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H I G H L I G H T S

• A dynamic pricing mechanism is proposed for smart energy systems considering operation quality.

• An informative game vector is established to perform price-based energy interactions among MGs.

• A stochastic method is integrated into the proposed method to handle the renewable uncertainty.

• Comprehensive results and analysis in dynamic energy market environment are provided.
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A B S T R A C T

To accommodate the large scale of renewable energy resources now widely integrated into power systems, an
interactive two-level pricing mechanism for coupled microgrids (MG) in a smart energy system is proposed that
considers operational quality and renewable generation uncertainty. In the upper level of the pricing me-
chanism, the distribution energy market operator (DEMO) guarantees operational quality by trading energy with
coupled microgrids, while the actual transactions between networked microgrids is performed at the lower level.
Stochastic programming is applied to handle the uncertainty caused by large-scale renewable integration. An
innovative time-varying game vector and energy transaction strategy deal with the spatio-temporal market in-
teraction of the networked microgrids, where each microgrid is able to directly trade all types of energy with any
other microgrid at any time. The proposed model is solved using a customized hierarchical genetic algorithm.
Case studies on an IEEE bus test feeder and an existing energy system in China demonstrate the effectiveness of
the proposed methodology.

1. Introduction

In recent years, large-scale renewable energy resources have been
widely integrated into power systems [1]. Microgrids (MG) are localized
grids that can include a smart cluster of energy storage systems (ESS),
distributed generators (DG), and flexible consumer loads [2,3], and are
believed to be a promising paradigm that can facilitate renewable utili-
zation and regional energy regulation [4]. As a result, there is growing
interest in adopting multiple MGs in a smart energy system to further
enhance system reliability, operations, environmental friendliness, and
economic benefits under large-scale renewable integration. However, to
ensure the stability, reliability, and economic profit of MGs, new market
mechanisms are needed to coordinate the interaction between MGs and
the wider power system, and deal with the highly variable nature of
renewable generation and load consumption [5].

Optimal pricing mechanisms for MGs in retail energy markets have
been extensively studied in the literature. In [6], a day-ahead electricity
pricing strategy was proposed under arbitrary utility and cost struc-
tures. The system model could accommodate heterogeneous user re-
quirements and constraints in a generalized problem formulation to
maximize the profits of the entities involved. Ref. [7] developed a
nonlinear and randomized pricing mechanism for a demand response-
enabled MG to perform distributed management of flexible loads. The
flexibility restriction imposed by a previously proposed measure was
replaced by a soft nonlinear price signal to produce more efficient re-
source management. The work in [8] introduced real time pricing and
combined power scheduling of electric appliances in a residential en-
ergy management system that considered the reduction of peak power
to average ratio over a large number of end consumers. The introduced
pricing scheme of a smart house minimized the consumption cost.
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Aghajani et al. [9] presented a scheduling model for pricing demand
response rate in microgrid energy management, with multi-objective
dispatch, demand response providers, and price-offer packages used to
optimize operations and reduce emission costs.

Most existing pricing mechanisms are based on bidding between a
single MG and the wholesale energy market without considering any
interactions between different MGs. Although the coordinated energy
management of networked MGs with energy sharing has been widely
discussed in the literature [10,11], the price response characteristics are
based on assumed mathematical functions, where a certain price leads
to a specific energy consumption level. These functions cannot mimic
the realistic dynamic pricing decision-making of each MG. While some
studies in [12,13] concerning auction strategies were based on multi-
agents, the developed functions could not directly perform multiple
transactions with any agent at any time. Moreover, the underlying
distribution network is neglected in most of the existing literature. The
MGs, if not operated in an islanded mode, are connected to the main
grid via the power control center (PCC) [14]. For this reason, the as-
sociated power flow constraints and other system operational con-
straints of the distribution networks should be taken into account, such
that the obtained scheme can be applicable to actual systems with
guaranteed stability and reliability [15,16].

With the rapid development of integrated energy systems, the
transaction of different types of energy has drawn considerable atten-
tion in recent energy system research. Ref. [17] proposed an analytical
framework that studied East Asian gas markets, where the distinctive
economics were used to assess policy options to address market failures.
A region characterized by a high density of energy-intensive processes
was used in [18] to find the economic potential in connecting three
industrial plants and four energy companies within three local district
heating systems to a regional heat market in which different operators

provided heat to a joint district heating grid. To investigate the possi-
bility of using district heating and cooling systems (DHC) for capacity
market auctions, the authors in [19] developed two models for oper-
ating a DHC system: electricity-adjustment capacity provision and
electricity-adjustment operation. In particular, the two models were
solved using particle swarm optimization to reduce computational cost.
The impact of different support schemes on the retail price of micro-
combined heat and power units based on solid oxide fuel cells was
analyzed in [20] in the residential sector, where the implications of
each incentive toward the technical implementation of the technology
were also analyzed. Despite these efforts, most works have only con-
sidered transactions concerning a single type of energy. Although some
forms of integrated energy systems have been developed in some
market studies, the trade mechanism was not fully detailed.

Considering the stochastic nature of renewable generation and user
consumption, stochastic programming has also been intensively studied
for both MGs and bulk energy systems [21]. Ref. [22] proposed a sto-
chastic resource scheduling model for a grid-connected MG. A sto-
chastic problem was formulated to minimize both the expected opera-
tional cost of the MG and power losses while accommodating the
intermittent nature of the renewable energy resources. In [23], a
Bender’s decomposition algorithm was presented to reduce the com-
putational burden of stochastically programming a MG with high
photovoltaic (PV) power generation. The study in [21] presented a
stochastic operational scheme for a MG with greenhouse gas emissions.
Two different stochastic approaches based on sample average approx-
imation and probabilistic constrained stochastic programming were
formulated to cooptimize carbon emissions and power generation fuel
costs while mitigating the impact of the intermittence of the renewable
energy generated. However, most of the studies mentioned here were
conducted to optimize the power generation fuel cost of a single MG.

Nomenclature

Indices and sets

t time index ∈t T
s scenario index S∈s
I set of microgrid (MG)/point of common coupling (PCC)

nodes
O set of MGs that linked to MG i
F M/ i set of nodes in distribution network/MG i

Parameters

Closs unit cost of power loss
Csel sell price of the exchange power from MGs to the dis-

tribution energy market operator (DEMO)
Cbuy purchase price of the exchange power from the DEMO to

MGs
CG generation cost of the distributed generator (DG) in the

distribution network
Rt spare capacity
xf /rf resistance/reactance of line f- +f 1
Cf t,

SBRE dynamic trade price of Pf t,
SBRE

Cf t,
rin dynamic trade price of Pf t,

rin

Cf t,
SBIN dynamic trade price of Pf t,

SBIN

Cf t,
SBLE dynamic trade price of Pf t,

SBLE

Cf t,
rout dynamic trade price of Pf t,

rout

Cf t,
SBOUT dynamic trade price of Pf t,

SBOUT

CMT unit cost of microturbine (MT) generation

CERE/CELE unit cost/profit of rented capacities
Pf t

s
,

r renewable generation of MG i at node f in scenario s
RMT

up /RMT
down ramp rates of a MT

η/μ output thresholds of Ef t,
SBLE/Ef t,

SBRE

CΔ i t
k
, dynamic makeup price of the kth category of tradable en-

ergy and service in MG i
Pf t, /Qf t, active/reactive power flow from node f to +f 1

Variables

Vf t, voltage at node i
Pf t,

MT MT generation at node f
Pf t,

SBRE the energy of MG i at node f in other energy storage sys-
tems (ESS)

Pf t,
rin traded renewable generation from other MGs to MG i at

node f
Pf t,

SBIN traded ESS generation from other MGs to MG i at node f
Pf t,

SBLE energy of other MGs in MG i’s ESS at node f
Pf t,

rout traded renewable generation from MG i to other MGs at
node f

Pf t,
SBOUT traded ESS generation from MG i to other MGs at node f

Ef t,
SBRE MG i’s cumulative rented capacity of other MGs at node f

until time t
Ef t,

SBLE other MGs’ cumulative rented capacity of MG i at node f
until time t

Pf t,
SB storage battery (SB) output at node f

Pf t
L
, /Qf t

L
, active/reactive load at node f

Pf t,
TL/Qf t,

TL total active/reactive power exchange between MG i and
the DEMO at bus f
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That being said, limited stochastic studies have been performed to
consider the complex and interactive impact of coupled MGs in a smart
energy system [24].

Game theory is a promising approach to dealing with the interaction
of coupled MGs [25], where each MG is taken as an independent entity
concerned with making purchases to maximize its own profit. There are
primarily two categories of game theory-based market interaction. The
first category is based on the one-step process, which is aimed at
making optimal strategies and adjusting power usage during certain
time periods [26,27]. The second category is based on a dynamic de-
cision process that considers time-variant gaming, where the final op-
timum is obtained through iterative market interactions [28,29]. To
obtain a unique Nash equilibrium, most literature has simplified their
market strategy game models and limited the information a game
should have, which means the models cannot accommodate good
market interactions among smart energy systems.

To solve the above-mentioned limitations, this paper designs an
innovative two-level pricing mechanism to coordinate MG interactions
through a proposed dynamic game-vector decision making method. In
the upper level of the mechanism, the distribution energy market op-
erator (DEMO) secures operational quality and bids with the MGs. In
the lower level, each MG bids for use of its multiple energy resources
with the DEMO and other MGs. The key to the proposed mechanism is
using game vectors to mimic the spatio-temporal market pricing be-
havior of each MG, which can directly bid its energy and storage service
against any other MG at any time. The stochastic programming is in-
tegrated into the pricing model to consider the prediction error of the
intermittent renewable generation. The proposed model is solved
through a customized hierarchical genetic algorithm (C-HGA).

The main contributions of this paper are:

1. An interactive pricing mechanism is proposed for smart energy
systems with coupled MGs that considers operational quality.

2. An informative game vector is established to model the spatio-
temporal market interactions of coupled MGs, where each MG is
able to directly trade all types of its energy production and services
with any other MG at any time.

3. A dynamic-rolling priority-based bidding and settlement strategy is
proposed based on a newly-defined platform of tradable energies
and storage services.

4. A stochastic method is integrated into the proposed pricing me-
chanism to deal with the uncertainty caused by intermittent re-
newable generation.

5. Comprehensive results and analyses in dynamic energy market en-
vironments are provided.

The rest of this paper is organized as follows. Section 2 introduces
the proposed pricing mechanism framework. The upper-level model is
presented in Sections 3 and 4 illustrates the lower-level model with
stochastic programming. The proposed dynamic game vector-based
trade mechanism is presented in Section 5. The C-HGA is implemented
in Section 6. Section 7 analyzes the numerical results, followed by the
conclusion in Section 8.

2. Pricing mechanism framework

2.1. Distribution system structure

For this work, a smart energy system is managed by a DEMO and
contains multiple MGs, controllable DGs, and static volt-ampere re-
active (VAR) compensations (SVCs). The DEMO, as an entity, maintains
system operational quality by trading energy with MGs and regulating
the grid-connected DGs and SVCs. Each MG includes loads, renewable
(wind turbines and PVs) and controllable (microturbines) DGs, and its
energy storage system (storage batteries). As a part of the distribution
network, each MG trades its energy or service through an aggregator

energy exchange network (AEEN) at the point of common coupling
(PCC). An AEEN is the part of a distribution systems that allows a
pricing mechanism to be applied to enable power exchange among
MGs. That is, different MGs can exchange power through the distribu-
tion network’s AEEN [30]. Fig. 1 shows the structure of an interaction-
enabled distribution system.

2.2. Energy and storage service on transaction

With the introduction of an AEEN, each MG is capable of offering
tradable energy and storage service, which come from the following
three sources. The first source is its renewable power generation. The
second source is the energy stored in each MG’s ESS. The third source
comes from the available storage capacity in other MGs’ ESSs as well as
the energy stored in their ESSs.

2.3. Two-level pricing framework

In Fig. 2, the pricing mechanism is formulated as a two-level opti-
mization model. The upper level optimizes the operational quality
through interactions among the DEMO, MGs, and grid-connected de-
vices. The lower level optimizes each MG’s profit and coordinates en-
ergy interactions among MGs. The exchanging variable between the
upper and lower levels is Pf t,

TL.
The proposed pricing mechanism is applied by the microgrids to

perform the market interaction among networked microgrids. The mi-
crogrids trade their energy and storage service with each other based on
the proposed pricing mechanism to increase their profit. The market
operator supervises the market behavior of the microgrids and main-
tains the system operation quality according to the proposed me-
chanism.

3. Upper-level problem formulation

3.1. Distribution network model

Consider a radial network as shown in Fig. 3, with n buses indexed
by = …f F0,1, , . DistFlow [31] equations can be used to describe the

Fig. 1. Distribution system structure.
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complex power flows at each node f. The DistFlow equations can be
simplified using linearization in (1) for ∀ ∈t f F, . The linearized power
flow equations have been extensively used and justified in both tradi-
tional distribution systems and MGs [32–34]. Thus, we can write

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

= +
= +

= + +

= −

= −

+ +

+ +

+

P P p
Q Q q

V V r P x Q V

p P P

q Q Q

( )/

f t f t f t

f t f t f t

f t f t f f t f f t f t

f t f t f t

f t f t f t

1, , 1,

1, , 1,

1, , , , ,
2

, ,
L

,
G

, ,
L

,
G

(1)

where Pf
G and Qf

G denote node injections from microturbines, SVCs, and
renewable generators.

3.2. Upper-level model

The optimization problem of the DEMO strategy model can be de-
scribed as

∑

∑ ∑

∑ ∑

∑ ∑

= +

− − + +

+

−

=

= ∈

= ∈

= ∈

F C P

C P P C P P

C P

μ V F

min

[ (| | )/2 (| | )/2]

( 1) /

t

T

t

t

T

f I
f t f t f t f t

t

T

f F
f t

t

T

f F
f t

1

loss loss

1

sel
,

TL
,

TL buy
,

TL
,

TL

1

G
,

G

1
,

2

(2)

where the first item is the cost of the network power loss, the second
item denotes the cost of trading power energy between the DEMO and
its MGs, the third item represents the operational cost of the grid-
connected device generation, and the fourth item indicates the level of
voltage deviations at all nodes of the distribution network with a
penalty factor μ to unify the unit. The upper-level model stands for the
distribution-level operation. Therefore, its operation cost comes from
the DGs and SVCs that are connected to the distribution network.

Constraints on outputs, voltages, line capacity, and the spare ca-
pacity of the distribution network are shown in (3)–(5). Constraint (6)
describes that the total generation should be equal to or larger than the
total load.

⎧
⎨
⎩

− ⩽

− ⩽
−

−

P P R

P P R
f t f t

f t f t

,
G

, 1
G up

, 1
G

,
G down

(3)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⩽ ⩽

⩽ ⩽

⩽ ⩽

⩽ ⩽
⩽ ⩽

P P P

Q Q Q

P P P

P P P
P P P

f t

f t

f t

f t

f f t f

TL
,

TL TL

TL
,

TL TL

G
,

G G

G
,

G G

, (4)

∑ − ⩾
∈

P P R( )
f F

f t t
G

,
G

(5)

∑ ∑− + ⩾
∈ ∈

P P P( ) 0
f F

f t f t
f I

f t,
G

,
L

,
TL

(6)

4. Lower-level problem formulation

4.1. The first-stage stochastic problem

The lower-level model is an n-follower optimization. The determi-
nistic cost of MG i resulting from competing with other MGs and the
DEMO is composed of two parts: the operational cost of MTs and the
cost of trading energy and service. For ∀ ∈t i I, , the formulation to
minimize cost is

Q

∑ ∑=

+ + +

− + +

+ −

− − − +
+

= ∈

f C P

C P C P C P

C P C P C P

C E C E

C P P C P P
p

min ((

( )

( )

( (| | )/2 (| | )/2)))
( )

i
t

T

f M
f t

f t f t f t f t f t f t

f t f t f t f t f t f t

f t f t

f t f t f t f t

1

MT
,

MT

,
SBRE

,
SBRE

,
rin

,
rin

,
SBIN

,
SBIN

,
SBLE

,
SBLE

,
rout

,
rout

,
SBOUT

,
SBOUT

ERE
,

SBRE ELE
,

SBLE

sel
,

TL
,

TL buy
,

TL
,

TL

i

(7)

where

Q
S

� ∑= =
∈

p ϕ p s Pr s ϕ p s( ) ( , ) ( ) ( , )s
s (8)

The above objective function (7) includes the first-stage cost and the
second-stage expected cost. For the purpose of illustration, the decision

Fig. 2. Pricing mechanism framework.

Fig. 3. Distribution network structure.
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variables P P P P P, , , ,f t f t f t f t f t,
SBRE

,
rin

,
SBIN

,
SBLE

,
rout, and Pf t,

SBOUT will be described in
Section 5. In (8), Pr s( ) indicates the probability of realization for

S∈s , and �s is defined as the expectation with respect toS . If Pf t,
SBRE is

positive, then the stored energy is discharged to supply MG i; otherwise,
the extra energy is stored in the rented ESS capacity in other MGs. If
Pf t,

SBLE is positive, then the stored energy of MG i is discharged to supply
other MGs; otherwise the extra energy is stored in the rented capacity of
the ESS in MG i.

The objective function (7) is subject to the following constraints (for
∀ ∈t i I, ).

Energy generation limits:

⎧
⎨
⎩

⩽ ⩽

− ⩽ + + ⩽

P P P

P P P P P
f t

f t f t f t

MT
,

MT MT

SB
,

SB
,

SBLE
,

SBOUT SB
(9)

where the max and min superscripts denote the maximum and
minimum outputs of the MT and EES.

Ramp rate constraints of the MT:

⎧
⎨
⎩

− ⩽

− ⩽
−

−

P P R

P P R
f t f t

f t f t

,
MT

, 1
MT

MT
up

, 1
MT

,
MT

MT
down

(10)

Capacity constraints of the storage battery (SB) ESS:

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪⎪

= − + +
⩽ ⩽

= −

= −

⩽ ⩽

⩽ ⩽

−

−

−

E E P P P
E E E

E E P

E E P

E ηE

E μE

( )

0

0

f t f t f t f t f t

f t

f t f t f t

f t f t f t

f t

f t

, , 1 ,
SB

,
SBLE

,
SBOUT

,

,
SBLE

, 1
SBLE

,
SBLE

,
SBRE

, 1
SBRE

,
SBRE

,
SBLE

,
SBRE

(11)

Note that, for simplicity, this paper ignores charge/discharge effi-
ciency factors.

4.2. The second-stage stochastic problem

The second-stage problem is established after the first stage is de-
termined (for S∀ ∈ ∈t i I s, , )

∑=
=

ϕ p s γ ψ p( , ) min (Δ )
t

T

t t
s

i t
s

1
,

(12)

∑
⎧

⎨
⎩

=

= − − − −
∈

ψ p

p P P P P P

max{0,Δ }

Δ ( )
t
s

f t
s

i t
s

f M
f t f t f t f t f t

s

,

, ,
L

,
MT

,
SB

,
TL

,
r,

i (13)

The objective function (12) minimizes the penalty cost of the un-
served load pΔ i t

s
, caused by the stochastic nature of renewable energy

generation [35].
The objective function is subject to the following constraints:

⩽ + ⩽P P P0 f t f t f t
s

,
rout

,
rin

,
r,

(14)

∑

∑
=

⎧

⎨
⎪

⎩
⎪

+ − <

+ − ⩾
∈

∈

a

P P P

P P P

1 ( ) 0

0 ( ) 0
i t

f M
f t f t f t

s

f M
f t f t f t

s,
1

,
L

,
SB

,
r,

,
L

,
SB

,
r,

i

i (15)

∑

∑
=

⎧

⎨
⎪

⎩
⎪

− >

− ⩽
∈

∈

a

P P

P P

1 ( ) 0

0 ( ) 0
i t

f M
f t f t

s

f M
f t f t

s,
2

,
L

,
r,

,
L

,
r,

i

i (16)

=
⎧
⎨
⎩

− − − >

− − − ⩽
a

P P P P

P P P P

1 0

0 0i t
f t f t f t f t

s

f t f t f t f t
s,

3 ,
L

,
MT

,
SB

,
r,

,
L

,
MT

,
SB

,
r,

(17)

where constraint (14) denotes the limit of the renewable generation
that MG i can sell to other MGs. Constraints (15)–(17) represent binary
condition variables, which will be further described in Section 5.

Due to the continuity of the probability distributions, it is difficult to
analytically address uncertainties. To handle this difficulty, the sample
average approximation (SAA) method is applied to generate a certain
number of scenarios to represent the probability distribution of the
random parameters [21]. Therefore, (13) can be replaced by its ap-
proximate form

Q
S

∑ ∑=
∈ =

p
S

γ ψ p( ) 1 (Δ )
s t

T

t t
s

i t
s

1
,

(18)

where the scenario set has S realizations of random variable Pf t
s
,

r, . Studies
have proved that the optimal solution of the reformulated two-stage
stochastic problem will converge to the original solution if a sufficient
number of scenarios are performed [36]. Hence, the original stochastic
problem is reformulated as a continuous deterministic optimization
problem.

5. Trade decision and game vector

5.1. Trade mechanism

A dynamic trade mechanism is established that truly represents the
market behavior of interactive MGs. To define the decision objects for
a specific type of energy or service, MGs are classified into demanders
and suppliers and placed in the need pool (NP) and supply pool (SP),
respectively. In addition, binary condition variables are introduced to
model the market behavior. If a specific condition is satisfied, the
variable is set to 1. If the SP condition variable is 1 for a MG, then the
MG belongs to the SP; if the NP condition variable is 1, then the MG
belongs to the NP. In (15) and (16), a a,i t i t,

1
,
2 , and ai t,

3 are binary condition
variables of the decision variables P P,f t f t,

SBRE
,

rin, and Pf t,
SBIN, respectively.

When the binary variable is set to 1, its corresponding decision vari-
able belongs to the NP; when the binary variable is set to 0, its cor-
responding decision variable is out of the NP. Due to com-
plementarity, the binary condition variables of the SP are − −a a1 ,1i t i t,

1
,
2 ,

and −a1 i t,
3 .

After classification of the NP and SP, each MG in the NP has a dy-
namic makeup CΔ i t

k
, with respect to t. At time t, MGs with higher CΔ i t

k
,

have a higher priority to purchase any available tradable energy and
service from MGs in the SP when multiple MGs are bidding together.
During the bidding, MGs in the SP, which post a lower price including a
demander’s makeup, have the higher priority to offer the demander the
tradable energy or service. In addition, the determination of the value
of CΔ i t

k
, can be based on several approaches. In this paper, we assume

that each MG cannot access the pricing information of other MGs.
Hence CΔ i t

k
, is determined by the demand degree of MG i at t, i.e.,

= ∑ − − −∈P P P P P( )i t f M f t f t f t f t
s

,
D

,
L

,
MT

,
SB

,
r,

i
. At each period of time, CΔ i t

k
, is stan-

dardized from CΔ i
k to CΔ i

k according to Pi t,
D, where

= + − ∈C C C C P P t TΔ Δ (Δ Δ ) /max{ | }i t
k

i
k

i
k

i
k

i t i t, ,
D

,
D (19)

Note that when < =P C0,Δ 0i t i t
k

,
D

, .
To summarize, at transaction time t, MG i in the NP (i.e., the bid in-

viter) announces a makeup price CΔ i t
k
, . The MGs in the SP (i.e., qualified

bidders) give their prices Co
k. The bid inviter chooses the lowest price Co t

k
1,

and pays bidder o1 at price +C CΔ i t
k

o
k

, 1. If bidder o1 cannot cover the
demand of the bid inviter, the rest of the demand will be covered by
bidder o2 with the second lowest price Co

k
2 and so on. Thus, the total

payment of the bid inviter is + + + + …C C P C C P(Δ ) (Δ )i t
k

o
k

o i t
k

o
k

o, 1 1 , 2 2 , where
Po is the amount of the supply offered by bidder o. This bidder o chooses
the highest makeup price CΔ i t

k
1, and charges bid inviter i1 at price

+C CΔ i t
k

o
k

1, . If bid inviter i1 cannot cover the supply of bidder o, the rest of
bidder o’s supply will be covered by bid inviter i2 with the second highest
makeup CΔ i t

k
2, , and so on. Then the total income of bidder o is
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+ + + + …C C P C C P(Δ ) (Δ )i t
k

o
k

i i t
k

o
k

i1, 1 2, 2 , where Pi is the amount of the de-
mand requested by bid inviter i.

5.2. Game vector

We define the exchange variable pi n t
e f
, ,
, , which denotes the exchanged

energy or rented storage capacity e from MG i to MG n at node f. Here, e
stands for one of the six energy types that take part in the game vector:
Pf t,

SBRE ( =e 1), Pf t,
SBIN ( =e 2), Pf t,

SBLE ( =e 3), Pf t,
SBOUT ( =e 4), Pf t,

rin ( =e 5), and
Pf t,

rout ( =e 6). Moreover,Ci
k is defined as the base trade price of the tradable

energy or service class k from MG i, where k stands for one of three classes:
renewable generation ( =k 1), the energy stored in each MG’s own ESS
( =k 2), and rented stored energy or storage capacity ( =k 3). The game
vector of MG i is P P P P P P[ ]i t i t i t i t i t i t,

BSRE
,
w.sin

,
BSIN

,
BSLE

,
w.sout

,
BSOUT , which includes

all of its tradable energy and service as decision variables. The game vector
is based on a two-stage decision making process, where the priority-based
determination in each stage is realized with the help of the binary condition
variables (i.e., ai t

r
, and xo i t

r
, , ). In the first stage, ai t

r
, is utilized to decide

whether the first three decision variables in the game vector are in the NP. If
more than one decision variable is in the NP, then which one will be cal-
culated first must be determined. Similarly, 1- ai t

r
, is utilized to decide

whether the last three decision variables are in the SP. Take Pi t,
w.sin for ex-

ample. If =a P1,i t i t,
2

,
w.sin is kept in the second stage for calculation, which

means that a decision to purchase renewable energy has been made. In the
second stage, a reserved decision variable in the NP (SP) has a decision set,
where each element represents the tradable energy and service of another
MG available to trade with MG i. In addition, xo i t

r
, , is utilized to determine

the priority of the transactions with the available MGs according to the
proposed bidding mechanism. Mathematically, the above decision making
process is expressed in (20)–(26) with the 4 sub-conditions of xo i t

r
, , .

In (7), the decision variables P P P P P, , , ,f t f t f t f t f t,
SBRE

,
SBIN

,
SBLE

,
SBOUT

,
rin, and Pf t,

rout

result from the multiplication of two game vectors: the binary condition
variable-based game vector and the decision variable-based game
vector. To analyze the trade decision and build the game vector, Pf t,

rin is
taken as an example. The expression for Pf t,

rin is written as

=P X Pf t f t f t,
rin

,
2

,
2

(20)

= … …X x x[ ]f t o i t
f

O i t
f

,
2

, ,
2,

, ,
2,

(21)

= … …P p p[ ]f t o i t
f

O i t
f

,
2

, ,
2,

, ,
2, T

(22)

= ⎧
⎨⎩

′x x1 condition
0 others

o i t
f o i t

f

, ,
2, , ,

2,

(23)

where Xf t,
2 represents the game vector of binary decision variables

corresponding to Pf t,
2 . Priority condition ′xo i t

f
, ,
2, can be described as fol-

lows.
During trade decision making, the first step is to determine the game

set [37].The binary variable −a1 i t,
2 classifies the decision variable p o i t

2
, ,

into two game sets: the SP and non-SP sets. Similarly, ai t,
2 classifies the

decision variable po i t
f

, ,
2, into two game sets: the NP and non-NP sets. if the

need-supply pool pairs—i.e., the game set—are determined at time t for
Pf t,

2 , the next step is to build the game vector based on the proposed
trade mechanism. The initialization of a game vector is defaulted as
zeros in the vector. After the game vector is built, each element value in
the vector is determined. In the determined NP, price signal CΔ i t,

2 of MG
i is utilized to determine its purchase priority, while in the determined
SP, price signal Co

2 of MG o is used to determine its sale priority. This
means the MG with a lower +C CΔo i t

2
,
2 can sell its energy or service with

a higher priority.
The condition ′ =x 1o i t

f
, ,
2, can be described as the following sub-con-

ditions.
Sub-condition 1: − = = = ′ ∈′( ) { }a a C C i1 1, 1,Δ max Δ | NPo t i t i t i t,

2
,
2

,
2

,
2 ,

and = ′ ∈′C C omin{ | SP}o o
2 2 .

Sub-condition 2: when = ′ ∈′C C iΔ max{Δ | NP}i t i t,
2

,
2 and

≠ ′ ∈ ∑ − > ∑ ∑ ∀ ′

∈ ′ <

′ ∈ ′∈ ′ ∈ ′

′

′
C C o P P p o

o C C

min{ | SP} , ( ) ,

{ | }

o o f M f t f t
s

o O f M o i t
f

o o

2 2
,

L
,

r,
, ,

2,

2 2

i o
.

Sub-condition 3: when ≠ ′ ∈′C C iΔ max{Δ | NP}i t i t,
2

,
2 and

= ′ ∈ ∑ ∑ − < ∑ ∀ ′

∈ ′ <

′ ′∈ ′ ∈ ∈

′

′
C C o P P p i

i C C

min{ | SP} , ( ) ,

{ | }

o o i I f M f t f t
s

f M o i t
f

i i

2 2
,

L
,

r,
, ,

2,

2 2
i o

.

Sub-condition 4: when ≠ ′ ∈′C C iΔ max{Δ | NP}i t i t,
2

,
2 and

≠ ′ ∈ ∑ ∑ − > ∑ ∑′ ′∈ ′ ∈ ′∈ ′ ∈ ′′ ′
C C o P P pmin{ | SP} , ( )o o i I f M f t f t

s
o O f M o i t

f2 2
,

L
,

r,
, ,

2,
i o

.

By analogy with ′xo i t
f

, ,
2, , we can obtain all conditions of the proposed

game vector, i.e., ′xi o t
e f

, ,
, (when e=1, 2, 3), and ′xo i t

e f
, ,

, (when e=4, 5, 6).
So all decision variables P P P P P, , , ,f t f t f t f t f t,

SBRE
,

SBIN
,

SBLE
,

SBOUT
,

rin, and Pf t,
rout are

presented in the following

=
⎧
⎨
⎩

… … … … =

… … … … =
X P

x x p p e

x x p p e

[ ][ ] 1,2,3

[ ][ ] 4,5,6
f t
e

f t
e o i t

e f
O i t
e f

o i t
e f

O i t
e f

i o t
e f

i O t
e f

i o t
e f

i O t
e f, ,

, ,
,

, ,
,

, ,
,

, ,
, T

, ,
,

, ,
,

, ,
,

, ,
, T

(24)

= ⎧
⎨⎩

′ =x x e1 condition
0 others

1,2,3o i t
e f o i t

e f

, ,
, , ,

,

(25)

= ⎧
⎨⎩

′ =x x e1 condition
0 others

4,5,6i o t
e f i o t

e f

, ,
, , ,

,

(26)

6. Algorithm solution

The proposed pricing model is a bilevel programming model with
mixed integers. Most analytical methods cannot solve this type of model
in a reasonable computation time and obtain an optimum solution.
However, genetic algorithm (GA)-based methods have been success-
fully and widely applied to complex practical optimization problems
with enhanced convergence performance [38,37]. In this paper, the

Fig. 4. Chromosome coding of the customized hier-
archical genetic algorithm.
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authors have customized the NSGA-II-based traditional hierarchical
genetic algorithm (HGA) to make it more suitable for the type of
variables and relationships in the current work to solve the proposed
mixed-integer programming problem. In an HGA, the chromosome
coding has two layers: the control gene layer and the parameter gene
layer. Control genes are encoded by binaries to control parameter
genes. Parameter genes are encoded by real numbers to represent de-
cision variables. When a control gene is set to 1, the corresponding
parameter gene is activated. Ordinary genes are also in chromosome
coding encoded by real numbers and they are independent of those two
types of genes. To better solve the problem, a customized HGA (C-HGA)

is presented that adds a superior control gene layer upon the existing
control gene layer to manage the control genes. When a superior con-
trol gene is set to 1, the corresponding control gene is activated.

6.1. Customization: chromosome representation

For the proposed model, the C-HGA chromosome coding is ex-
pressed in Fig. 4. The superior control genes are the binary condition
variables in (15)–(17) that determine the SP and the NP. The control
gene is xo i t

e f
, ,
, . The decision variable po i t

e f
, ,
, is the parameter gene. Pf t,

MT and
Pf t,

SB are the ordinary genes.

Fig. 5. Flow chart of the proposed algorithm.
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The customized chromosome representation is made for the pro-
posed game vector. The establishment of a group of genes in a custo-
mized chromosome is based on priority. First, the value of gene ai t

e
, is

determined according to conditions (15)–(17). Second, the value of
gene xo i t

e f
, ,
, is determined by conditions (25) and (26). Finally, the deci-

sion variable po i t
e f
, ,
, is calculated considering ai t

e
, and xo i t

e f
, ,
, .

6.2. Solution procedure

Solution feasibility check: (1) Substitute every exchange variable
(i.e., Pf t,

TL) of an individual in the upper level into the lower level and
calculate the lower model with the C-HGA. (2) Check whether there is a
solution of the optimization problem in the lower level.

Step 0: Initialization. Set the chromosome, population size, and
generation= 1.
Step 1: Create initial population. Inspect individuals with solution
feasibility check. Update individuals that do not pass the check with
the same number of new individuals until all individuals in the
population pass the check.
Step 2: Calculate fitness values according to objective function (2).
Step 3: Let the current generation of the population do selection
during upper-level optimization.
Step 4: Let the current generation of the population do crossover and
mutation during upper-level optimization. Check the solution fea-
sibility of the generated individuals. Eliminate individuals that lead
to infeasible solutions, and continue crossover and mutation until
the next generation of the population is formed.
Step 5: If the convergence condition is satisfied, return the optimal
solution and the algorithm ends; otherwise go to step 2.

The flow chat of the proposed algorithm is depicted in Fig. 5.

7. Case studies

In this section, a modified IEEE 33-bus feeder is taken as the main
test system. A second real-world test system is also presented to provide
additional evidence of the suitability of the proposed model.

7.1. Description of main test system

As shown in Fig. 6, topology extensions for three MGs are connected
to the original IEEE 33-bus feeder. Details concerning the IEEE 33-bus
test system can be found in [31]. For this test system, the voltage base
was 10.5 kV, the total active load was 2963 kW, and the total reactive
load was 785 kVAR. Three 250 kW MTs and two −150 to 350 kVAR
SVCs were connected to the distribution network. Table 1 summarizes
the device parameters of the MGs. Operating cost parameters of the DGs
and the ESS can be obtained from [39]. A 2m-point estimate method
(2m-PEM) [40] was used in this paper to build the approximate for-
mulation for uncertainty in renewable generation. A normal

Fig. 6. Single line diagram of the modified IEEE 33-bus feeder with MG topology extensions.

Table 1
Device parameters of the MGs.

WT rated
output (kW)

PV rated
output (kW)

SB max
output (kW)

SB capacity
(kWh)

MT max
output (kW)

260 185 90 280 185

Table 2
Energy and service price of the MGs.

MG Ci
1 ($/kWh) Ci

2 ($/kWh) Ci
3 ($/((kWh) h))

i=1 0.125 0.17 0.015
i=2 0.12 0.175 0.0125
i=3 0.11 0.18 0.01
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distribution is frequently used to represent the forecasting uncertainty
of load consumptions, in which the mean value of the normal dis-
tribution is the forecasted load and the standard deviation is set to be
2% of the expected load [41]. The bidding prices are outlined in
Table 2. Fig. 7 shows an example of one dynamic makeup price ( =k 1)
of MG1, MG2, and MG3. Other makeup prices can be calculated ac-
cording to (19).

To demonstrate the proposed strategy, the following pricing stra-
tegies and cases were considered in this paper:

Strategy 1: the proposed pricing strategy
Strategy 2: the traditional centralized dispatch strategy, whose ob-
jective is to minimize the total operational costs of the distribution
network and MGs with constraints (1) and (3)–(6)
Strategy 3: the proposed pricing mechanism without the first and
fourth item of the objective function (2) and the constraint (1),
which means that this strategy does not consider the operational
quality
Strategy 4: the traditional game model proposed in [42]
Strategy 5: the deterministic model of the proposed strategy, which
ignores the renewable uncertainty
Case 1: strategy 1 is applied to the distribution system including one
MG (MG1)
Case 2: strategy 1 is applied to the distribution system including

three MGs (MG1, MG2, and MG3)
Case 3: strategy 2 is applied to the system in case 1
Case 4: strategy 2 is applied to the system in case 2
Case 5: strategy 3 is applied to the system in case 2
Case 6: strategy 4 is applied to the system in case 2
Case 7: strategy 5 is applied to the system in case 2

Table 3 illustrates the cases under different strategies and systems,
where strategy 1 (case 1) is benchmarked against strategies 2–5 (cases
4–7) to analyze multiple performances of the proposed pricing me-
chanism. For power exchange analysis, cases 1 and 2 are benchmarked
against cases 3 and 4.

All calculations were performed on a PC with a 3.4-GHz Intel Core
i7 processor and 16 GB of RAM using the GAMS environment integrated
with MATLAB, which codes the C-HGA.24 trading transactions are as-
sumed every day with the time interval of 1 h. One day of 24 intervals is
considered in the simulations.

Fig. 7. The dynamic makeup price ( =k 1) of MG1,
MG2, and MG3.

Table 3
Case information.

MG(s) in the
system

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

MG1 Case 1 Case 3 – – –
MGs 1–3 Case 2 Case 4 Case 5 Case 6 Case 7

Fig. 8. Total power exchange for different
cases: (a) case 3 (s%=6.7%) and case 4 (s
%=18.4%) and (b) case 1 (s%=6.7%) and
case 2 (s%=18.4%).

Fig. 9. Comparison of power fluctuation smoothing in cases 2 and 4.
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7.2. Sensitivity analysis between penetration level and power exchange

The penetration level of renewable generation and the fluctuation in
power of the total power exchange between MGs and the distribution
network are important indices to evaluate the reliability and expand-
ability of a distribution system. The fluctuation of the power exchange
can be used to assess the accommodation capability of a distribution

system to different penetration levels of renewables. If the fluctuation is
very high under high-level penetrations, the power quality of the dis-
tribution network will be negatively affected. Here, we define s% as the
penetration level of renewable generation, and 0.01s is the proportion
of renewable generator capacity to annual load peak. If the number of
MGs with renewable generators increases, s becomes higher.

Fig. 8(a) depicts the total power exchange in cases 3 and 4. As the
grid price is less than the operational cost of an ESS, the fluctuation in
renewable generation and loads is offset by the power exchange with
the distribution network. When s is higher, the total power exchange
increases significantly between −10 kW and 230 kW. However, as il-
lustrated in Fig. 8(c), the fluctuation in renewable generation and loads
is offset by the market interaction among MGs. So the growth of s has a
smaller impact on the distribution network. The total power exchange
is thus within a smaller range between −60 kW and 40 kW.

In addition, to quantify this smoothing effect on power fluctuations,
the up–down fluctuation value of the total power exchange is defined as

∑ ∑= −−

∈
+

∈

P P P| |t
f I

f t
f I

f t
up down

, 1
TL

,
TL

(27)

As shown in Fig. 9, the power fluctuation is better smoothed in the
proposed method compared to the traditional dispatch strategy.

7.3. Voltage profile

Fig. 10 shows 24 h mean voltage values at all buses. We can see that
system voltage deviations are reduced due to the reactive compensation
of the SVCs at bus 11 and bus 26 and the reactive generation of the DGs.
The voltage deviations range from 0.98 p.u. to 1.02 p.u. On the other
hand, strategy 3 leads to voltage violations (−0.5 p.u. +0.5 p.u.)
without operation optimizations.

7.4. Power loss

Fig. 11 shows the power loss in case 2 versus power loss in case 4.
We can see that all the differences are positive and that during peak
hours (18 h–21 h), the differences are especially high. This means that,
compared to case 4, the power loss of the distribution system in case 2 is
effectively reduced with the adjustment of energy trade.

7.5. Economic performance

In Table 4, we compare three cases in terms of each entity’s profit
(+)/cost(−) and the simulation time (ST). The centralized formulation

Fig. 10. Voltage profiles in two cases.

Fig. 11. Comparison of power losses in case 2 and case 4.

Table 4
Economic performance of each entity under different strategies.

Case 4 ($) Case 6 ($) Case 2 ($)

MG1 −485.3 −489.7 −480.2
MG2 −631.3 −603.6 −575.1
MG3 −366.5 −341.9 −334
DEMO 509.9 403.6 518.4
Total −973.2 −1031.6 −870.9

ST (s) 103.8 473 509

Table 5
Economic performance of case 7 and case 2.

Pricing strategy Case 7 Case 2

Cost of MGs ($) 1106.7 1389.3
DEMO profit ($) 501.8 518.4
Total cost ($) 604.9 870.9
ST (s) 466 609
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(case 4) has a higher summation of all profits (lower costs) than the
traditional game model (case 6). This is because the objective of
strategy 2 is to minimize the operational costs of all entities, while the
benefits of some entities may be sacrificed to achieve equilibrium in the
traditional game theory formulation.

In the proposed formulation, the total cost of case 2 is higher than in
case 6 and in case 4. This is because the dynamic makeup CΔ i t

k
, and

trade price Ci
k is introduced to facilitate market interactions among

MGs. More energy and storage services are traded under the proposed
game vector-based trade mechanism at a higher price, thus resulting in
more profits.

Due to more information and higher dimensions in each computa-
tion iteration, the proposed pricing strategy takes more ST than the
other two benchmarks. Since more profits and better operational
quality are obtained under this strategy, the ST is acceptable for
medium to short term market regulation with hour-level response.

7.6. Stochasticity analyses

To analyze the stochasticity impact on economic operations,
strategy 1 and strategy 5 are compared. In Table 5, we can see that the
total operational costs of the stochastic model (case 2) are higher than
with the deterministic model (case 7). The main economic differences
between case 2 and case 7 exist in the cost of the MGs, since the MGs
include intermittent renewable resources. This is expected since the
optimal value of a deterministic optimization is biased upward relative
to one of the corresponding stochastic optimizations according to
Jensens inequality [43]. The difference between the optimal values of
the deterministic and stochastic models is the value of the perfect in-
formation.

Sensitivity analyses of the operational costs of the MGs under dif-
ferent standard deviations of the renewable generation prediction and
different scenario numbers are conducted in Fig. 12 to further explore

Fig. 12. Sensitivity analysis: (a) total operational cost of the MGs versus standard deviation of renewable generation forecasting error and (b) total operational cost of the MGs versus
number of scenarios.

Fig. 13. Single line diagram of a real system.

Table 6
Configuration of MGs.

MG WT nominal
rating (kW)

PV nominal rating
(kW)

WT&PV normalized standard
deviation (%)

SB total maximum
output (kW)

SB total capacity
(kWh)

MT total maximum
output (kW)

FC total maximum
output (kW)

MG1-2 800 750 5.1 500 1500 300 500
MG3-4 750 500 5.3 500 1500 200 850
MG5-7 1000 1200 5.0 1000 2500 800 1000
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the stochastic impact on market operation.
Fig. 12(a) shows that a higher variance in renewable generation

leads to higher operational costs of the MGs. This is expected because a
higher variance implies that there is a higher probability to have a
lower realization of renewable generation given a constant number of
scenario samplings. Fig. 12(b) demonstrates that the operational cost of
the MGs converges as the number of scenarios increases. This is because
an infinite scenario number for case 2 results in an unbiased and con-
sistent estimator of (18) [43], which means the operational dispatch
under the proposed pricing strategy is more robust.

7.7. Test on real-world system

The proposed pricing mechanism was applied to a real distribution
energy system with 7 energy hubs (MGs) in Shandong Province, China.
The single line diagram of the real system is shown in Fig. 13.

The data concerning the equipment participating in the test are
shown in Table 6.

The remaining data and parameters are found in the previous case
study. Fig. 14 shows the power loss in strategy 1 versus power loss in
strategy 2. Similar to Fig. 11, all the differences are positive and that
during peak hours (13 h-15 h and 19 h21 h), the differences are espe-
cially high.

Similar to Fig. 8, Fig. 15 shows that the total power exchange

between MGs and the distribution network in strategy 1 is smoothed
compared with that in strategy 2.

Table 7 shows that the standard deviation of the 24 h power fluc-
tuation is reduced by 62.2% compared with strategy 2 when the pro-
posed pricing strategy is adopted. Furthermore, the average voltage
profile is improved to 31.1% of the voltage profile in strategy 2, and the
average power loss is reduced to 11.7% of the power loss. Although the
simulation time in strategy 1 is 28.8% more than that of strategy 2, it is
still acceptable considering the advantage the proposed strategy brings
in its application of short- to medium-term market regulation.

7.8. Real application

In addition to the above test, the real application of the proposed
pricing mechanism was implemented on a day-ahead market through a
market operator system of the above real system in practical operations.
As shown in Figs. 16(a) and (b), the market operator has two layers: a
transaction supervision (TS) layer and a control layer. Firstly, the pro-
posed pricing mechanism in the TS layer produces a day-ahead trans-
action plan. Then the entire transaction plan is divided into multi-short
intervals. According to the first interval of the plan and real-time gen-
eration/load/trading data, the control layer gives a signal of revisionary
reference values to controllers of the ESSs and controllable DGs to
control them in real time. When this control process is completed in
that interval, the control layer gives another signal in the next interval
according to the next interval plan and real-time data until the last
control process is completed in the last interval. The above coordinated
transaction-based dispatch is a kind of receding horizon optimization
[44]. Hence, the real-time output of the ESSs and controllable DGs can
follow the transaction plan through the control layer. Figs. 16(c)–(e)
show major equipment facilities.

8. Conclusion

In this paper, a dynamic pricing mechanism that achieves multi-
optimal operational performance in coupled MG-based smart energy
systems was proposed that also considers the uncertainty of large-scale
renewable integration. A two-level optimization was developed, which
describes market operations of the DEMO in the upper level and the
MGs in the lower level. The upper-level model improves the operation
quality of distribution systems, such as power exchange (Section 7.2),
voltage profile (Section 7.3), power loss (Section 7.4), and profitable
trade benefits (Section 7.5) through interactions with the MGs. The
lower-level model maximizes the profit of each MG and represents the
prediction error inherent with renewable generation. A game vector
was proposed to mimic the trade decisions and model the market in-
teractions of each MG. An interactive transaction mechanism was es-
tablished to promote market interactions based on tradable energy and
storage services, and a dynamic makeup price. A customized HGA was
used to solve the proposed hierarchical model. Simulations conducted
using a modified IEEE 33-bus system and further simulations using a
real-world energy system in China demonstrated the effectiveness of the
proposed methodology. Under a high penetration of renewable in-
tegration, the proposed pricing mechanism optimized each entity’s
profit and system-level operational performance.

Fig. 14. Comparison of power losses in strategy 1 and strategy 2.

Fig. 15. Total power exchange curves in strategy 1 and strategy 2.

Table 7
Simulation results.

Strategy Standard deviation of 24 h power
fluctuation (kW)

All-bus-average standard deviation of 24 h
voltage (p.u.)

24 h-average power loss of the
system (kWh)

Total operation cost ($) ST (s)

1 43.64 0.031 62.93 36987.28 904
2 110.39 0.045 71.21 37469.12 702
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