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Abstract—Due to the increasing penetration of intermittent
renewable energy and highly stochastic load behavior, it is
challenging to effectively assess Conservation Voltage Reduction
(CVR) in power distribution systems. This paper proposes
a robust time-varying load modeling technique to accurately
identify load-to-voltage (LTV) dependence, yielding an improved
CVR assessment scheme. In particular, we propose a robust
recursive least squares (RLS) approach to estimate time-varying
parameters of a ZIP load model at the substation level. Based
on the identified load model, we are able to effectively evaluate
LTV and analyze CVR factors. We propose a RLS with variable
forgetting factors to capture the variations of model parameters
under different situations, including continuous and sudden
changes of parameters. To further enable RLS to suppress bad
or missing measurements, we advocate to use the Huber M-
estimator with a convex cost function. Finally, the robust RLS is
solved by an iteratively reweighted technique. We demonstrate
the effectiveness and the robustness of the proposed method using
both simulations and field tests.

Index Terms—Conservation voltage reduction, robust estima-
tion, load modeling, recursive least squares, power distribution
system, bad data.

I. INTRODUCTION

W ITH the advancement of smart grid technologies and
the increasing energy cost in today’s market, imple-

menting effective and efficient energy saving and demand
reduction measures, such as Conservation Voltage Reduction
(CVR), is becoming more and more popular among electrical
utilities. CVR is to operate an electrical distribution network
in the lower band of a permissible voltage range set by
National Service Voltage Standard (ANSI) residential voltage
limits (120V±5%). Typically, electrical utilities use on-load
tap changing transformers, voltage regulators, and capacitor
banks to achieve the benefits of CVR. In past decades, CVR
has been widely tested and piloted by utilities, and attractive
energy-saving results have been reported, usually ranging from
0.3% to 1% load reduction per 1% voltage reduction [1]–
[4]. Furthermore, a study led by Pacific Northwest National
Laboratory has shown that the deployment of CVR on all
distribution feeders in United States could provide 3.04%
annual energy savings nationwide [5].
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There are two main technical barriers for an effective
implementation of CVR [1], [6], [7]: i) the coordination
between CVR and voltage-regulating devices, and ii) the
effective assessment and verification of CVR effects. This
paper provides a robust and viable solution to the latter one. It
is imperative to have an accurate, fast, and easy-to-implement
CVR assessment method to assist utilities in making decisions
to apply voltage reduction, select CVR feeders, and perform
cost/benefit analysis. Energy-saving from the reduction of
voltage is quantified by a CVR factor, which is the ratio of
percentage changes in energy to percentage changes in voltage.
There are several challenges in calculating CVR factors: 1)
the CVR effect is dependent on system configurations, load
types, and customer behaviors, making CVR factors time
variant and highly stochastic, 2) the integration of renewable
distributed generators adds more complexity to load behaviors
and CVR analysis, 3) the missing and bad measurements
and noises in field data, and 4) the natural load variations
which may bias the small CVR effect. The existing methods
to quantify CVR effects can be classified into three categories:
comparison-based, synthesis-based, and load modeling-based.
Comparison-based methods [8] attempt to estimate what the
load would be if there is no CVR using control groups or
simulations. The control groups could be the same feeder
on a day without voltage reduction or a different feeder
with similar operation conditions. However, a good control
group may not exist. Computer simulations require detailed
system models which may not be available, and they cannot
fully capture load behaviors. Synthesis-based methods [9] are
bottom-up methods which test individual electrical appliances’
CVR effects and aggregate them. But it is difficult to collect
accurate load composition information and voltage responses
of all existing electrical appliances. Load modeling-based
methods [10] represent load consumptions as a function of
voltages, and calculate CVR factors from the identified load-
to-voltage (LTV) sensitivities. The advantage of this method
is that real-time CVR factors can be calculated directly from
measurements. Our previous work [10] has demonstrated the
effectiveness of using LTV sensitivities to calculate real-time
CVR factors. However, the exponential load model used in that
work cannot represent different load compositions. Moreover,
the conventional recursive least square (RLS) algorithm used
to identify load model parameters is vulnerable to sudden
parameter changes, impulsive noises and bad data which are
commonly seen in practical measurements.

To deal with the above-mentioned challenges and disad-
vantages of existing methods, we propose a robust time-
varying load modeling technique to assess CVR effects. The
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Fig. 1: Framework of the proposed robust CVR assessment
method.

load behaviors at substations with CVR are captured by a
time-varying ZIP load model, which is composed of constant
impedance (Z), constant current (I), and constant power (P )
elements, but with time-varying parameters driven by customer
behaviors, weather and different system operation conditions.
The intermittency of renewable generators may increase the
frequency of sudden load changes, which lead to fast changes
of load model parameters. This poses challenges for CVR
assessment since power consumption changes resulted from
the voltage reduction depend heavily on the accuracy of ZIP
parameters. To effectively tracking the continuous changes of
load model parameters, this paper proposes a robust recursive
least squares based on the Huber M-estimator with a convex
cost function and a strategically variable forgetting factor
adjustment scheme. Here, the Huber M-estimator is to bound
the influence of impulsive measurement noise or outliers while
the variable forgetting factor is to help identify parameters of
the ZIP model from measurement data in a real-time manner.
Once a credible load model is identified, CVR factors can then
be calculated.

II. PROPOSED ROBUST CVR ASSESSMENT FRAMEWORK

Fig. 1 shows the proposed robust CVR assessment frame-
work using filed measurements. It contains four major steps:
time-varying load modeling, robust model parameter identi-
fication, CVR factor calculation and statistical assessment of
CVR effects. The SCADA system continuously collects real
and reactive power and voltage. After load models are selected,
filed measurements are used as inputs for the proposed method
to identify time-varying load parameters. CVR factors are then
calculated, followed by the statistical analysis of CVR effects.

A. Time-Varying Load Modeling

The performance of CVR depends on LTV sensitivities.
Therefore, the accurate assessment of LTV sensitivities is a
key step of load modeling. In the literature, two types of
load modeling are widely used, i.e., component-based and
measurement-based modeling. The component-based approach
develops load models from prior knowledge and its constituent
parts. This is difficult to implement in large systems since load

model parameters change with time. The measurement-based
approach identifies and updates load model parameters using
real-time field measurements. In this paper, the measurement-
based approach is used to capture the continuous system
variations.

The data required for measurement-based approach is the
sampled voltage magnitude, and active and reactive power
consumption at substations. Once field measurements are
available, the next step is to develop a mathematical relation-
ship between the voltage magnitude and power at the point
of aggregation. There are three different approaches to relate
the measured data for proper representation of a load, i.e.,
static, dynamic and composite models [11]. Since the purpose
of CVR assessment is to analyze energy-savings under the
steady-state system operation, the static load model is used.

A static load model describes the relationship between
the bus voltage and the load power at a given instant of
time. There are two forms of static load models, ZIP load
model and exponential load model. Since CVR effects may
change once LTV sensitivities change from one static load type
(constant impedance) to another load type (constant power),
the exponential load model may not be able to capture this
transition accurately, while the ZIP load model can handle
that by adaptively changing the percentage of the Z, I and
P through online parameter estimators. In addition, because
of human behaviors, weather conditions and continuous on/off
switching of different loads, the load composition is unknown
in most feeders and changes with time. Thus, a time-varying
ZIP load model that captures the input-output relationship
between power and voltage of the substation of interest is

P (t) = P0

(
a (t)

(
V (t)

V0

)2

+ b (t)

(
V (t)

V0

)
+ γ (t)

)
, (1)

where a(t), b(t) and γ(t) are time-varying parameters that
need to be estimated and a(t)+b(t)+γ(t) = 1; P0 is the base
active power consumed at the nominal voltage V0; P (t) is the
aggregate active power consumption at the point of interest.
The expression for the reactive power has a similar form. By
discretizing (1) and defining zk = Pk/P0

, V lk = Vk/V0, we
obtain

yk = 1− zk =
[
1− V l2k 1− V lk

] [ ak
bk

]
= HT

k xk,

(2)
where ak + bk + γk = 1.

Problem statement: Since yk is subject to measurement
errors (small or even large one that induces outliers) or mea-
surement loss, the objective is therefore to find the parameter
x̂k such that the error between measured system outputs and
estimated model outputs at time instant k is minimized, i.e.,

x̂k = argmin
xk

f
(
yk −HT

k xk
)
, (3)

where f(·) is the objective function.

B. Robust Parameter Estimation

In the literature, the weighted least squares is widely used
to estimate ZIP model parameters with the assumption that



1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2630027, IEEE
Transactions on Smart Grid

IEEE TRANSACTIONS ON SMART GRID, VOL. , NO. , 2016 3

these parameters remain constant during the period to collect
multiple measurements [12]–[14]. However, this assumption
might not be valid given that load consumption is con-
stantly changing with time due to weather and continuous
voltage/VAR control device switchings. In other words, load
model parameters are time variant [1], [10]. On the other
hand, as investigated in [15]–[17] that owing to load variations
caused by the weather, economic, social behavior, temporal
correlations exist among loads in the same geographic area.
Driven by the change of loads through power flow equa-
tions, the voltage should change at the same time, and as
a consequence exhibiting temporal correlations. In addition,
during the implementation of CVR, the time series reduction
of voltage would result in time series changes of load power.
Therefore, it is important to incorporate temporal correlations
of voltage or power into the CVR assessment.

To capture temporal correlations and update load model
parameters continuously, RLS can be used [18], [19]. The idea
is to solve the following optimization problem recursively,

x̂k = argmin
xk

t∑
k=1

λt−k
(
yk −HT

k x̂k
)2
. (4)

Although RLS has been successfully applied to many en-
gineering problems and shown to have a certain degree of
tracking capability, it suffers from several issues, such as slow
convergence in sudden system changes because of a constant
forgetting factor, vulnerability to impulsive measurement noise
due to the use of least squares technique, etc [19]. Indeed,
intermittent renewable-based power sources increase the prob-
ability of sudden changes in complex bus voltages along the
feeder within a small timeframe, which may cause sudden
changes of load model parameters [20]–[22]. There might
be other reasons that could cause large parameter changes,
such as switchings of voltage control devices, sudden load
changes, etc. On the other hand, the field power and voltage
measurements might be subject to gross errors caused by
impulsive measurement noise, failures of metering devices,
etc. Thus, a robust time-varying load parameter estimation
method should be developed.

In this paper, the robust Huber M-estimator [23] formulation
is adopted to enhance the statistical robustness of RLS, while
a variable forgetting factor scheme is proposed to improve the
adaptiveness of RLS for addressing sudden parameter changes.
Formally, we have the following objective function,

J (xk) = ξkJφ (xk) + (1− ξk) Jλ (xk) , (5)

where Jφ (xk) and Jλ (xk) represent the robust estimation
criterion and RLS criterion with variable forgetting factors,
respectively. They are expressed as follows

Jφ (xk) =

t∑
k=1

λ1 (k)
t−k

ρ (rSk) , (6)

Jλ (xk) =
t∑

k=1

λ2 (k)
t−k(

yk −HT
k xk

)2
, (7)

where λ1(k) and λ2(k) are time-varying forgetting factors and
will be shown in detail later; rSk = rk/s is the standardized

residual; rk = yk − HT
k x̂k is the residual; s = 1.4826 ·

bm·mediani|rk(i)| (i = 1, ..., L and L is the order of the
median filter) is the robust scale estimate; bm is a correction
factor for unbiasedness at the Gaussian distribution; ρ(·) is the
Huber convex function [23] of rSk ,

ρ (rSk) =

{ 1
2r

2
Sk
, for |rSk | < c

c |rSk | − c2
/
2, elsewhere

, (8)

where c is a tuning parameter. The Huber score function is a
blend of the minimum ℓ1 and ℓ2 norm function. As c→ 0, it
approaches the ℓ1 norm, which is equivalent to the median in
the scalar case; and as c→ ∞, it tends to the ℓ2 norm, which is
equivalent to the mean in the scalar case. It is shown by Huber
[23] that the ρ function is asymptotically optimally robust in
the ϵ neighborhood of the Gaussian distribution. To achieve
high statistical efficiency at Gaussian distribution or other non-
Gaussian thick-tailed distributions, it is recommended to set c
between 1 and 2.

Remark. It is important to notice that a variable forget-
ting factor is useful for tracking both the slow and sudden
variations of parameter values, whereas the robust Huber M-
estimator plays a role in bounding the influences of outliers
caused by impulsive noise, meter failures, etc. In other words,
we need to distinguish the sudden system parameter changes
and outliers so that the proper criterion can be chosen. This is
solved by defining a binary decision parameter ξk ⊆ {0, 1}. If
ξk = 0, criterion (7) is chosen to track the sudden parameter
changes, otherwise criterion (6) is adopted to suppress outliers
and track slow variations of parameter values with modified
variable forgetting factors. Thus, the key is to develop appro-
priate decision rule of ξk, which will be shown below.

Define a ϵ-contamination model, i.e., G = (1− ϵ)F +ϵ∆r,
where F is the target distribution, such as Gaussian distri-
bution; ∆r is the unknown probability mass at r with a
large variance compared to F , which is commonly used to
simulate outliers or impulsive noise. ϵ is a binary independent
identically distributed process so that the probability is close
to zero when ϵ=1, and has a value close to one when ϵ=0. To
this end, a decision rule can be developed using the statistics
of mean and median [19] in each step:

ξk =

{
1, s ·median {|rk (i)|} < mean {|rk (i)|}
0, s ·median {|rk (i)|} ≥ mean {|rk (i)|}

, (9)

where the median and mean filters of the absolute value of
the residual are calculated on a sliding window with a length
of L previous samples of residual.

If an abrupt parameter change is declared, the criterion (7)
is used and solved recursively through (10)-(13)

x̂k = x̂k−1 +Kk (yk −Hkx̂k−1) , (10)

Kk = Σk−1H
T
k

(
λ2(k)I +HkΣk−1H

T
k

)−1
, (11)

Σk =
1

λ2(k)
(I −KkHk)Σk−1, (12)

λ2 (k) =

{
τ = 1− rk

2

η[1+HTk Σk−1Hk]
if τ > λ2min

λ2min if τ ≤ λ2min

, (13)
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where η is a constant chosen to satisfy the desired estimation
quality in the stationary operation condition [19]; λ2min is the
lower bound of the variable forgetting factor and is typically
set around 0.8. This small forgetting factor enables RLS
to emphasize on recent measurements while forgetting older
information fast so as to track sudden changes.

On the other hand, if an outlier is detected, the criterion
(6) is chosen. To minimize (6), one takes its partial derivative
with respect to xk and sets it to zero, yielding

RHρ
k xk = P xρ

k , (14)

where

RHρ
k =

k∑
i=1

λ1 (k)
k−i

q (rk (i))HiH
T
i

= λ1 (k)R
Hρ
k−1 + q (rk)HkH

T
k

, (15)

P xρ
k =

k∑
i=1

λ1 (k)
k−i

q (rk (i)) yiHi

= λ1 (k)P
xρ
k−1 + q (rk) ykHk

, (16)

and q (rk) = ψ (rk)/rk; ψ (rk) = ∂ρ (rk)/∂rk. Equation
(14) is called the M-estimator normal equation, while RHρ

k

and P xρ
k represent the M-estimator correlation matrix of

Hk and M-estimator cross correlation vector of Hk and yk,
respectively. Using the matrix inversion lemma and defining
Σk = (P xρ

k )
−1, (14) could be solved by

x̂k = x̂k−1 +Kkwk (yk −Hkx̂k−1) , (17)

Kk = Σk−1H
T
k

(
λ1(k)I + wkHkΣk−1H

T
k

)−1
, (18)

where wk is the weight of the kth measurement given by

wk = min

(
1,
c · sign (rSk)

rSk

)
. (19)

λ1(k) is a variable forgetting factor that is determined as
follows: in cases that outliers are detected, λ1(k) retains its
previous value, and its value is updated as follows when the
next sample arrives,

λ1 (k) =

{
τ = 1− rk

2

η[1+HTk Σk−1Hk]
if τ > λ1min

λ1min if τ ≤ λ1min

, (20)

so as to track the slow variations of parameters. λ1min is the
lower bound of the variable forgetting factor.

After the load parameter identification, the estimation error
covariance matrix Σk needs to be updated such that the next
recursive parameter estimation can be performed. It should be
noted that when an outlier occurs, the error distribution no
longer follows Gaussian distribution. Therefore, the updating
of the parameter estimation error covariance matrix using the
Gaussianity assumption, e.g., the updating of Σk through

Σk =
1

λ1(k)
(I −KkHk)Σk−1, (21)

Kk = Σk−1H
T
k

(
λ1(k)I +HkΣk−1H

T
k

)−1
, (22)

will cause biased estimation and lead to a degraded perfor-
mance of the estimator, resulting in poor tracking capabil-
ities and lower statistical efficiency. The correct asymptotic

covariance matrix of that estimator should be updated using
the influence function based on the following theorem [24]:

Theorem 1. As the number of the observation tends to be
very large, the probability distribution of the estimated state
tends to be the Gaussian distribution asymptotically with zero
mean and an asymptotic covariance matrix Σk expressed as
Σk = E[IF · IF T ], where IF is the influence function (IF)
of an M-estimator.

Corollary 1.1. According to Hampel’s proposal, the asymp-
totic variance matrix V of a linear regression model (Y =
Xθ + ε for example) using M-estimator can be derived from
the Influence Function (IF) given by

V = lim
m→∞

V ar
(√

mθ̂m

)
= E

[
IF · IF T

]
=

E[ψ2(rS)]
(E[ψ′ (rS)])

2

(
XTX

)−1 , (23)

where rS is the standardized residual and m is the number of
measurements.

Thus, following Theorem 1 and Corollary 1.1, we could
also derive the asymptotic covariance matrix of our estimator
as

Σk =

E[ψ2(rS)]
(E[ψ′ (rS)])

2

λ1(k)
(I −KkHk)Σk−1, (24)

Kk = Σk−1H
T
k

(
λ1(k)I + wkHkΣk−1H

T
k

)−1
. (25)

Remark. When there is no bad measurement, all the weights
of measurements are equal to 1, i.e., wk = 1, therefore, Σk

reduces to

E[ψ2(rS)]
(E[ψ′ (rS)])

2

λ2(k)
(I −KkHk)Σk−1 (in this case, λ2(k)

and λ1(k) have the same updating formula).
EF [ψ2(rS)]

{EF [ψ′ (rS)]}2

is close to 1 [23]. For example, this value is 1.0369 for
c=1.5, Σk ≃ 1

λ2(k)
(I −KkHk)Σk−1, which is the error

covariance matrix of RLS estimator with variable forgetting
factors. Otherwise, outliers are downweighted and suppressed.
This further explains the good property of the proposed
robust estimator, that is, it has a good robustness to outliers
while maintaining a high statistical efficiency under Gaussian
distribution.

C. CVR Effects Assessment

Definition: CVR factor is defined as the percentage re-
duction of “Quantities” ∆W with respect to the percentage
reduction of voltage V , where ∆W may refer to real or
reactive power for a particular part of a distribution system
(load, feeder, substation, or utility) [1], [5], i.e.,

CV Rf =
∆W%

∆V%
. (26)

In this paper we use the estimated load model parameters
to calculate the CVR factor as the ratio of changes in either
real or reactive power to changes in voltage. This approach is
able to estimate the power consumption at an arbitrary voltage
level given the initial voltage and power injection values. At
time instant k, P̂k and Q̂k are the estimated real and reactive
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Fig. 2: Tracking parameter a without sudden changes and
outliers.

power, respectively. Therefore, the ratio of changes of real
power δP̂k (or reactive power δQ̂k) to changes in voltage δV̂k
can be calculated through

δPk
δVk

=
Pk − P̂k

Vk − V̂k
, (27)

δQk
δVk

=
Qk − Q̂k

Vk − V̂k
, (28)

where Pk, Qk and Vk are the values without CVR.
Thus, the CVR factors associated with real and reactive

power could be further calculated as

CV RPf =
δPk
δVk

.
Vk
Pk
, (29)

CV RQf =
δQk
δVk

.
Vk
Qk

. (30)

Remark. “CVR factor” is usually related with active power
as the electricity consumption is normally billed for active
power. In other words, lower active power consumption results
in a lower bill. Since reactive power reduction does not lead to
economic benefits in current industry settings (it may certainly
be beneficial for system operations), the reactive CVR effects
are not discussed in detail in this paper.

III. SIMULATION RESULTS

Utilities are interested in aggregate CVR effects at the sub-
station level. Therefore, we focus on identifying load models
for substations with CVR. The IEEE 118-bus test system is
used in this paper. We randomly pick 10 load buses and
assign time-varying ZIP models to these buses. All other buses
are represented by the constant PQ model. For illustration,
we only show the results of one of the 10 substations. To
simulate the measurements at substations for load parameter
identification, the power flow is executed using specified
load parameters at each time instant. The calculated real and
reactive power and the voltages are taken as measurements,
and corrupted by Gaussian noise with zero mean and standard
deviation of 10−2. 200 measurement samples with different
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Fig. 3: Tracking parameter b without sudden changes and
outliers.
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Fig. 4: Tracking parameter a with sudden parameter changes
at time sample 100 but without outliers.
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Fig. 5: Tracking parameter b with sudden parameter changes
at time sample 100 but without outliers.

load parameters are obtained. Three identification methods,
traditional RLS with a constant forgetting factor 0.95, RLS
with variable forgetting factors (RLS-VFF) and the proposed
robust RLS with variable forgetting factors (Robust-RLS-
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Fig. 6: Tracking parameter a without sudden parameter
changes but with outliers at time sample 50.

VFF), are used for comparisons. The threshold for the Huber
cost function is 1.5; λ1min = λ2min = 0.8. To make the results
statistically sound, 100 Monte Carlo simulations for each case
is performed and the average value is considered as the final
parameter estimates.

A. Case 1: Continuous Load Parameter Changes Without
Sudden Changes and Outliers

In this scenario, we assume the initial ZIP parameters are
a =0.3, b =0.6 and γ =0.1. A Gaussian random variable with
zero mean and standard deviation 10−2 is added to a and
b to simulate continuous parameter changes while parameter
γ = 1−a− b. No sudden parameter change or outlier occurs.
Due to the space limitation, only the results of parameters a
and b are presented (parameter γ could be easily calculated
by γ = 1− a− b). Figs. 2 and 3 show the parameter tracking
results. It could be observed that three methods have a similar
performance under this operation condition.

B. Case 2: Continuous Load Parameter Changes with Sudden
Changes but Without Outliers

In this case, we have the same assumptions as Case 1
except that at the time instant 100, parameters a and b change
to 0.5 and 0.4 suddenly because of different types of load
switchings or other control actions. The parameter tracking
results are presented in Figs. 4 and 5. From these two figures,
we can see that the proposed Robust-RLS-VFF is the fastest
method to track sudden parameter changes, followed by the
RLS-VFF with strategically tuned forgetting factors to handle
sudden system changes. The RLS has the slowest tracking
speed because of a constant forgetting factor that needs longer
time to converge to the new parameter.

C. Case 3: Continuous Load Parameter Changes without
Sudden Changes but with Outliers

In this case, we have the same assumptions as Case 1
except that the power measurements at the time instant 50
become outliers with 30% measurement errors due to the cyber
attacks, impulsive measurement noise or meter failures, etc.
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Fig. 7: Tracking parameter b without sudden parameter
changes but with outliers at time sample 50.
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Fig. 8: Tracking parameter a with both sudden parameter
changes and outliers at time samples 50 and 100, respectively.

Figs. 6 and 7 show the results of three methods. It can be
seen that RLS-VFF and RLS could not suppress the impact
of outliers because the LSE formulation is highly sensitive to
gross errors. In addition, it is interesting to notice that RLS-
VFF is more vulnerable to outliers than RLS. The reason
is detailed as follows: the occurrence of outliers can cause
large residuals, which makes RLS-VFF erroneously think
there is a sudden system change; then the forgetting factor
is changed to a smaller value, indicating large weights to cur-
rent measurements while forgetting the previous information;
however, the current measurements are outliers, which makes
the estimation even worse. By contrast, the proposed Robust-
RLS-VFF is able to effectively suppress the outliers through
the strategically updating mechanism of forgetting factors and
the robust Huber M-estimator.

D. Case 4: Continuous Load Parameter Changes with both
Sudden Changes and Outliers

In this case, we create a more challenging situation, where
the system is subject to both sudden load parameter changes
and outliers, to test the performance of the three methods.
This case has the same assumption as Case 3 except that at
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Fig. 9: Tracking parameter b with both sudden parameter
changes and outliers at time samples 50 and 100, respectively.
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Fig. 10: Measured active power and the estimated model
outputs on June 21, 2012

the time instant 100, parameters a and b suddenly change to
0.5 and 0.4, respectively. The test results are shown in Figs.
8 and 9. It can be concluded that the proposed Robust-RLS-
VFF could effectively handle both sudden parameter changes
and outliers, while the RLS-VFF has a better performance
in tracking sudden parameter changes than RLS, but is more
sensitive to outliers than RLS. The above case studies show
that the proposed Robust RLS-VFF is more suitable for CVR
assessment since it can capture continuingly-changing load
characteristics in practical power systems.

IV. CVR ASSESSMENT WITH FILED MEASUREMENTS

In this section, Robust-RLS-VFF is applied for CVR as-
sessment using field measurements from a utility’s substation.
The CVR factors of this substation are calculated using the
proposed method. The CVR tests were conducted from June
2012 to August 2012. During this period, 44 days are voltage-
reduction days, while the remaining days are normal-voltage
days. The measurement devices installed at the substation
measure kW, kVAR, voltage and current at a one-minute
interval. The performance of load modeling can be validated
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Fig. 11: CVR factors calculated by the proposed method on
June 21, 2012

TABLE I: Performance Comparisons of Three Methods With
Field Measurements

Index RLS RLS-VFF Robust-RLS-VFF
REP 1.52% 1.35% 0.93%
MAPE 1.21% 1.06% 0.88%

by comparing the outputs of the identified model with the
measured system data. To do this, we randomly pick up
one of CVR test days, i.e., June 21, 2012 as an example.
Fig. 10 shows the comparison results of the estimated and
measured active power. We can see from this figure that the
load model identified by the proposed method are very close to
the system measurements, demonstrating its effectiveness. To
further justify the effectiveness and robustness of the proposed
method, we show the performance comparison results of our
proposed method and the other two non-robust methods, in
terms of relative error percentage (REP) and mean absolute
percentage error (MAPE). The definitions of these two indices
can be found in [25]. The results are presented in Table I. It
can be seen that the proposed method outperforms the other
two methods. Fig. 11 shows CVR factors calculated by the
proposed method during the voltage-reduction period on a test
day. It can be observed that CVR factors vary with time due
to different load consumption patterns.

To further analyze the statistics of CVR factors for June,
July and August, we have calculated the CVR values for the
test days in 1-min time interval. Figs. 12-14 show histograms
of CVR factors for each month in summer 2012. CVR factors
in these three months roughly follow Gaussian distributions
with mean 0.83, 0.85 and 0.87, respectively. The lower and
upper quartiles are 0.77 and 0.89 in June, 0.80 and 0.91 in
July, 0.84 and 0.94 in August, respectively. It shows that CVR
factors are changing due to different load consumption patterns
at different time, but they do not vary a lot. It is also interesting
to notice that CVR results obtained here are fairly consistent
with the seasonal CVR factors reported by several utilities,
where CVR factors of AEP, NEEA and HQ vary within 0.78-
1.01 during summer [26], [27].
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Fig. 12: Histogram of CVR factors in June 2012
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Fig. 13: Histogram of CVR factors in July 2012
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Fig. 14: Histogram of CVR factors in August 2012

V. CONCLUSION

This paper develops a robust time-varying load modeling
technique to consider the impacts of load stochasticity on the
assessment of CVR effects. The proposed robust parameter
identification method can track steady and sudden step changes
of load parameters, and deal with the occurrence of bad mea-
surements thanks to variable forgetting factors and the robust
Huber M-estimator. Accurate time-varying load models can be

identified and CVR factors could be calculated appropriately.
The proposed method is different from previous methods
on CVR effect assessment as it does not require control
groups or any assumptions of linear relationships between the
load and its impact factors. Therefore, our method could be
regarded as a measurement-based technique for practical CVR
applications.
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