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Abstract—To enhance the robustness of a power system state
estimator to topology errors, bad critical measurements, multiple
non-interacting or interacting bad data (BD), this paper presents
a new robust detection method by exploiting the temporal
correlation and the statistical consistency of measurements.
Particularly, we propose three innovation matrices to capture
the measurement correlation and statistical consistency by pro-
cessing the forecasted states/measurements and the interpolated
reliable information from phasor measurement units. The latter
is achieved by using a robust generalized maximum-likelihood
estimator. We then propose to apply the projection statistics (PS)
to the proposed innovation matrices for BD detection. Extensive
Monte Carlo simulations and QQ-plots are carried out to obtain
an analytical threshold of the statistical test of the PS. Because of
the robustness of PS and the enhanced measurement redundancy
by the innovations, the proposed method is able to handle
various types of BD in both PMU observable and PMU partially
observable power systems. Moreover, the proposed method is
suitable for parallel implementation, and can be integrated with
online applications. Comparison results with existing methods
under different BD conditions on IEEE 14-bus, 118-bus and
Polish 2383-bus test systems demonstrate the effectiveness and
robustness of the proposed method.

Index Terms—Robust estimation, state estimation, bad data
detection, phasor measurement unit, state forecasting, innovation
vectors, correlation, statistical consistency.

I. INTRODUCTION

POWER system state estimation (SE) is an important func-
tion in modern energy management systems (EMS). It

computes the most likely states of the network based on redun-
dant measurements provided by supervisory control and data
acquisition (SCADA) system or phasor measurement units
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(PMUs). With the estimated states, various EMS functions
can be performed, such as optimal power flow, contingency
analysis and bad data (BD) detection/analysis, etc. [1]–[3].

In the field of power system SE, BD detection and pro-
cessing is essential. To date, various approaches have been
proposed. They include largest normalized measurement resid-
ual (LNR) test-based approach, the hypothesis test [4]-based
approach, and the robust estimator-based approaches, such as
least absolute value estimator and least median of squares
estimator, [5] etc. Although these methods have relatively
satisfactory performance with single and multiple BD, they
may not be effective in the presence of bad critical measure-
ment, smearing effect and the conforming and interacting BD.
Thanks to the wide-area deployment of PMUs in recent years,
enhanced performance of BD detection is achieved by explor-
ing the redundant information from PMUs [6]–[11]. In [6],
a PMU placement algorithm to transform the existing critical
measurements into redundant ones was firstly performed, then
an enhanced BD detection method by using both SCADA and
PMU measurements was proposed. In [7], bad critical or pairs
were addressed and subsequently converted to non-critical bad
measurements by placing additional PMUs. Authors in [8]
proposed a two-stage method with enhanced measurement
redundancy by PMUs to detect bad critical measurements.
In [9], a conventional normalized residual-based method was
proposed to improve BD detection performance by processing
PMU and SCADA measurements simultaneously. In [10],
SCADA and PMU measurements were processed separately,
yielding two independent estimators. Then the phase-aided
normalized residual-based test was integrated with the mea-
surement residual-based test to detect BD. In [11], a multistage
phasor-aided method was proposed, where the difference be-
tween interpolated SCADA measurements by PMUs and raw
SCADA measurements was defined as an innovation vector.
Then statistical test was adopted to handle various types of
BD.

Although the performance of normalized measurement
residual-based test has been improved thanks to the enhanced
measurement redundancy by PMUs, it is still prone to bad
leverage points, the smearing effect, and the conforming and
interacting BD [4], [5]. Note that the improved performance
can be achieved only when BD occurs in PMU-observable ar-
eas and there is no simultaneous occurrence of BD in PMU and
SCADA measurements. The latter may induce smearing effect
as well as the conforming and interacting BD. To address these
issues, the normalized innovation test is proposed by process-
ing together the forecasted state/measurement information and



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2626782, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. , NO. , 2016 2

received measurements. However, the detection threshold of
the statistical test is difficult to tune in practice since it is
system dependent [22], and sensitive to the measurement and
process noise. Furthermore, this method is vulnerable to the
clustered BD [12], [13].

In this paper, we relax the PMU observability assumption
for BD detection enhancement, and propose an alternative
robust detection method by exploiting the temporal correlation
and the statistical consistency of measurements. Specifically,
we propose three new innovation matrices to capture the
correlation and measurement statistical consistency, where the
innovation matrices are developed by processing the forecasted
measurements and the interpolated information from cleaned
PMU measurements. We then propose to apply the projection
statistics (PS) to these matrices for BD detection with an
analytical detection threshold. The latter is determined by
extensive Monte Carlo simulations and QQ-plots. Thanks to
the robustness of PS, we are able to handle clustered BD,
multiple non-interacting or interacting BD as well as the
smearing effect. In summary, the main contributions of this
paper are:

1) We relax the PMU observability assumption for de-
tecting bad critical measurements, topology errors and
suppressing smearing/masking effect;

2) It presents a framework to effectively combine limited
number of PMU measurements with forecasted states
and measurements for BD detection;

3) Unlike the innovation-based statistical test using system
dependent detection threshold, the proposed method has
an analytical threshold;

4) Because of the good robustness of PS and the en-
hanced measurement redundancy by the innovations,
the proposed method is able to handle various types
of BD for both PMU observable and PMU partially
observable power systems; they include topology errors,
bad critical measurements and multiple non-interacting
or interacting BD;

5) The proposed method is suitable for parallel implemen-
tation, and can be integrated with online applications.

The remainder of this paper is organized as follows: Section
II presents the definitions of proposed innovation vectors. The
robust BD detection framework is presented in Section III.
Section IV analyzes the simulation results, and finally Section
V concludes the paper.

II. DEFINITIONS OF PROPOSED INNOVATION VECTORS

The combination of SE with forecasted states and measure-
ments, called the forecasting-aided state estimator (FASE), is
considered as a promising way to enhance BD processing
[14]–[16]. Using the forecasted information, the main diffi-
culties in conventional BD processing can be overcome since
the innovation-based analysis is an effective tool to detect
multiple spurious measurements without being affected by the
smearing effect. Also, the detected BD can be easily replaced
by the forecasted measurements without causing any system
observability problem. However, this innovation-based test has
several disadvantages, such as the difficulties in determining an
analytical threshold of the statistical test and its vulnerability

to clustered BD (masking effect) [12], [13]. On the other hand,
to our best knowledge, there are few papers investigating the
benefits of combining the FASE with both PMU and SCADA
measurements to enhance the BD detection. In this paper, we
propose a framework to effectively combine limited number of
PMU measurements with forecasted states and measurements
for BD robust detection.

A. Short-term State Forecasting

Studies have shown that the temporal correlation exists
among the loads in the same geographic area [17], [18].
Therefore, the states driven by loads should show temporal
characteristics. To capture the temporal correlation between
the states in different time instants, the stochastic vector auto-
regressive time series model of a discrete time-variant power
system is used

xk+1 = Φkxk +wk, (1)

where xk is the state vector including the voltage magnitude
and angle at every bus; k is the time sample; Φk represents
the state transition matrix and is updated recursively using
the method in [19]; wk represents the modeling uncertainties,
which is usually assumed to follow a Gaussian distribution
with zero mean and covariance matrix Qk, i.e., wk ∼
N (0,Qk). When the estimated state transition matrix Φ̂k is
available, the forecasted state vector x̃k+1 with its covariance
matrix Sk+1 can be obtained through

x̃k+1 = Φ̂kx̂k, (2)

Sk+1 = Φ̂kΣkΦ̂
T
k +Qk, (3)

where x̂k and Σk are the estimated state vector and its cor-
responding covariance matrix at time sample k, respectively.

B. Proposed Innovation Vectors
To date, a given power grid is typically observable by

SCADA measurements while partially observable through
PMUs. In this paper, a hybrid topological/numerical method
[20], [21] for power system observability analysis is used to
decompose a given system into PMU observable areas and
PMU unobservable but SCADA observable areas.

1) Innovation Vector for PMU Observable Area: When
the measurement vector for a PMU observable area is avail-
able at time sample k + 1, one innovation vector is defined
as the difference between the received PMU measurement
vector zp

k+1 ∈ Rm and the forecasted measurement vector
z̃p
k+1 ∈ Rm, where zp

k+1 includes the bus voltage phasors and
line current phasors that are adjacent to the PMU buses. In this
paper, the rectangular coordinates expression is used for PMU
measurements to obtain a linear measurement model. We may
also adopt the polar expression suggested in [9]. Formally, we
have
Definition 1. The difference between zp

k+1(i) and z̃p
k+1 (i)

(z̃p
k+1 = Hp

k+1x̃
p
k+1) is defined as the innovation for the ith

PMU measurement, i.e.,

νk+1 (i) = zp
k+1 (i)− z̃p

k+1 (i) , (4)

where νk+1(i) is the ith component of the innovation vector;
Hp

k+1 is the constant Jacobian matrix that relates linear
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relationship between the states and the PMU measurements;
x̃p
k+1 is the forecasted state vector of the PMU observable

area.
Remark 1: It should be noted that when a sudden change

takes place, which may be caused by loss of loads, unsched-
uled outages of generating units and/or the change of network
configuration, the forecasted state/measurements are no longer
valid. As a result, high innovations appear and consequently
yield difficulties to the correct identification of which anomaly
has occurred. To address this problem, that is, to distinguish
the occurrence of sudden change, gross measurement error and
network topology error, the skewness test and active line flow-
based test have been proposed [22]–[24]. However, they did
not step further to investigate the exact locations of BD and
topology errors. In this paper, we assume the three anomalies
have been distinguished by the approaches in [22]–[24], and
our main scopes are to identify which measurement is bad and
which topology is wrong.

Using the robust detection method proposed in the next
section, the BD in PMU measurements can be detected and
downweighted. After that, their influences are suppressed by
the robust generalized maximum-likelihood (GM)-estimator,
which solves the following objective function (the time instant
is dropped for simplicity)

J (x) =

m∑
i=1

ϖ2
i ρ (rSi) , (5)

where ϖi is calculated by (16) presented in the next section;
rSi = ri/sϖi is the standardized residual; ri = zpi − aT

i x̂
p

and aT
i is the ith column of the Jacobian matrix Hp; s =

1.4826 · bm·mediani |ri| is the robust scale estimate; bm is a
correction factor for unbiasedness at the Gaussian distribution;
ρ(·) is the Huber cost function given by

ρ (rSi) =

{ 1
2r

2
Si
, for |rSi | < c

c |rSi | − c2
/
2, elsewhere

, (6)

where the parameter c is the breakpoint to balance the ro-
bustness and statistical efficiency at the desired distributions.
Huber [25] has shown that if c is chosen between 1.5 and
3, the algorithm achieves at least 95% asymptotic efficiency
under normal assumptions and performs well in most heavy
tailed situations. In this paper, c is set to be 1.5, which is a
commonly used value in literature.

To minimize (5), we take its partial derivative and set it to
zero, yielding

∂J (x)

∂x
=

m∑
i=1

−ϖia
T
i

s
ψ (rSi) = 0, (7)

where ψ (rSi) = ∂ρ (rSi)/∂rSi . Then, we first divide and
multiply the standardized residual rSi to both sides of (7) and
rewrite it in a matrix form, yielding

(Hp)
T
Q(zp −Hpx̂p) = 0, (8)

where Q =diag(q (rSi)) and q (rSi) = ψ (rSi)/rSi .
By using the iterative reweighted least square algorithm, the

state can be estimated and represented as

x̂p
k+1 =

(
Hp

k+1
T
QHp

k+1

)−1

Hp
k+1

T
Qzp

k+1. (9)

Therefore, the SCADA measurements can be interpo-
lated/estimated by ẑs

k+1 = h
(
x̂p
k+1

)
, where h is the vector-

valued nonlinear measurement function of the SCADA mea-
surements. Finally, we have the innovation vector for SCADA
measurements defined as
Definition 2. The difference between received raw SCADA
measurement zs

k+1(i) and its interpolated/estimated measure-
ment ẑs

k+1(i) is defined as the innovation of the ith SCADA
measurement, i.e.,

ξk+1(i) = zs
k+1(i)− ẑs

k+1(i). (10)

where ξk+1(i) is the ith component of the innovation vector.
Remark 2: The idea of proposing this innovation vector

is that two independent state estimations using PMU mea-
surements and SCADA measurements, respectively, should
produce consistent state estimates if no BD occurs. When
the PMU measurement set is cleaned by the robust estima-
tor, its estimation results can be used to estimate/interpolate
the SCADA measurements. If there is no BD in SCADA
measurements, the estimated SCADA measurements should
be consistent with the received raw SCADA measurements,
otherwise, bad measurements exist. Therefore, by checking the
consistency of these two measurement sets, the BD in SCADA
measurements can be detected. On the other hand, the state
estimation model itself is an approximate model with param-
eter uncertainty, measurement bias, topology uncertainty, etc.
Thus, a high measurement redundancy is needed to estimate
the true system states. This motivates us to clean the SCADA
measurements in PMU observable areas.

2) Innovation Vector for PMU Unobservable but SCADA
Observable Area: Similar to the definition of the innovation
vector for PMU measurements, we define the innovation vector
for PMU unobservable but SCADA observable area as
Definition 3. The difference between received raw mea-
surement zr

k+1(i) and its forecasted measurement z̃r
k+1 (i)

(z̃r
k+1 = h(x̃r

k+1)) is defined as the innovation for the ith
SCADA measurement in PMU unobservable but SCADA
observable area, i.e.,

λk+1 (i) = zr
k+1 (i)− z̃r

k+1 (i) , (11)

where λk+1(i) is the ith component of the innovation vector.
Remark 3: The idea of proposing innovations 1 and 3 is that

even when the system changes at each time instant, the loads
and generators change slowly and show temporal correlations,
which results in temporal correlations of the system states.
Therefore, sampled measurements taken from the system
should show temporal correlations with the calculated mea-
surements through forecasted states. However, the correlations
will be broken up by the BD. Thus, by checking the statistical
correlations of the forecasted and received measurements, we
can effectively detect the BD.

III. PROPOSED ROBUST BAD DATA DETECTION AND
PROCESSING METHOD

A. Motivation of Robust Detection
It has been shown in [15], [22] that the statistical test

on normalized innovation of (11) can be used to detect BD
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Fig. 1: The flowchart of the proposed method

assuming the detection threshold is chosen appropriately and
no bad leverage point or clustered BD occurs. However,
there are several disadvantages of this approach, such as the
difficulties in determining an appropriate detection threshold
(the detection threshold is difficult to tune in practice since it
is system dependent [22] and sensitive to the measurement and
process noise). In addition, the normalized innovations are in
fact the well-known Mahalanobis distances that represent the
surface of a multidimensional ellipsoid centered at the sample
mean [12], [13]. With the assumption that the innovation
vector follows a Gaussian distribution, the square of the
Mahalanobis distances follow a χ2 distribution. Then, the
normalized innovation statistical test is applied to detect BD.
However, this method is vulnerable to clustered BD because
of masking effect [12], [13].

To handle these difficulties, this paper proposes an alterna-
tive robust BD detection method by exploiting the statistical
properties of the developed innovation vectors. The detection
threshold is system independent and can be determined in
an analytical way. Because of the robustness of PS with
asymptotic hight breakdown point, the masking effect is ef-
fectively suppressed. The flowchart of the proposed method is
shown in Fig. 1. It can be observed that the proposed method
has different strategies for PMU observable areas and PMU
unobservable but SCADA observable areas. The left column of
Fig. 1 is to detect and suppress BD in PMU observable areas
while the right column is to detect suspicious measurements
in PMU unobservable but SCADA observable areas. The
central robust detection step is to perform the consistency
check to identify whether suspicious measurements in PMU
unobservable but SCADA observable areas are BD or not. In
addition, it can be seen from the flowchart that the detection
and suppression of BD in PMU observable areas as well as
PMU unobservable but SCADA observable areas are suitable
for parallel implementation, which is attractive for large-
scale systems. Please note that the central robust detection
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Fig. 2: QQ plots of the sample quantiles of the innovation vs.
the corresponding quantiles of the normal distribution

is performed only for suspicious measurements and thus can
be carried out very fast.

B. Robust Detection

The consistency of the interpolated measurements and re-
ceived measurements is checked to detect the BD using the
innovation vector in definition 2. To detect the BD using
innovation vectors in Definitions 1 and 3, it is necessary to
check the temporal correlations of the forecasted and received
measurements. In this paper, we propose a modified version
of PS [28] to perform the robust BD detection. PS uses the
sample median and the median-absolute-deviation of the data
point ℓ in the direction of all possible vectors l for the robust
location and scale estimation, i.e.,

PSi = max
∥l∥=1

∣∣ℓTi l−medj
(
ℓTj l

)∣∣
1.4826 medk

∣∣ℓTk l−medj
(
ℓTj l

)∣∣ . (12)

The first proposal of PS for power engineering application is
to develop a sparse version of the original PS [27] to identify
the leverage points [28]. The latter is achieved by applying
PS to the sparse Jacobian matrix. However, in the developed
innovation vectors, no sparse Jacobian matrix is involved. On
the other hand, the original PS by Gasko and Donoho [27] is
actually a type of robust Mahalanobis distance that is robust
to outliers no matter they are bad leverage points or vertical
outliers. Therefore, the key point is how to design a matrix
that captures the statistical characteristics of outliers. To do
this, the following three innovation matrices are proposed.

• Matrix for the innovation vector 1:

Z1 = [νk νk+1] = [zp
k − z̃p

k zp
k+1 − z̃p

k+1] (13)

• Matrix for the innovation vector 2:

Z2 = [ξk ξk+1] = [zs
k − ẑs

k zs
k+1 − ẑs

k+1] (14)

• Matrix for the innovation vector 3:

Z3 = [λk λk+1] = [zr
k − z̃r

k zr
k+1 − z̃r

k+1] (15)

where the subscript k indicates the previous time instant.
Remark 4: The idea of developing the matrices for innova-

tion vectors 1 and 3 is similar. Due to the temporal correlation



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2626782, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. , NO. , 2016 5

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Theoretical quantile−χ
2
2 distribution

S
am

pl
e 

qu
an

til
e

Fig. 3: QQ plots of the sample quantiles of the PS vs. the
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2 distribution

between the received and the forecasted measurements, the
innovation vectors at time instants k and k + 1 should also
show the correlation. Once BD occurs, the temporal correlation
is broken up. As a consequence, some points are far away
from the majority of the point cloud, yielding very large
PS values. While the reason for constructing matrix 2 is
as follows: if there is no BD, the received measurement
vector is consistent with the interpolated measurement vector,
then all of the measurement points would show the same
statistical characteristics and fall into the same confidence
ellipse; otherwise, the BD should be out of the confidence
ellipse and detected by PS.

After computing the PS values for the elements of each
matrix, they are compared to a threshold to identify outliers.
The threshold is determined from the probability distribution
of PS under the assumption that the majority of the data
points in the innovation matrices follow a bivariate Gaussian
probability distribution. To validate the Gaussian assumption
for the proposed innovation vectors, extensive Monte Carlo
simulations are conducted on both IEEE-14 and 118 bus
systems. The test results of IEEE 118-bus system are used
for illustration. A random fluctuation with a linear trend
(1%-3%) is added to the load curve over a period of time,
100 time samples, then, at each time sample, the normalized
innovation vectors are calculated and the procedure is repeated
100 times. The sample medians and the interquantile ranges
of the empirical innovation quantiles are finally plotted versus
the corresponding quantiles of the normal distribution. The QQ
plots displayed in Fig. 2 provide evidence that the innovation
vectors follow approximately the Gaussian distribution. To
determine the probability distribution of the PS when the
innovation vectors follow Gaussian distributions, we consider
two random variables v1 and v2 that are independent and
identically distributed according to N (0, I). Then we generate
500 realizations of these two random variables, apply the PS
to [v1 v2] and repeat the procedure 100 times. The sample
medians and the interquantile ranges of the empirical PS
quantiles are plotted versus the corresponding quantiles of
the chi-square distribution with 2 degrees of freedom. The
QQ plots shown in Fig. 3 validate that PS follows chi-square

distribution.
In this paper, we set the threshold of the statistical test to

χ2
2,0.975 at a significance level of 97.5%. Thus, the measure-

ments, whose associated PS values satisfy PSi > χ2
2,0.975, are

marked as BD. These BD are downweighted by the following
weight function

ωi = min
(
1, d2

/
PS2

i

)
(16)

where d is the BD detection threshold and d = χ2
2,0.975.

Remark 5: In this paper, we propose to apply the PS to
the three innovation matrices that contain multiple rows but
only 2 columns. The calculation of PS for these matrices is
very fast. For example, the calculation of PS for a matrix with
1000 rows and 2 columns (for simulating large-scale power
systems) takes only around 1 second for a 2.50 GHz, 8GB of
RAM, Intel Core i5 computer. If a more powerful computer
is used, this computation time can be further reduced. In
addition, as indicated by [14], [15] the computational effort
related to the state forecasting step is negligible compared to
the state filtering. In the proposed method, we are interested
in preprocessing the SCADA and PMU measurements. Thus,
only the state forecasting step is involved, which offers users
the flexibility in choosing efficient state filtering methods,
such as hierarchical or distributed estimation [29], [30], etc.
Furthermore, FASE has been implemented and applied to
the EMS of LIGHT Services of Electricity-the company
responsible for Rio de Janeiro city energy supply [14], which
demonstrates the applicability of the FASE for power system
real-time monitoring. Last but not least, the proposed method
is suitable for parallel implementation, which further enhances
its suitability for online applications.

C. Robust Bad Data Identification and Processing

The PS is firstly applied to matrices Z1 and Z3 simul-
taneously. The related BD are detected and downweighted.
When the PMU measurements are cleaned by the robust GM-
estimator, the matrix Z2 is constructed and PS is applied
for detecting the BD in SCADA measurements in PMU
observable areas.

1) BD in SCADA Measurements: Threshold violations in
the tests of matrices Z2 and Z3 with negative results for matrix
Z1 indicate the presence of BD in SCADA measurements,
where Z2 and Z3 are associated with PMU observable, PMU
unobservable but SCADA observable areas, respectively. Mea-
surements larger than the detection threshold will be identified
as BD and downweighted by (16).

2) BD in PMU Measurements: if the test results of matrix
Z1 violate the detection threshold while the results of the other
two matrices are negative, BD occurs in PMU measurements
and are downweighted by (16).

3) BD in both SCADA and PMU Measurements: Threshold
violations in the tests of all three matrices indicate the presence
of BD in both SCADA and PMU measurements, and bad
SCADA measurements occur in both areas. More specifically,
threshold violations in the tests of matrices Z1 and Z2

with negative results for matrix Z3 indicate the presence of
BD in both SCADA and PMU measurements, and the BD
occurs only in PMU observable area. However, the SCADA



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2626782, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. , NO. , 2016 6

5 10 15 20 25 30
0

2

4

6

8

10

12

Time sample

S
ke

w
ne

ss
 v

al
ue

 

 

With outliers
Sudden load changes

Fig. 4: The skewness test results

measurements in PMU unobservable but SCADA observable
areas are free of BD. On the other hand, threshold violations
in the tests of matrices Z1 and Z3 with negative results for
matrix Z2 indicate the presence of BD in PMU measurements
(PMU observable area) and SCADA measurements (PMU
unobservable but SCADA observable area), while the SCADA
measurements in PMU observable area are free of BD. BD are
then downweighted by (16).

4) Smearing Effect Elimination: It is well known that gross
measurement errors impact filtering significantly through the
error propagation, which makes many residuals related to valid
measurements exceed the threshold (called the smearing ef-
fect). However, the proposed method is not prone to it because
the forecasted measurements depend on the historical data,
which are not affected by BD in the received measurements.
Therefore, if BD exists, only the components associated with
the spurious measurements break the temporal correlation and
produce high innovations. PS is adopted to detect the BD all
at once and bad measurements can be easily downweighted,
which is more computationally attractive than conventional
one-by-one BD elimination techniques.

5) Bad Critical Measurements Analysis: In the conven-
tional BD detection and identification method, single or mul-
tiple critical measurements appear when measurement redun-
dancy is low and reaches critical levels. The gross errors in
these critical measurements are undetectable because the resid-
uals of bad critical measurements are negligible. However, in
the proposed method, enhanced measurement redundancy can
be obtained from the innovations, thus making the critical
measurements non-critical. Therefore, the bad critical mea-
surement can be detected.

6) Topology Error Detection: To detect topology errors,
a relative high level of local measurement redundancy and
a robust detector with high breakdown point are required.
This is because the outliers caused by topology errors are
strongly correlated. In our proposed method, because of the
enhanced measurement redundancy and the good robustness
of PS, measurements corrupted by the topology errors can be
identified as outliers, and subsequently topology errors can be
detected.

Remark 6: Although the objective of this paper is to
enhance the BD detection, a few remarks are made here for

completeness of the whole procedure of the estimator. After
the BD processing, the SCADA and PMU measurements are
expected to be clean. The BD detection and processing is
performed using the innovations and PMUs, while the existing
static SE using SCADA measurements is not used yet. In
other words, the proposed method can be easily integrated
with existing static state estimators. To obtain the final SE
results, there are several different ways, such as a weighted
average of filtered states [31] by SCADA-based and PMU-
based estimators.

IV. NUMERICAL RESULTS

In order to demonstrate the effectiveness and robustness
of the proposed method, PMU full observable IEEE 14-bus
system, PMU partial observable IEEE 14-bus system and 118-
bus test system are considered. Several different BD conditions
are analyzed, i.e., single/multiple BD in SCADA or PMU
measurements, bad critical measurements, BD in both SCADA
and PMU measurements, topology errors. The hybrid state
estimator-based largest normalized measurement residual test
(Hybrid) through the identification-by-elimination procedure
[9], and the Phasor-aided method in [10], are used to make
comparisons. In all tests, the errors in SCADA measurements
are assumed to follow a normal distribution with zero mean
and standard deviation of 10−2, while standard deviations of
PMU measurements are assumed to be 10−3; All tests are
implemented on Matlab R2012a and performed on a 2.50 GHz,
8GB of RAM, Intel Core i5 computer.

A. Unpredictable Sudden Changes

As emphasized before, [22]–[24] have already proposed
effective method for distinguishing system anomalies and our
work is to further identify which measurement is incorrect
and which topology is wrong. To make this paper compete,
we show a few cases to illustrate how the methods in [22]–
[24] work. Two different scenarios on the IEEE 14-bus test
system are considered at time sample k=15: (i) the real power
of the load at bus 2 is suddenly changed to 0.4 p.u. and (ii)
20% error is added to real power flow P2−1 for simulating
the BD. The skewness test [22] is applied here to distinguish
the sudden system changes and BD. The test result is shown
in Fig. 4. It can be observed from this figure that no abrupt
response of skewness appears in presence of sudden load
changes. However, in case (ii) the magnitude of the skewness
value at time t = 15 has significantly increased, indicating
the occurrence of BD. Therefore, the system sudden change
and BD can be effectively distinguished. If a sudden change
is identified, the state estimation is preinitialized and the BD
processing will be only performed once the next time sample
comes. Otherwise, the BD including topology error is detected
and processed by proposed method.

B. Test Results Under Normal System Operation Conditions

When there is no large disturbance, the system is operating
under the steady state conditions. In this paper, a random
fluctuation with a linear trend (1%-3%) is added to the load
curve over a period of time, i.e. 30 time-sample intervals, then,
at each time sample, the load flows are calculated and the
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Fig. 5: The evolution of the voltage magnitude and angle of bus 2 in normal operating conditions

TABLE I: Comparison Results under Different Bad Data Conditions When the System is PMU Observable

Case Actual BD Hybrid Phase-aided Proposed method
1 P4 P4 P4 P4

2 P3, Q3 P3, Q3, I
i
2−3, I

r
2−3, I

i
2−4 P3, Q3 P3, Q3

3 V2 P6, Q3, P1−5, P5−2, V2, θ2, θ6, θ7 V2 V2

θ2 Ir
2−4, I

r
2−3, I

r
2−5, I

r
6−5, I

r
6−11, I

r
6−13, I

r
7−4, I

r
9−4, I

i
2−1, I

i
2−5 θ2 θ2

4 V7, θ7, I
r
7−4, I

r
7−8 P4−7, Q7−8, Q8−7, P9, Q9, θ2, θ6, θ7, θ9 V7, θ7, I

r
7−4, I

r
7−8 V7, θ7, I

r
7−4, I

r
7−8

Ir
7−9, I

i
7−4, I

i
7−8 Ir

9−7, I
r
9−10, I

r
9−14, I

i
2−4, I

i
7−4, I

i
7−8, I

i
7−9 Ir

7−9, I
i
7−4, I

i
7−8 Ir

7−9, I
i
7−4, I

i
7−8

V7, I
r
2−4, I

r
7−4, I

r
7−9, I

r
9−4, I

i
9−4, I

i
9−7, I

i
9−10

5 P4 V2, θ2, V2, P5−2, P4, θ6, θ7, P1−2, P2−3, Q3, Q6, I
r
3−4, I

r
2−4 V2, θ2, P5−2, P3, I

i
2−1 P4

V2, θ2 Ir
2−3, I

r
2−5, I

i
6−5, I

r
1−5, I

r
4−5, I

r
7−4, I

i
2−1, I

i
2−5, P4−3 P4, P4−2, I

r
2−4, I

r
2−1, I

r
2−3, I

i
2−4 V2, θ2

time series of the system states are obtained. Fig. 5 presents
the evolution of the voltage magnitude and angle of bus 2 in
normal operating conditions as an example. It is observed that
the forecasted state is close to the true operating state and can
be used to help us process the BD.

1) PMU Observable System: To show the performance of
the Hybrid method, the phasor-aided method and the proposed
method, the PMU observable system is considered. The de-
tailed configuration of the SCADA and PMU measurements
can be found in [10]. The detection thresholds for all largesr
normalized measurement residual-based test are set to 3, while
the detection threshold for PS is χ2

2,0.975 = 7.38

Case 1: A single injection active power with 30% error of
the measured value at bus 4 in SCADA measurements;

Case 2: A critical measurement set (P3, Q3) with 30% error;
Case 3: A single PMU voltage vector of bus 2 with 10%

error;
Case 4: Multiple bad PMU measurements, i.e., all PMU

measurements related to bus 7 with 10% error;
Case 5: Single injection active power with 20% error of bus

4 and the magnitude and phase angle of voltage phasors at bus
2 with 15% error;

Table I presents the obtained results of the five cases,
where Ir and Ii represent the real rectangular component
and imaginary rectangular component of the current I , re-
spectively. From the results, it is observed that conventional
normalized measurement residual-based test by hybrid method
can effectively address the single bad SCADA measurements.
However, it cannot handle the smearing effect since the valid
measurements are incorrectly identified as BD (see case 4 for
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Fig. 6: Measurement configuration for PMU partial observable
IEEE 14-bus system

example). On the other hand, when BD occurs in the critical
measurement set, the hybrid method fails to detect them. The
same problem does not happen in Phase-aided method and
proposed method. However, when both bad SCADA and PMU
measurements occur, the phasor-aided methods fail to mark the
BD, while proposed method can still detect them accurately
without being affected by the smearing effect.

2) PMU Partially Observable System: As shown in the
former section, the Hybrid and phasor-aided method are unable
to effectively detect all the BD even the PMU can observe the
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TABLE II: Comparison Results for PMU Partial Observable System

Case Actual BD Hybrid Phase-aided Proposed method
6 P4 P4 P4 P4

7 Q12, P12−13 Q12, P12−13, Q6−13, Q12−13 Q12, P12−13, Q6−13, Q12−13 Q12, P12−13

8 V7 P4, θ14, P14, Q14, P11 V7, P4 V7

P4 P11−6, Q11−6, I
r
4−5, I

i
4−5 P14, Q14, P11−6, Q11−6 P4

9 V7, θ7 V7, V4, θ4, θ7, I
r
4−5, I

i
4−5, P4, Q4, P14, Q4 V7, θ7, P11, Q11, P10 V7, θ7

P12 P11−6, Q11−6, P4−7, Q4−7, P10, Q10, P11 Q10, P11−6, Q11−6, Q11 P12

TABLE III: Comparison Results for IEEE 118-bus Test System

Case Actual BD Hybrid Phase-aided Proposed method
10 Q63−59 Q63−59, P63−59 Q63−59 Q63−59

11 Q76−118, Q28−27 Q76−118, Q28−27, P28−27 Q76−118, Q28−27 Q76−118, Q28−27

P28, P27 P28, P27, P28−29, Q28−29 P28, P27, P28−27 P28, P27

12 Ir52−53, I
i
52−53 Ir52−53, I

i
52−53 Ir52−53, I

i
52−53 Ir52−53, I

i
52−53

13 V114, P28−27, P27 V114, I
r
27−114, I

i
27−114, P27 V114, P28−27, Q28−27 V114, P28−27, P27

P25−27 P28−27, Q28−27, P25−27, Q25−27 P25−27, Q25−27 P25−27

whole system. In this section, we aim to show how all three
methods behave when the system is partially PMU observable.

In this study, 3 PMUs are deployed on buses 4, 7 and 14
to ensure the system to be partially PMU observable, where
busbar voltage magnitudes and phase angles are measured,
and four branch currents are measured. On the other hand,
31 SCADA measurements are considered, which include 16
power flows, 14 power injections (all of them are in ac-
tive/reactive pairs), and 1 bus voltage magnitude at bus 1.
Note that, power injections at buses 4, 8, 10, 14 and power
flow in lines 4–7 are critical measurements without PMU
measurements. The detailed measurement configuration of the
PMU partially observable system is depicted in Fig. 6. In the
tests, BD are generated by adding large deviations into the
original measurements. The following cases are considered:

Case 6: A critical measurement P4 with 20% error;
Case 7: Multiple BD, i.e., reactive power injection at bus

12 and real power flow in bus 12 to bus 13 with 20% errors;
Case 8: A single PMU voltage vector at bus 7 with 20%

error and P4 with 20% error;
Case 9: Multiple BD, i.e., voltage and angle of bus 7 with

20% error and P12 with 20% error;
Simulation results for Cases 6–9 are shown in Table II.

It can be seen from Case 9 that all of the three methods
can effectively detect single BD. However, when multiple
BD occurs in PMU unobservable area (see case 7), Hybrid
and phasor-aided methods could not handle it due to the
smearing effect. This does not happen in the proposed method.
Furthermore, when BD in SCADA measurements and PMU
measurements occurs simultaneously, the phasor-aided method
is unable to detect them. However, the proposed method can
still work, which can be shown by Cases 8 and Case 9.
For example, in Case 8, when BD exists in V7 and P7, the
Hybrid and phasor-aided methods incorrectly identify many
valid measurements as BD, such as P14, Q14, etc. By contrast,
the proposed method can still accurately detect them.

3) IEEE 118-bus System Test Results: This system is fully
observable with 150 pairs of SCADA measurements including

TABLE IV: Comparison of Computation Time in IEEE 118-
bus Test System under Different Scenarios

Scenario Hybrid Phase-aided Proposed Proposed
(Centralized) (Parallel)

Without BD 0.679s 0.779s 1.13s 0.72s
Single BD 1.456s 1.642s 1.70s 0.82s
Two BD 2.346s 1.689s 1.76s 0.88s

39 pairs of injection measurements and 111 pairs of flow
measurements. Note that, there are 5 critical power injections
and 22 critical power flows. Only 19 PMUs are installed,
allowing the system to be partially observable. The detailed
system measurements placement and topology can be found
in [8]. The following cases are considered:

Case 10: A critical measurement Q63−59 with 20% error of
the measured value;

Case 11: Multiple BD, i.e., reactive power flow Q76−118,
reactive power flow Q28−27, active power injections P28 and
P27 are all with 20% errors (in this small area, two PMUs
are installed at buses 27 and 114, where bus 27 is observable
from PMU and bus 28 is not observable though the PMUs);

Case 12: A single PMU current in line 52-53 with 20%
error;

Case 13: Multiple BD, i.e., voltage V114, active power flows,
P28−27 and P25−27 and active power injection P27 are all with
20% errors.

Test results for Cases 10–13 are shown in Table III. Similar
to the results of IEEE 14-bus test system, the proposed method
demonstrates better performance than existing methods in
detecting BD.

4) Topology Error Detection: Since the Hybrid and Phasor-
aided methods by their designs have assumed the correct
topology for state estimation, only the results of the proposed
method is shown here. Three cases are tested in PMU partially
observable IEEE 14-bus and 118-bus systems, i.e.,

Case 14: A false report of the circuit breaker between buses
12 and 13 in IEEE 14-bus system;
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TABLE V: Comparison of Computation Time in IEEE 2383-
bus Test System under Different Scenarios

Scenario Hybrid Phase-aided Proposed Proposed
(Centralized) (Parallel)

Without BD 12.96s 14.56s 20.82s 6.26s
Single BD 26.31s 19.27s 22.45s 6.93s
Two BD 39.84s 20.05s 23.05s 7.02s

Case 15: A false outage of the transformer line between bus
5 and 6 in IEEE 14-bus system;

Case 16: A false report of the circuit breaker between buses
110 and 112 in IEEE 118-bus system;

In case 14, the measurements, P12−13, Q12−13, P12, Q12,
P13 and Q13 are flagged as outliers. From the results, we
observe that all the measurements related to line 12-13 are
corrupted, indicating the topology error between line 12-13.
For case 15, measurements P5, Q5, P6, Q6, P5−6 and Q5−6

are detected as outliers, which means that the switch/ breaker
on the transformer line 5-6 incorrectly reports the status of the
line. Finally, in case 15, all measurements P110−112, Q110−112,
P110, Q110, P112 and Q112 corresponding to line 110-112 are
identified as outliers, the topology error between line 110-112
is therefore declared. It should be noted that in all three cases,
only the measurements corresponding to incorrect topology
are marked as outliers without being affected by smearing
effect because of the good robustness of PS and the enhanced
measurement redundancy by innovation vectors.

C. Assessment of Computational Efficiency

In this subsection, the computational efficiency of the pro-
posed method (implemented in centralized or parallel man-
ners) in the 118-bus test system is compared with the Hybrid
and the Phasor-aided methods. The Cholesky factorization
technique is adopted to increase the numerical stability. Table
IV shows the computing time for four methods. It can be seen
from this table that the conventional hybrid method has the
fastest speed if there is no BD, followed by the parallel imple-
mentation of the proposed method. The centralized version of
the proposed method is the slowest one as it needs additional
time to perform centralized processing of all information.
However, when multiple BD occurs, the conventional one-by-
one BD elimination method is time consuming. This does not
happen for the Phase-aided and the proposed parallel method
since they can detect and eliminate the BD all at once. The
computing time of the proposed method with the parallel
implementation is very fast, demonstrating its ability for real-
time implementation.

To further demonstrate the effectiveness of the proposed
method for large-scale power systems, various tests have been
conducted on the Polish 2383-bus system [32]. There are 1296
PMU and 4960 SCADA measurements of this test system,
including 360 voltage phasors and 936 current phasors, 4760
power injections, 100 voltage magnitude measurements and
100 zero injections. According to the observability check, the
system is divided into 18 areas, among which the largest one
has 308 buses. Three scenarios are simulated and tested, i.e.,
without outliers, with single outlier and with two outliers ran-
domly placed in the measurement set. The conclusions of BD

detection are the same as IEEE 14 and 118 systems. To avoid
repeating the similar BD detection results, only the computing
time is presented. The test results are shown in Table. V.
From this table, we find that the conventional one-by-one BD
elimination strategy is the most time consuming method in
presence of BD, followed by the proposed centralized and
Phase-aided methods. With the parallel implementation of the
proposed method, the computation time has been reduced
significantly.

D. Discussions

State estimation aims to process a set of measurements
that are assumed to be taken at the same snapshot in time
to obtain a best estimate of the states of electric power
systems. In this paper, the SCADA and PMU measurements
are assumed to be taken at the same snapshot and further
used for BD detection and state estimation. However, in some
situations, due to the different sampling rates of SCADA
and PMU, these two types of measurements may not arrive
simultaneously. In this case, the detection and suppression
of BD in PMU observable areas is not affected as only
forecasted states and PMU measurements are used. But the
detection of suspicious BD in PMU unobservable but SCADA
observable areas will be affected as the PMU sampling rate is
higher than SCADA. To mitigate this time skewness problem
between SCADA and PMU measurements, the PMU optimal
buffering strategy proposed in [17], [33], [34] can be used.
The key idea is to buffer the PMU measurements between
the two consecutive SCADA scans in an optimal way so
that the statistical information of the PMU measurements is
effectively extracted. Once new SCADA measurements arrive,
the buffered information represented by its sample mean
and sample covariance matrix is used together with SCADA
measurements for state estimation. By using this strategy,
SCADA and PMU measurements are coordinated to be at the
same snapshot, thus the proposed method can be applied to
detect BD.

V. CONCLUSION

A robust BD detection method is proposed by exploiting
the temporal correlation and the statistical consistency of
the measurements. Three innovation vectors are defined and
used to develop the innovation matrices for BD detection
by projection statistics. The proposed method can address
various types of BD, such as the single/multiple BD, BD
smearing effect, bad critical measurements, topology error
and simultaneous occurrence of BD in SCADA and PMU
measurements. Comparisons with existing methods on IEEE
14-bus, 118-bus and Polish 2383-bus test systems demonstrate
its effectiveness and robustness. In the future work, we aim
to investigate the performance of the proposed method for
detecting false data injection attacks on the power system state
estimator [35], [36].
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