnitude in most
cases. The distinction of the proposed method and that in [22] can
be realised by observing that in order to calculate the equivalent
parameters, the algorithm requires the availability of either ∠Zeq or
∠Eeq. The calculation of ∠Eeq turns out to be easier since much
fewer PMU measurements are needed and it is relatively easy to
estimate the generator voltage phasors when some of the
measurements are unavailable. In addition, system-wide voltage
stability can be monitored through only a few weak buses [9, 21,
30], which makes the proposed method even more appealing as
PMU measurements at load buses other than the identified weak
buses are no longer needed. The estimated system equivalents
obtained by the proposed method and that in [22] coincide when
the equivalent voltage and impedance are constant.

To ensure the margin is meaningful (i.e. the margin is positive
before the loadability point, and is zero at the loadability point), we
need |Zeq, j′ | ≤ |ZL, j| where the equality is attained if and only if the
margin is zero. To prove that this is true for the proposed method,
we show that (35) guarantees the above-mentioned relationship
between the two impedances.

Note that γ ≤ 0 and the equality is attained if and only if the
system is at loadability point, so (35) reduces to

|Eeq, j′ | = 2 |V j | cos(θe − θ) (37)

at the loadability point.
Let Eeq, j′ = Er + jEi, and V j = Vr + jV i, then the line voltage

drop is V line, r = Er − Vr and V line, i = Ei − V i. The sum of squares
of the line voltage is

|V line|
2 = V line, r

2 + V line, i
2

= Er
2 + Ei

2 + Vr
2 + V i

2 − 2|Eeq, j′ | |V j | cos(θe − θ)
= |Eeq, j′ |2 + |V j |

2 − 2|Eeq, j′ | |V j | cos(θe − θ) .
(38)

At the loadability point, (38) reduces to |V line | = |V j| based on
(37) whereas |V line | < |V j| when γ < 0 and
|Eeq, j | < 2 |V j | cos(θe − θ).

Therefore, we have |Zeq, j′ | = |ZL, j′ | at the loadability point and
|Zeq, j′ | < |ZL, j| before the loadability point.

The loading margin to voltage stability at load bus j can be
calculated as

Margin j = P jmax − | IL, j |
2 |ZL, j | cos θ j, (39)

where the maximum deliverable real power P jmax is given by

P jmax =
|Eeq, j′ |2

|Zeq, j′ + bZL, j|
2 |Zeq, j′ | cos θ j (40)

based on the impedance matching condition.
The system loading margin is the minimum loading margin

among all load buses

Marginsys = min {Margin j | j ∈ 𝒩}, (41)

and the weakest bus i is defined as

i = arg min {Margin j | j ∈ 𝒩} (42)

The solution algorithm of the proposed method is summarised
in Algorithm 1.
 
Algorithm 1: Algorithm of loading margin calculation at load bus j

1: Develop the conventional multi-port equivalent voltage matrix K
in (15) from the system admittance matrix Y.
2: Calculate the angle of the equivalent voltage seen from load bus
j by θe = ∠[KVG] j.
3: Calculate the sensitivity γ of load real power P j with respect to
load voltage |V j| by (29).
4: Calculate the modified equivalent voltage |Eeq, j′ | with |V j|, P j, γ,
θe, and θ from (35).
5: Calculate the equivalent impedance |Zeq, j′ | by (36).
6: Calculate the loading margin to voltage stability at bus j from the
equivalent model by (39) and (40).
7: Calculate the system loading margin to voltage stability by (41).

4 Simulation results
In this section, two sets of simulations are performed. To
demonstrate the loadability limit detection capability of the
proposed method and the issue of impedance matching condition,
simulations are performed on IEEE 57-bus and 118-bus test
systems. In the second part, we compare the accuracy of margin
estimation of the proposed method with conventional coupled
single-port method, as well as the modified method proposed in
[22]. The system models and loading conditions are available in
MATPOWER [31].

4.1 Loadability limit detection and issue of impedance
matching

In this subsection, all loads increase proportionally with a step size
of 1%. Power flow analysis using MATPOWER is performed at each
step until power flow fails to converge. The actual loadability point
is obtained when power flow diverges. Real power outputs are
dispatched among generators proportionally to their real base
power.

4.1.1 IEEE 57-bus test system: The IEEE 57-bus test system
has 35 loads and 7 generators, three of which are synchronous
condensers. The total system base load is S = 3752 + j1009 MVA,
the critical loading factor is λcr = 1.89 with the loading pattern and
generation dispatch strategy described at the beginning of the
section.

Based on the conventional coupled single-port method, bus 31
has the smallest margin estimate and is identified as the weakest
bus. Figs. 3 and 4 show the load and equivalent impedances against
loading factor for four buses with the smallest margin estimates. It
is observed from Fig. 4 that the load and equivalent impedances of
bus 31 cross each other before the actual loadability point. Recall
the analysis in Section 3.1, assume that the sensitivities of the
equivalent voltage and the magnitude of the equivalent impedance
against the load consumption are small, the angle of the equivalent
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impedance should be increased when the impedance crossing
occurs, which is confirmed in Fig. 5. Note that all load buses with
increasing equivalent impedance angles experience the impedance
crossing issue. This suggests that the load consumption can be
increased as long as the variations of angles of the equivalent

impedances are positive. It is further observed that the angle of the
equivalent impedance at bus 25 starts to decrease towards the
loadability limit, and the system becomes unstable after the
impedance crossing happens at bus 25. The margin estimates
calculated at the four buses by the conventional coupled single-port
method are shown in Fig. 6a. Due to the impedance crossing issue,
the margin estimates reach zero before the actual loadability point,
thus raise false alarm of the voltage instability. 

Fig. 6b shows the smallest margins estimated by the proposed
method. The weakest bus is still identified as bus 31 by the
proposed method, which is also in accordance with the result given
by modal analysis [20, 32]. Compared to Fig. 6a, the estimated
margins in Fig. 6b approach zero as the system reaches its actual
loadability limit.

4.1.2 IEEE 118-bus test system: The IEEE 118-bus test system
has 54 loads and 54 generators. The total system base load is
S = 12726 + j4314 MVA, the critical loading factor is λcr = 3.14.

Based on the conventional coupled single-port method, bus 44
has the smallest margin estimate and is identified as the weakest
bus. Fig. 7a shows the loading margins estimated by the
conventional coupled single-port method. It can be seen that the
margin estimates do not reach zero at the loadability point, which is
consistent with the analyses in Section 3.1. Since the margin is
positive even at the loadability limit, the method fails to detect the
onset of voltage instability in this case. 

Fig. 7b shows the margins estimated by the proposed method.
The weakest bus is still identified as bus 44. It is seen from Fig. 7b
that the estimated margins approach zero as the system approaches
the actual loadability point.

4.2 Margin estimation

The primary intention of coupled single-port-based methods is to
estimate the loading margin. To this end, we have performed
simulations of margin estimation on test cases provided in
MATPOWER ranges from 4-bus to 3120-bus systems. Notice that the
test cases are only a subset of the available test cases in MATPOWER
since we have only chosen test cases where the margins are well
defined for the coupled single-port method and the modified
method in [22].

4.2.1 Proportional load increase: We first compare accuracy of
various methods based on the most commonly used proportional
load increase model as in Section 4.1. Table 1 shows the
normalised loading margins estimated at the initial operating point
by coupled single-port method, the modified coupled single-port
method in [22], and the proposed method. The actual maximum
loading levels are calculated using the Continuation Power Flow
solver runcpf in MATPOWER. The actual (estimated) margin is the
difference between the actual (estimated) maximum real power and
the current real power, normalised by the current real power. The
error is defined as

error = |estimated margin − actual margin|
actual margin .

It can be seen that the accuracies of the different methods are
comparable and are case dependent. Notice also that the proposed
method gives the smallest average error among the three methods.
Furthermore, we would like to emphasise again that the proposed
method requires only PMU measurements from generator buses,
which makes it more attractive for online application with limited
PMU availability and communication complexity. In addition, we
note that coupled single-port-based methods are heuristic in nature,
the original L-index is only exactly when the load currents change
proportionally. Thus the margin estimation by coupled single-port
model is more accurate when the load current is homogeneous
when the system loads are proportionally scaled [18]. This current
proportionality condition obviously depends on specific system
topology and load characteristics, as will be shown by the next
experiment.

Fig. 3  Equivalent and load impedances at four load buses with the
smallest margin estimates for 57-bus system

 

Fig. 4  Zoom-in of equivalent and load impedances at four load buses with
the smallest margin estimates for 57-bus system

 

Fig. 5  Angles of equivalent impedance of four load buses with the smallest
margin estimates for 57-bus system
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4.2.2 Disproportional load increase: We have also performed
simulations when the loads do not increase proportionally. The
constant equivalent impedance assumption in [9] no longer holds in
this scenario. However, the proposed method does not rely on this
assumption and therefore we expect the proposed method to
outperform the one in [9]. To generate the disproportional loading
scenario, we set the power increase step of even-numbered buses at
1% of the base load while that of odd-numbered buses is 2%.
Under this loading condition, the normalised margins of the odd-
numbered buses are twice that of the even-numbered buses. To
make the comparison meaningful, we further divide the normalised
margins at the odd-numbered buses by two. The simulation results
are tabulated in Table 2. It can be seen that the proposed method
gives comparable results as the one in [22], while both of these
methods are superior to CSP in [9]. 

5 Conclusion
This paper analyses the problems existing in the conventional
coupled single-port method and other Thévenin equivalent-based
voltage stability assessment methods. It is mathematically proven
that the impedance matching condition underestimates or
overestimates loading margins in certain cases. A novel method is
proposed to improve the margin estimation of the conventional
coupled single-port method by considering voltage-to-load
sensitivities in calculating system equivalences. Compared to the
conventional methods, it is shown that the new method satisfies the
impedance matching condition at loadability limits. Therefore, the
loading margin calculated by the improved method can serve as a
better indicator of voltage instability. Another salient feature of the
proposed method is that PMU measurements are only needed at the
generator buses to calculate the system equivalent parameters at a
load bus, which reduces the communication complexity.
Simulation results show that when system loads experience
disproportional variations, the proposed method gives more
accurate margin estimates than existing ones.
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Fig. 6  Margin estimates at four load buses with the smallest margin
estimates for 57-bus system by
(a) Conventional and (b) Improved coupled single-port method

 

Fig. 7  Margin estimates at three load buses with the smallest margin
estimates for 118-bus system by
(a) Conventional and (b) Improved coupled single-port method

 
Table 1 Comparison of margin estimation on MATPOWER
test cases for proportionally-increasing loads
Test case Estimated margin Actual margin

CSP [22] Proposed
case4gs 4.36 4.34 4.35 4.34
case5 13.36 12.35 12.89 9.84
case6ww 2.29 2.32 2.31 2.32
case9 1.45 1.34 1.38 1.49
case14 3.41 3.46 3.44 3.06
case24_ieee_rts 1.43 1.47 1.46 1.28
case30 4.51 4.42 4.43 4.48
case_ieee30 1.69 1.66 1.67 1.96
case39 1.24 1.15 1.20 1.14
case57 0.48 0.58 0.56 0.89
case89pegase 0.88 0.85 0.87 0.86
case118 3.80 3.29 3.42 2.19
case300 0.31 0.32 0.32 0.43
case2383wp 0.57 0.56 0.62 0.89
case3120sp 2.12 0.33 1.92 1.33
average error 0.2206 0.2047 0.1864 —
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8 Appendix
 
8.1 Derivation of modified equivalent voltage |Eeq, j|

The sensitivity of F with respect to the magnitude of load voltage
|V j| is

∂F
∂ |V j|

= 4 |V j |
3 − 2|V j | ( |Eeq, j |

2 − 2(Req, jP j + Xeq, jQ j))

= 4 |V j |
3 − 2|V j | ( |V j |

2 + |V line |2 )
= 4 |V j |

3 − 2|V j | (2 |V j |
2 + |Eeq, j |

2 − 2|Eeq, j | |V j | cos(θe − θ))
= − 2|V j | |Eeq, j | ( |Eeq, j | − 2 |V j | cos(θe − θ)) .

The sensitivity of F with respect to real load power P j is

∂F
∂P j

= 2|V j |
2 (Req, j + qXeq, j) + (Req, j

2 + Xeq, j
2 )(2P j + 2q2P j)

=
2 |V j|

2

P j
(Req, jP j + Xeq, jQ j) + 2

P j
|Zeq, j |

2 |S j|
2

=
2|V j|

2

P j
(Req, jP j + Xeq, jQ j) + 2

P j
|V line |2 |V j|

2

=
2|V j|

2

P j
(Req, jP j + Xeq, jQ j + |V line |2 )

=
2 |V j|

2

P j

|Eeq, j |
2 − |V j |

2 − |V line|
2

2 + |V line|
2

=
|V j|

2

P j
( |Eeq, j |

2 − |V j |
2 − |V line |2 )

=
2 |V j |

2 |Eeq, j|
P j

( |Eeq, j | − |V j | cos(θe − θ)) .

Substitute the two sensitivities into (33)

Table 2 Comparison of margin estimation on MATPOWER
test cases for disproportionally-increasing loads
Test case Estimated margin Actual margin

CSP [22] Proposed
case4gs 2.18 2.17 2.17 2.16
case5 13.36 11.79 12.61 7.61
case6ww 1.14 1.33 1.31 1.36
case9 0.73 0.67 0.69 0.75
case14 2.09 2.37 2.33 1.92
case24_ieee_rts 0.87 0.85 0.86 0.82
case30 2.40 3.24 2.95 3.10
case_ieee30 1.03 1.27 1.26 1.44
case39 0.62 0.74 0.68 0.72
case57 0.24 0.35 0.32 0.53
case89pegase 0.46 0.85 0.67 0.86
case118 2.27 1.92 2.20 1.31
case300 0.18 0.21 0.21 0.25
case2383wp 0.35 0.35 0.49 0.67
case3120sp 1.11 0.28 1.20 0.83
average error 0.3069 0.2170 0.2280 —
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0 = ∂F
∂ |V j|

+ γ ∂F
∂ |V j|

= − Eeq, j + 2|V j | cos(θe − θ) +
γ |V j|

P j
( |Eeq, j | − |V j | cos(θe − θ))

=
γ |V j|

P j
− 1 |Eeq, j | + 2 −

γ |V j|
P j

|V j | cos(θe − θ) .

Therefore we have

|Eeq, j | =
2 − γ |V j | /P j
1 − γ |V j | /P j

|V j | cos(θe − θ) .
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