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Abstract—This paper presents a mathematical model for the
energy bidding problem of a virtual power plant (VPP) that
participates in the regular electricity market and the intraday
demand response exchange (DRX) market. Different system
uncertainties due to the intermittent renewable energy sources,
retail customers’ demand and electricity prices are considered in
the model. The DRX market enables a VPP to purchase demand
response (DR) services, which can be treated as “virtual energy
resources”, from several demand response providers (DRP) to
reduce the penalty cost on the deviation between the day-head
bidding and the real-time dispatch. This could increase the
expected profit and the renewable energy utilization of the VPP.
The overall energy bidding problem is modeled as a three-
stage stochastic program, which can be solved efficiently by
the scenario-based optimization approach. Extensive numerical
results show that the DRX market participation can improve the
VPP’s energy management.

Index Terms—Energy bidding, stochastic programming, vir-
tual power plant, demand response exchange, short term elec-
tricity market.

NOMENCLATURE

Set-Indices
E,S1(2, 3) Expectation and Stages
t, s Indices of time intervals, t = 1, 2, . . . , NT , and

indices of scenarios, s = 1, 2, . . . , NS
i, j,m Indices of buses
b, d, e, g, w Indices of battery energy storages (BES), out-

side demand response providers (DRP), retail
customers, thermal generators, wind generators,
respectively

n Indices of block in price quota curve of retail
customer e and price quantity offer of DRP d

B,Ω Set of all buses and set of all transmission lines
linking bus pairs

γ
B(E,G,W)
i Set of BESs (retail customers, thermal generators,

wind generators) at bus i
(.).,t,s at time t, in scenario s
Parameters
τ Length of one time slot, 1h
NS, NT Number of scenarios/ Number of time slots (24)
λDt,s Day-ahead electricity price ($/MWh)
λ
P(N)
t,s Real-time positive (negative) balancing price,

($/MWh)
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λdegi Degradation price for battery at bus i,
(15$/MWh)

VPP’s parameters:
Pw
i,t,s Power of wind plant w at bus i, (MW )
SUgt , SD

g
t Start up and shut down cost of thermal units g, at

bus i, ($)
Outside DRPs’ parameters:
NBd Number of blocks in price quantity offer curve of

outside DRP d
λBid,t Bilateral contract price offer of DRP d, ($/MWh)
λnd,t,s Pool contract price offer of DRP d in scenario s,

pertaining to the n interval price quantity offer
curve, ($/MWh)

pn,max
d,t,s DR maximum quantity of DRP d, pertaining to

the n interval price quantity offer curve, (MW )
DRcap

d DR capacity of DRP d, (MWh)
Retail customers’ parameters:
NBei Number of blocks in price quota curve of cus-

tomer e at bus i, (MWh)
De
i , t, s Energy demand of customer e at bus i, (MWh)

le,n,max
i,t,s Demand supplied to customer e, pertaining to the

n interval of the price-quota curve, (MW )
First-stage Variables
λei Retail price that VPP offer to customer e, at bus

i, ($/MWh)
PDt Day-ahead power bidding, (MW )
Second and Third-stage Variables
P del
t,s Power delivered to main grid, (MW )

VPP’s operation:
P

N(P)
t,s Negative (Positive) power exchange with main

grid in RT balancing market, (MW )
P gi,t,s Generated power of thermal plant g at bus i,

(MW )
Pw,c
i,t,s Curtailed power of wind plant w at bus i, (MW )
P

b,c(b,d)
i,t,s Charging (discharging) power of BES b at bus i,

(MW )
Cgi,t,s Generation cost of unit g at bus i, ($)
DR exchange with outside DRPs:
pnd,t,s Pool DR quantity purchased from DRP d, at block

n, (MW )
DRd,t,s Pool DR quantity purchased from outside DRP d,

(MW )
CDRPd,t,s Pool DR purchased cost from outside DRP d, ($)
PBi
d,t,s Bilateral DR quantity purchased from outside

DRP d, (MW )
Bid,t,s Bilateral DR purchased cost from outside DRP d,

($)
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Selling electricity to retail customers:
P ei,t,s Power sold to customer e, at bus i, (MW )
Rei,t,s Revenue of selling electricity to reatil customer e

at bus i, ($)
ue,ni,t,s Auxiliary binary variables to calculate λei

I. INTRODUCTION

Virtual Power Plant (VPP) enables the integration of differ-
ent generation technologies such as renewable energy, conven-
tional thermal energy, and battery energy system into a unified
and flexible unit that can support the upcoming high penetra-
tion of distributed renewable energy generations [1]. Studies
have shown that a VPP has a better market performance than
a single generation entity by compromising the strength and
the weakness of different facilities in a cooperative manner
[2]. In general, the objective of VPP when participating in the
short-term electricity market is to maximize its expected profit
from trading energy in the day-ahead (DA) market and selling
energy to the retail customers while minimizing the imbalance
cost incurred in the real-time (RT) balancing market [3].

Unfortunately, a VPP with high penetration of renewable
energy might require a large-scale storage facility to counter
the intermittent renewable energy output [1, 2, 4, 5], which
results in high investment costs. The VPP also must consider
the uncertain demands of its retail customers when setting
prices [6]. It is difficult for a VPP to make decisions under
these uncertainties because of a significant delay between the
closure of the day-ahead market when the bidding quantities
are decided, e.g., 12 pm in the prior day, and the beginning
of the energy delivery period in the real-time operation. To
address these issues, the VPP can either employ demand
response services (DR) [7]–[9, 45] or take corrective actions
in the intraday market model [3, 9]. A unified solution to
this problem, namely, the intraday demand response exchange
(DRX) market, has been proposed in the literature [45].

DR can be exploited as a cost effective method to en-
able large-scale deployment of distributed renewable energy
[7, 8, 10]–[12, 45]. Despite the rich literature on DR research,
there are quite few efforts in developing a comprehensive and
fair scheme for DR designs that consider potential benefits
offered by different entities and that can be integrated easily
into the current market structure. The suboptimal DR designs
can result in unfair benefit sharing among players and distort
the energy market, which has been observed in several studies
[9,45]. The concept of DRX market can be viewed as a global
solution approach for DR design. The DRX market acts as
a virtual commodity between DR providers/sellers such as
distribution system operator, load serving entities, and DR
customers/buyers such as GENCOS, microgrids, and VPPs, to
improve their business effectiveness [9,45]. The DRX market
allows exchanges of DR services among multiple buyers
and sellers via two mechanisms, namely pool contracting
and bilateral contracting, which are coordinated by the DRX
Operators. In short, a DRX market guarantees the fairness in
DR allocation, balances benefits of all players, and ensure
optimum market efficiency [45]. The intraday DRX is also
compatible to the current market structure [9].

There is rich literature on VPP’s bidding designs in the
energy market. The work in [1] studies the VPP’s optimal
bidding strategy in the joint day ahead energy market and

reserve market. The problem is formulated as a mixed integer
nonlinear programming (MINLP), which is solved by the
genetic algorithm. References [2, 4] propose optimal bidding
strategies for VPP which includes different generation entities
using stochastic programming approach. The work in [8]
proposes a scoring rule based DR program for a VPP, which
requires the design of the local market. Most of these papers,
however, do not consider the VPP’s bidding design while
exploiting the DRX concept in their optimization frameworks.

This paper extends our original work [13] where we
presented a mathematical model for energy bidding of the
VPP in three energy trading floors including the day-ahead
(spot)electricity market, the balancing market, and the novel
intraday DRX market. Our model considers uncertainties of
renewable energy, market, and customer loads as well as
detailed modeling of DR trading. In our design, the VPP acts
as a price taker in the day-ahead market to submit energy
bidding quantities and acts as a deviator to purchase balancing
energy to correct energy mismatch with respect to day-ahead
decisions [2]. The VPP also needs to determine price offers
when selling energy to several local retail customers [6]. The
VPP can purchase DR services from several DR providers
in the intraday DRX market to reduce energy imbalance cost
from the balancing market and provide more competitive price
offers for its customers [9, 45]. Our extension also considers
the potential DR services provided by VPP’s energy customers
via the DRX market. The overall bidding problem is modeled
as a three-stage program, which is computationally efficient
by using scenario-based approach [2].

The remaining of this paper is organized as follows. Section
II provides the system model with detailed assumptions and
descriptions. Section III presents the problem formulation of
VPP’s optimal bidding strategy. Extensive numeral results are
provided in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

A. Modeling Descriptions and Assumptions

This paper considers a commercial VPP, which consists of
renewable energy sources (wind farms), nonrenewable energy
sources (thermal generators- DGs), conventional storage fa-
cilities (e.g., battery energy systems-BESs). VPP acts as a
commercial aggregator that maximizes its revenue by selling
energy in the whole sale electricity market and to local retail
customers. The VPP can participate in both energy markets
and DRX market as shown in Figure 1 [9].

The data of renewable energy generation is taken from the
NREL dataset [35]. Since this dataset was studied in [33],
its stochastic stochastic model of wind power generations is
adopted in this paper as follows:

Pwd
t = P̄wd

t + εwdt

where the forecast wind power P̄wd
t at time slot t can be

estimated from the historical data [14] by using the ARIMA
model. The forecast error εwdt is assumed to be an independent
and identically distributed (i.i.d.) random noise following a
truncated zero mean normal distribution [7,33]. The estimation
toolbox [15] is employed to generate wind power scenarios
that capture the stochastic nature of this renewable resource.

The energy consumptions that local retail customers pur-
chase from the VPP depend on the VPP’s price offers. We
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Fig. 1. Virtual Power Plant with Demand Response Exchange Market

assume that the relation between VPP’s price offer and the
energy purchased by retail customers can be characterized
by a stepwise price quota model [6]. In particular, local
retail customers such as residential, commercial, and industrial
customers [6], exhibit elastic behavior in response to the retail
price, i.e., customers are less willing to buy energy as the
price is higher. It is worth mentioning that beside the stepwise
price quota model [6] considered in this paper, there are
other models that describe the relation between price and
energy consumptions such as the DR load model in [16] and
the multi-block utility function in [17]. These models, which
were considered in our previous works [18, 19], can also be
incorporated in the framework proposed in this paper. Similar
to the wind power, the customer loads are based on historical
data and the forecasting error follows a zero mean truncated
normal distribution [7, 20]1.

B. Market Framework

The short-term market model in this paper is based on
the Nordic market [9, 16]. For simplicity, we ignore the
intraday Elbas market (adjustment market) since it is not often
activated as discussed in [16]. The VPP’s energy imbalance
can be resolved by utilizing DR via the DRX market at
the intraday timescale, which allows the VPP to utilize the
information obtained after the day-ahead market closure, e.g.,
the realization of DA prices and the update of load forecasts
and forecasted RT balancing prices [3,9]. The balancing price
is represented by a pair of positive and negative balancing
prices, i.e. (λPt,s ≤ λDt,s ≤ λNt,s) where their relationships with
the DA market prices are explained in [3, 16]. In particular,
the pair (λPt,s ≤ λDt,s ≤ λNt,s) represents the up and down regu-
lations due to the negative or positive imbalance respectively
[3, 16, 34]. If the imbalance is positive then the market has
excess energy generation and the regulation down is activated
[3, 16, 34]. In contrast, if the imbalance is negative, there is a
lack of energy generation in the market and the regulation up is

1The assumption that forecasting errors follow normal distributions can be
found in many previous works as discussed in [7].

activated [3,16,34]. Various methods for generating scenarios
and modeling the uncertainties of market prices in the Nordic
market are proposed in the literature [3, 16, 32, 34, 40]. In this
paper, we use the ARIMA models proposed in [32], which
is a extended model of [3], to generate the price scenarios of
the day-ahead (i.e., Elspot market). In addition, we use the
stochastic model of the Nordic imbalance price proposed in
[34] since its validity is already confirmed in [16,34,40]. This
“dual pricing policy” for balancing markets is widely used in
European pool markets [3]. In US markets, the “single pricing
policy” is more popular.

C. DRX market Modeling

This paper considers the DRX market model proposed
in [9] where the VPP can make extra payments to several
Demand Response Providers (DRPs) to realize load reductions
to compensate for the energy deficit from DRP [9]. This is
equivalent to the purchase of certain “virtual energy” from
the DRX market, which is more cost-efficient compared to
the energy purchase from the balancing market. In particular,
the DR can be purchased from DRPs, whose pool based
characteristic can be modeled by a price quantity offer [9],
as shown in Figure 2, and the bilateral prices are settled in
long term.

This paper considers load reduction based DR [9] since
load reduction is suitable with current market practices and
research [47, 48, 51]. As stated in [51], DR services inte-
grated in the wholesale electricity market are indeed load
reductions. In particular, DR can be aggregated by DRPs
from ”energy consumers to elicit their load reduction” using
different load reduction strategies such as load shifting, load
curtailment, battery, and on-site generator [51]. Integrating
DR in form of load reduction in the reconstructed wholesale
market operations such as market clearing [47] or security
constrained unit commitment [48] has been studied in the
literature. Demonstration projects such as PowerMatcher and
PowerMatching city in Europe; and GridWise in the US also
consider DR in form of load reductions [49]. Specifically,
energy consumers was paid or rewarded to reduce their energy
consumptions in a particular DR event [49]. Load reduction
based DR is also used in developing conceptual model of
DRX market in [45, 46] and its sole model in [9, 41, 50].
The opposite form of load reduction is load increment or load
absorption where the customers were paid to increase their
energy consumptions [43, 44]. The load increments can be
modeled by allowing negative price in the price quantity offer.
Note that there is no technical challenge in considering load
absorption, e.g., allowing negative price in the price quantity-
curves, in the VPP’s bidding model. However, the conceptual
models of load increments are not matured yet. There are lacks
of field studies and theoretical research for load increments.
Hence, load increments are not considered in this paper.

In this paper, we consider the case that DR is traded in
the intraday DRX market [9] without the need of modifying
traditional wholesale market trading floors [47, 48]. In par-
ticular, DRPs participate in the intraday DRX by providing
its price quantity offer that describes the relation between the
amount of load reduction offered and the service prices set
[9]. In general, there is a significant delay between the closure
of the day ahead market (12 pm in the previous day) when
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VPP submits the bid and the beginning of the energy delivery
period in the current day [3]. The integration of the DRX in the
intraday time frame allows VPP to take corrective actions by
purchasing DR services. These actions can reduce or eliminate
the differences between the expected power delivery and the
schedule cleared in the day-ahead market. Moreover, formation
of liquid markets close to delivery such as the intraday markets
guarantees that DR services will be accessible for the VPP
with high penetration of renewable energy [9]. The intraday
DRX can be considered as a new trading floor. Consequently,
the objective of the VPP is to maximize its expected profit
considering the entire sequences of operation including three
trading floors: day-ahead, intraday, and real time balancing
market.

In this paper, the VPP acts as a DR buyer in the DRX
market because of the following reasons. Firstly, there are
different VPP models proposed in the literature. This paper
considers the well known model of VPP, i.e., an aggregator of
multiple energy producers that mostly are renewable energy.
This VPP model has been widely recognized in the literature
[3, 5,9, 52,55]. Hence, considering the VPP as a DR buyer in
the DRX market fits well with the literature of DRX market
[9, 41, 45, 46]. Secondly, as shown in Figure 1, the local
retail customers such as industrial, commercial, and residential
energy consumers are considered as independent agents, which
means their energy consumptions cannot be controlled directly
by the VPP [6]. This assumption is adopted in [6, 53, 54] and
fits well with the deregulated market context and the concept
of DR aggregation [51].

It is worth mentioning that under different models, the VPP
can be assumed as a DRP to sell DR services. This assumption
fits well with the case the VPP can directly control the energy
consumptions [1, 2, 7, 56] of energy customers and/or acts as
the aggregation of energy consumers [8,18,56]. This model of
VPP is different to the case we address in this paper. Note that
the case the VPP acts as both microgrid aggregator and DR
aggregator has been addressed in our previous work [7] where
the impact of DR contracts on microgrid’s bidding strategy is
investigated. In other work [18], the cooperation of multiple
demand side resource aggregator under the VPP concepts
is also studied. In particular, we proposed an efficient cost
allocation method to fairly distribute the cooperation benefit
resulted from the aggregated flexibilities of the cooperation.

D. Decision Making Framework and Scenario Genera-
tion/Reduction

In summary, a VPP must make several decisions in three
trading floors, which can be formulated as a following multi-
stage stochastic optimization problem:

1) First Stage (S1): the VPP submits its offering curve in
the day-ahead market and determines price offers for
its local customers. For example, the Nordic market
operator requires all offering curves to be submitted
before the gate closure, i.e., 12 p.m of the day before.

2) Second Stage (S2): After the gate closure, day-ahead
prices are revealed, then the VPP decides the amount of
DR services purchased before the intra DRX prices are
revealed.

3) Third Stage (S3): the VPP adjusts the operation of
its facilities when the renewable energy output and the

intraday DRX prices are revealed, but before knowing
the balancing market prices.

4) Fourth Stage (S4): The balancing market prices are re-
vealed. However, this four-stage stochastic optimization
problem turns into a three-stage stochastic program [2,9]
since no decision is made in the fourth stage.

In this paper, uncertainties care captured by scenarios and
the scenario tree is constructed as follows. First, we generate
N1 = 100 day-ahead prices. For each generated day-ahead
price scenario, we generate N2 = 100 scenarios of pool
DRX prices. For each scenario of DRX price, we generate
N3 = 100 scenarios of renewable energy and load demands.
Finally, for each scenario of renewable energy and load
demands, we generate N4 = 100 balancing prices. Hence
the total number of generated scenarios is NS = N1 × N2 ×
N3 × N4 = 108. Details about scenario tree construction for
market with multiple trading floors can be found in [3, 21].
Since it is difficult to solve the approximated optimization
problem with a large number of generated scenarios, scenario
reduction techniques are employed to reduce the computation
burden [2, 3, 6, 7, 9, 18]. Scenario reduction is an important
research area by itself, whose results can be used to tackle
stochastic programming problems [21]. The scenario reduction
is usually designed to eliminate scenarios that do not likely
affect the final solution such as scenarios with very low
probabilities and/or to aggregate similar scenarios based on
certain probability metrics [22, 23]. The outputs of a scenario
reduction algorithm are a smaller set of NS′ scenarios s
(NS′ < NS) [21]. Mathematically speaking, the process of
scenario reduction can be considered as solving an NP hard
combinatorial optimization problem to minimize information
loss subject to a cardinality set constraint of reduced scenarios
[22, 23]. Among available scenario reduction methods, three
methods, namely the backward, forward, and fast forward [23]
methods, are widely used in the power system research. The
fast-forward method often yields the “best tree” [21]. In the
fast forward reduction method, the reduced scenario tree is
built by selecting/adding one scenario from the original tree
at each iteration [23]. In this paper, we employ the fast forward
method to construct the scenario tree and reduce the number of
scenarios to NS′ = 100 by using GAMS/SCENRED [31]. The
GAMS/SCENRED package has been widely used in power
system research [2, 3, 6, 9, 21, 36]–[39].

III. PROBLEM FORMULATION

We are interested in maximizing the VPP’s expected profit
that is described by the following objective function:

max
NT∑
t=1

{
ES1

[
λDt,sP

D
t τ+ES2|S1

[
−
ND∑
d=1

(
Bit,s+CDRPd,t,s

)
+ES3|S2,S1

[∑
i∈B

∑
e∈γEi

Rei,t,s−
∑
i∈B

∑
g∈γGi

(
SUgi y

g
i,t+SDgi z

g
i,t

+Cgi,t,s

)
−
∑
i∈B

∑
b∈γBi

λdegi

(
ηb,ci P b,ci,t,s+

P b,di,t,s

ηb,di

)
τ

−λNt,sPN
t,sτ+λPt,sP

P
t,sτ

]]]}
. (1)
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Fig. 2. Retail customer price quota and DR provide price-quantity offer

The function E is used to calculate the expected values
by using the summation of the multiplied values obtained
in each scenario and the probability of occurrence of that
scenario [9]. The VPP’s profit comprises several components:
the revenue from Day Ahead λDt,sP

D
t τ , minus the DR cost due

to energy purchase from DRPs in the DRX market through

pool contracts and bilateral contracts
ND∑
d=1

(CDRPd,t,s+Bit,s),

the revenue of retail energy selling to local retail customers∑
i∈B

∑
e∈γEi

Rei,t,s, minus the cost of conventional thermal genera-

tors
∑
i∈B

∑
g∈γGi

(
SUgi y

g
i,t+SDgi z

g
i,t+C

g
i,t,s

)
and battery degrada-

tion
∑
i∈B

∑
b∈γBi

λdegt

(
ηb,ci P b,ci,t,s+

P b,di,t,s

ηb,di

)
τ , and cost due to energy

imbalance (negative and positive) −λNt,sPN
t,sτ+λPt,sP

P
t,sτ . This

optimization is subject to the following constraints.

A. Power and Market Balance Constraints

Power delivered by VPP to the grid must equal to the power
generated from wind farms minus wind power curtailment
and power generated from thermal generators, plus energy
exchange with BESs and minus the total energy selling to
local retail customers. The wind power curtailment is upper-
bounded by the wind generations. These constraints are de-
scribed as follows:

P del
t,s=

∑
i∈B

{ ∑
w∈γWi

(
Pwi,t,s−P

w,c
i,t,s

)
+
∑
g∈γGi

P gi,t,s

+
∑
b∈γBi

(
P b,d
i,t,s−P

b,c
i,t,s

)
−
∑
e∈γEi

P ei,t,s

}
, ∀t, s. (2)

Pw,c
i,t,s ≤ P

w
i,t,s,∀t, s. (3)

The mismatch between the energy delivered in real time
P del
t,s and the bidding energy PDt can be positive (the VPP

resells surplus energy to the balancing market at a low price
λPt,s) or negative (the VPP purchases extra energy from the bal-
ancing market at a high price λN(t,s) or purchases load reduction

quantities via DRX market from DRPs
ND∑
d=1

(
DRd,t,s + PBi

d,t,s

)
.

The market balance constraints can be described as follows:

P del
t,s − PDt = PP

t,s − PN
t,s −

ND∑
d=1

(
DRd,t,s + PBi

d,t,s

)
. (4)

B. Demand Response Exchange

VPP can purchase DR services from DRPs under both pool
and bilateral contracts in the DRX market. The DR cost is the

product of the DR price offer and DR bidding quantity. In the
pool DRX market, each DRP provides a price-quantity offer
that presents the relation between the load reduction and the
service prices at each time slot as shown in Figure 2. This can
be captured by the following constraints [9]:

pnd,t,s ≤ p
n,max
d,t,s ; DRd,t,s =

NBd∑
n=1

pnd,t,s, (5)

CDRPd,t,s =

NBd∑
n=1

λnd,t,sp
n
d,t,sτ. (6)

In the bilateral contract, the VPP can purchase DR from
DRPs with a predetermined and fixed bilateral price λBd,t.
However, the total DR purchased via both contracts cannot
exceed the DR capacity of the provider, which is captured by
the following constraints:

Bid,t,s = λBd,tP
Bi
d,t,sτ, (7)(

DRd,t,s + PBi
d,t,s

)
τ ≤ DRcap

d , ∀d, t, s. (8)

C. Local Customers’ Elastic Demand Curves

The elastic relation between price offer λei and demand
consumed P ei,t,s of a retail customer e at bus i can be ap-
proximated by a step-wise price-quota curve shown in Figure
2. The VPP’s revenue by selling energy to retail customer e
at bus i is the product of λei and P ei,t,s, which can be captured
by the following constraints [6]:

P̄ ei,t,s ≤ De
i,t,s; P̄ ei,t,s =

NBei∑
n=1

le,n,max
i,t,s ue,ni,t,s, (9)

NBei∑
n

ue,ni,t,s = 1; λei =

NBe
i∑

n

λe,ni , (10)

λe,n−1i ue,ni,t,s ≤ λ
e,n
i ≤ λe,ni ue,ni,t,s, (11)

R̄ei,t,s =

NBei∑
n=1

λe,ni le,n,max
i,t,s τ, (12)

where constraints (9)-(11) represent the demand supplied by
the VPP to retail energy customer e at bus i at each time
interval t. The power demand P ei,t,s purchased from the VPP,
which is a function of the price offer λei , equals the level of
price quota curve determined by the binary variable ue,ni,t,s as
in (9). In particular, ue,ni,t,s is used to identify the price quota-
curve interval, which is used to calculate the fixed retail price
offer λei in (10)-(11) [6]. The VPP’s revenue of selling energy,
which is the product of λei and P ei,t,s, is transformed to a linear
constraint (12) which is based on the step-wise price quota
curve approximation [6].

In cases that retail customers do not participate in the DRX
market, the VPP’s revenue of selling energy to the retail
customer e at bus i is:

Rei,t,s = R̄ei,t,s, ∀e, i, t, s, (13)

and the power consumed by retail customer e at bus i is
P ei,t,s = P̄ ei,t,s, ∀e, i, t, s. (14)

D. Retail Load Reduction Services via DRX Market

We extend the work to consider the participation of retail
customers in the DRX market. In fact, energy customers
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such as commercial [10], industrial [11], and residential load
[12] can potentially provide DR services to support the VPP
operation. In particular, the local retail customer e can also
offer load reduction services to VPP via the DRX market as a
DRP. Specifically, VPP can buy DRei,t,s+PBi,e

i,t,s amount of load
reduction from customer e via the pool contract and bilateral
contract, which can be described similarly to constraints (5)-
(8) for outside DRPs.

0 ≤ pe,ni,t,s ≤ p
e,n,max
i,t,s ; DRei,t,s =

NBd∑
e∈γBi

pe,ni,t,s, (15)

CDRPei,t,s =

NBd∑
n=1

λe,ni,t,sp
e,n
i,t,s; Biei,t,s = λB,ei,t P

Bi,e
i,t,s, (16)(

DRei,t,s + PBi,e
i,t,s

)
τ ≤ DRe,cap

i , ∀e, i, t, s, (17)

where constraints (15)-(16) describe the DR exchange of
customer e and VPP via pool based and bilateral contract.
However, buying load reduction from customers will reduce
the VPP’s retail revenue by Lei,t,s:

DRei,t,s + PBi,e
i,t,s =

NBei∑
n=1

le,n,max
i,t,s ue,n,dri,t,s , (18)

Lei,t,s =

NBei∑
n=1

λe,ni ln,max
i,t,s ue,n,dri,t,s τ, (19)

where constraints (18)-(19) describe the revenue loss Lei,t,s
due to the load reduction of the retail customer e. Note that the
nonlinear constraint (19) can be converted to a set of mixed
integer linear programming (MILP) constraints easily since
ue,n,dri,t,s is binary.

The VPP’s revenue of selling energy to the retail customer
e at bus i and its actual power consumed are:

Rei,t,s = R̄ei,t,s − Lei,t,s, ∀e, i, t, s (20)

P ei,t,s = P̄ ei,t,s − DRei,t,s + PBi,e
i,t,s, ∀e, i, t, s. (21)

In general, the VPP needs to provide incentives for their
energy customers to modify their demand by using financial
rewards. In [7, 8, 16, 19], the financial incentives are realized
by real time pricing signals, which require the complex local
market designs. In this paper, the VPP’s priority is to provide
competitive price offers to local energy customers. The VPP
can purchase DR services of retail customers in the intraday
timescale via the DRX market. Hence, in this case both VPP
and retail energy customers can utilize the updated information
of generations and demand as well as the revealed DA prices
to make corrective actions by exchanging DR services.

E. Other Operation Constraints

Due to space limitation and to avoid overwhelming nota-
tions used in the paper, the constraints of thermal generators
and battery energy systems such as shut down and start up
limits, generation output limits, ramp up and ramp down limits,
battery charging/discharging power limits, dynamics and limits
of battery’s state of charge, charge and discharge operation
[2], network power flow constraints [24] are not presented.
Detailed formulations of these constraints can be found in our
previous works [7, 18, 19].

We acknowledge that linearizing the nonlinear power flow
is an important technical issue, especially in the distribution

network. Employing directly full model of AC power flow
can help us incorporate reactive power in the decision making
model, which leads to a mixed integer nonlinear programming
(MINLP) based decision making model. Since a large scale
MINLP for a day-ahead planning problem cannot be solved
by available MINLP solvers, heuristic evolutionary algorithms
such as genetic algorithm [1] can be employed. Hence, there
are some linear approximation approaches for power flow in
the distribution network that keeps the optimization linear.
The work [24] proposed to employ lossless DC power flow
for modeling a short term decision making problem of a
distribution company and employed more complex linearized
power flow model in the real-time optimal operation. The
work [25] proposes state-of-the-art linearized network power
flow equation model that retains the linearity of power flow
constraints that is used for the real time energy management
of a distribution company. Another linearized model, namely
Distflow [26], is also used in the literature [26]–[29]. The
main objective of this paper is to illustrate the positive impact
of using intraday DRX market in VPP’s market optimization
problem. For simplicity, we adopt the DC power flow model
for distribution network as an approach in [24], which is
also used in our previous work [19]. We aware the moderate
accuracy of this model in comparison with other models
as presented above. However, as stated in [24] and verified
in solving the day-ahead planning problem of a large scale
distribution company [24], we would like to note that “the
inaccuracy induced by DC network model does not make a
great concern since the solution of the Day-ahead problem
problem is inherently exposed to various sources of error
such as the uncertainty of predicted real-time market prices
and loads” [24]. More accuracy models such as the one
proposed in [25] or the Distflow model for radial network
[26]–[29], however, can be integrated into our decision making
framework since it is also linear. Employing this model will
be the subject of our future work. The overall problem is a
MILP, whose optimal solution can be found by branch and cut
algorithm embedded in available commercial solvers such as
CPLEX.

IV. NUMERICAL RESULTS

A. Simulation Data

We consider a modified case study of 4 machines based VPP
[5] which includes 2 wind farms and 2 conventional thermal
units. The local network is modified based on IEEE six-bus
system as shown in Figure IV-A, whose line parameters
can be found in [30]. Bus 1 is the reference bus connected
to the main grid. The VPP serves several local customers,
which are classified in three groups: industrial, commercial
and residential customers, and exchanges DR with 3 DRPs
to minimize its imbalance penalty cost. DRPs are assumed to
be outside the VPP and do not interfere the energy demand
of VPP’s local customers. Wind, electricity price, and load
scenario generations are based on [15, 20]. The DR market
data are taken from [9] and presented in Tables II and III. The
forecast electricity price, wind energy, and retail customers’
loads as well as their price quota curves are shown in Figure 4.
The electricity price and load forecast errors are assumed to
be 15%, negative and positive balancing prices are 1.1λDt,s and



0093-9994 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2018.2828379, IEEE
Transactions on Industry Applications

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, TO APPEAR 7

Fig. 3. VPP case study based on 6-bus system

0.9λDt,s [16] respectively, retail customers with the same type
have the same forecast load and the same price quota curves.
The distributed thermal generators’ data are shown in Table I.

TABLE I
THERMAL GENERATOR DATA FOR 6 BUS SYSTEM CASE STUDY

Bus Lower Upper Min Down Min Up Ramp
ID (MW) (MW) (h) (h) (MW/h)
B4 5 20 2 4 1
B6 0.8 10 3 3 1

Bus a b (MBtu c ($/ Start Up Shut Down
ID ($) MWh) MW2h) ($) ($)
B4 50 6 0.0004 50 20
B6 40 5.5 0.0001 40 20

All numerical experiments are performed in a personal
computer using Window 8, Intel Core i5 processor, and 8
GB memory. The MILP problem is solved by CPLEX under
GAMS. The relative gap is set to be 10−4.

B. Results and Discussions

Figure 5 presents the day ahead bidding quantities of VPP
with different levels of wind uncertainty and DR capacity
DRcap. Without DR services, bidding too high energy may
result in the high balancing-energy purchase cost since the
VPP needs to purchase extra high price energy from the
balancing market to compensate for the energy mismatch,
which explains how the amount of bidding energy depends on
the DR capacity DRcap. It can be observed that when DRPs
offer larger capacity DRcap, the bidding quantities are higher
since uncertain wind generation outputs can be addressed more
easily.

Figure 6(a) shows the total energy bidding in the day-
ahead market, i.e.,

∑NT
t PDt . It can be observed that the total

energy bidding in the day-ahead market increases as DRcap

increases. When high DR quantity available (DRcap = 30
MWh), the case with the larger wind forecast error (e.g., 20%)
has the larger value of the total energy bidding in the day-
ahead market. In fact, when there is higher wind uncertainty
and DRcap is also sufficiently large, the VPP can compensate
for the wind energy shortage more easily by exploiting DR
market; thus, the VPP tends to bid higher energy to efficiently
utilize wind energy surplus.

Figure 6(b) reveals that the DRX participation enables the
VPP to improve its profit significantly but the VPP’s profit
improvement becomes flat for a sufficiently high DRcap, which
demonstrates the energy level that VPP needs to purchase to
counter renewable energy uncertainties. In addition, although
all profit curves show the steady increase with DRcap, the curve

TABLE II
PRICE QUANTITY OFFER OF DRPS IN POOL BASED DRX MARKET

k 1 2 3

p
k,max
d,t

25%(DRcap) 75%(DRcap) 100%(DRcap)

Percentage of mean Real time market price

DRP1 λk1,t 40% 70% 100%

DRP2 λk2,t 50% 80% 110%

DRP3 λk3,t 60% 90% 120%

TABLE III
PRICE OFFER OF DRPS IN BILATERAL CONTRACT

DRP1 DRP2 DRP3
40 45 50

($/MWh) ($/MWh) ($/MWh)
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Fig. 4. Simulation Data

associated with smaller wind uncertainties achieves higher
profit at low DRcap and lower profit at sufficiently high DRcap

compared to other curves. When DR resources are abundant
(e.g., DRcap = 30 MWh), the VPP can efficiently address
wind uncertainties and exploit the wind energy surplus, which
slightly increases its expected profit.

Figure 7 shows that the VPP can achieve better profit
improvement by participating in both bilateral and pool based
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TABLE IV
RETAIL PRICES FOR LOCAL CUSTOMERS

Bus Type DRcap Wind Forecast Error ( %)
(MWh) 5 10 15 20 25 30

B1

Ind 0 61 61 61 61 62 62
30 60 60 60 61 61 62

Res 0 70 71 71 71 71 71
30 70 70 70 70 71 71

Price Com 0 57 57 57 57 57 57
($/MWh) 30 56 56 56 57 57 57

B3 Com 0 73 73 73 74 74 76
30 70 71 72 73 74 76

B5 Com 0 58 58 58 58 59 59
30 58 58 58 58 59 59

Abbreviation: Ind=Industrial; Com=Commercial; Res=Residential
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Fig. 5. Day ahead bidding quantities of VPP

DRX markets, since it has more flexibility in DR purchase.
However, the VPP’s profit when participating in both types of
contracts is higher than that with pool DRX for small DRcap.
The profits in both cases become the same for high DRcap. This
can be explained as follows. Due to the nature of the bilateral
contract, the price is settled and remains unchanged for a long-
term market. The role of the bilateral contract is critical when
the transaction in the pool market is small. When DRcap is
higher, the absolute values of low-index DR block offers with
low price (i.e., 25% of DRcap) also increase, which adversely
balances the uncertainties of pool price and reduces the role
of the bilateral contract on the VPP’s profit improvement.
This demonstrates the impact of DR participation on optimal
bilateral price determination.

The impact of DRX market on the VPP’s expected retail
revenues and the VPP’s retail price offers to customers are
illustrated in Figure 8 and Table IV, respectively. When DRcap

increases, the VPP can effectively deal with the energy bidding
deficiency in day-ahead whole sale market. Hence, it directly
relaxes its retail energy offers for local retail customers to
improve the retail revenue, which is explained by the reduction
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Fig. 6. Impacts of DR capacity and wind forecast uncertainty when there is
no retail customers in DRX market
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Fig. 8. Impact of DR capacity on VPP’s profit with different wind uncertain
levels

of the retail price offers shown in Table IV. The retail prices
also depend on the location of retail customers. For examples,
commercial load at bus 5 has the highest price among all
commercial customers since it has no direct connection to
wind farms at buses 1 and 2 and must rely more on thermal
generators at bus 4 and 6 to meet its demand.
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Fig. 9. Impact of DR capacity and wind forecast uncertainty on VPP’s profit
when retail customers join DRX market

C. Extensions with DR Exchange From Local Retail Cus-
tomers

We investigate the case when DR services can be extracted
from the VPP’s energy customer via the DRX market frame-
work. Figure 9 shows the impact of DR on the VPP’s profit
when retail customers also join the DRX market. We assume
retail customers can also provide DR services to VPP via
bilateral and pool contracts in the DRX market. The DRX offer
of each retail customer is assumed to be similar to DRP 1 and
its DRe,cap

i is equal to its purchased energy. The phenomenon
is quite similar to that in Figure 6 except the slight increase
in the VPP’s expected profit. These results demonstrate the
positive impact of retail customers since their load reduction
services directly help the VPP address retail demands’ uncer-
tainties at the local demand side. In general, the availability
of retail customers’ DR services provide another options for
VPP to address the uncertainties in the VPP’s market decision
making problem.

Figure 10 shows that DR quantities purchased from local
customers decrease rapidly when DR resources from outside
DRPs increase. This is because buying load reduction services
from local customers also results in the reduction of retail
revenues. The participation of retail customers in the DRX
market only leads to significant impacts when DR resources
from outside DRPs are small. When the wind forecast error is
small, e.g., 5%, more DR is purchased from local customers
than from outside DRPs due to higher uncertainty in the load
forecast (10%). When wind uncertainties are higher, the energy
imbalance in the wholesale market becomes more critical;
therefore, more DR purchased from outside DRPs is needed.

The impact of DRX on reducing VPP’s energy imbalances is
shown in Figure 11. The negative energy imbalance is nearly
zero when DR resources are abundant. DR also allows the
VPP to increase its bidding quantities and reduce its energy
surplus that must be curtailed or sold with lower price. The
positive energy imbalance also reduces when the DR resources
are available. It is worth mentioning that the DR services
considered in this paper are load reductions [9]. Hence, the
lack of VPP’s energy generation could be compensated easily
by buying load reduction services from DRPs, which directly
results in a very small amount of negative energy imbalance as
shown in Figure 11(b). The employment of DRX market also
allows VPPs to be confident in bidding more energy in the
DA market to avoid selling surplus energy with cheaper RT
positive balancing price, which indirectly reduces the VPP’s
positive energy imbalance as shown in Figure 11(a). Note
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Fig. 10. Demand response purchased from different providers (outside DRPs
and local customers)
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(a) Impact of DR capacity on positive energy imbalance
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Fig. 11. Impact of DR on expected energy imbalance

that, since the DR services are purchased at the intraday
timescale that realizes before the RT balancing market, the
DRX market can reduce the energy imbalance. We can see
that the participation of retail customers can help reduce the
energy imbalance but their impacts are only significant when
DR resources from outside DRPs are small.

Figure 12 shows that the participation of local retailers has
significant impacts on the battery degradation costs. The re-
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Fig. 12. Impact of DR on expected battery degradation cost

sults imply the positive impact of the DRX on VPP investment
and planning since the DRX can reduce the required energy
storage capacity of VPP with high penetration of renewable
energy. The investment and planning of VPP with the DRX
market, however, need to consider the long-term stochastic
modeling of the DRX market, which is a challenging research
area [45].

V. CONCLUSION

In this paper, we have proposed to exploit the DRX market
for efficient energy management of a VPP model with sig-
nificant penetration of wind energy. Numerical studies have
shown that employing DR market mechanism can improve
the VPP’s profit. In particular, by exchanging DR with several
DR sellers/suppliers via a market framework, the VPP can
reduce its energy imbalance cost due to natural uncertainties
of renewable energy and customers’ loads. The DRX market
also increases the confidence level of VPP in bidding energy
with higher quantities in the day ahead market, increases the
revenue of selling energy to local retail customers.
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