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Abstract—The wide-spread integration of renewable energy
sources has a great impact on the traditional distribution system.
Considering many of these sources are connected to synchronous
alternating current (AC) grids via AC inverters with droop
controllers, an equivalent model that has a fictitious voltage
source with a given voltage phasor is used to represent the
AC inverter with droop controllers. With the equivalent model,
a sufficient condition based on bus voltage/injected power and
system admittance is proposed to analyze the system stress level
and distance to solvability boundary of power flow equations. A
modified IEEE 123-bus system is used to test the proposed model
and the method.

Index Terms—droop-controlled Microgrids, AC inverters,
power flow solvability, sufficient condition

I. INTRODUCTION

THE penetration level of renewable energy sources into
distribution systems is increasing due to environmental

concerns and technological advancements. Many of these
sources are small-scale distributed generators (DGs), and
microgrids are promising solutions for connecting/controlling
these DGs [1]. One common control strategy for microgrids
is the droop control, which depends on the principle of
power balance [2], relating power changes to the changes
of system frequency/voltage magnitude/voltage phase angle
[3], [4]. To deal with undesirable voltage/frequency deviations
caused by conventional droop controls, washout filter-based
power sharing control can be used [5]. The characteristics
of droop controls have great impacts on system modeling,
operation, and control. One critical impact is on the assessment
of the security margins. Usually, the solvability of power flow
equations can be used to indicate the system security margins
[6]. Since the droop controls change the traditional power flow
equations, it is necessary to develop new methods to assess the
security margins.

In this letter, we develop a new approach to analyze the
security margins for angle droop controlled microgrids. The
contributions are twofold: 1) The droop control is equivalent
as a fictitious voltage source with a given voltage magnitude
and voltage phase angle. 2) With the equivalent model, a
sufficient condition based on Levy-Desplanques theorem is
used to check power flow solvability of the system. The inputs
of this sufficient condition include the system admittance and
the present snapshot of bus voltage/injected power. A modified
IEEE 123-bus system is used to test the proposed model and
the method.
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II. NETWORK MODELING

This section first shows the network description that shows
basic notation for system modeling. Second, the angle droop
control laws used in this paper are introduced. Third, the new
interpretation for the angle droop control laws is presented
to help to analyze the solvability boundary of angle droop-
controlled microgrids. Finally, a sufficient condition based on
the new interpretation used to check the solvability boundary
is provided and how to use it in practice is also presented.

A. Network Description
We consider a system represented by a weighted and con-

nected graph (B,L), in which B = {1, · · · , n+m+1} is the
set of buses and L ⊆ B×B is the set of lines. Three types of
buses are included: inverter buses I = {1, · · · , n}, PQ buses
D = {n+1, · · · , n+m}, and a slack bus S = {n+m+1}.
The line between bus i ∈ B and bus j ∈ B is weighted by
complex admittance yij = gij + jbij ∈ C1, and the whole
system is represented by the bus admittance matrix Y =
G + jB ∈ C(n+m+1)×(n+m+1), in which Yij = Yji = −yij
and Yii =

∑
j∈B yij . Each bus i is associated with a voltage

magnitude Vi and a voltage phase angle θi. For microgrids,
the shunt admittance of each bus is ignored. For each bus
i ∈ B, the relations between voltages and active/reactive power
injections are represented as follows.

Pi = Vi
∑
j∈B

Vj(Gij cos(θi − θj) +Bij sin(θi − θj)) (1a)

Qi = Vi
∑
j∈B

Vj(Gij sin(θi − θj)−Bij cos(θi − θj)) (1b)

where Pi and Qi are injected active power and reactive power,
respectively. Gij and Bij are the (i, j)th elements of the
matrices G and B, respectively.

B. Grid-Side Model of Droop Control
The grid-side model of droop control at bus i can be

represented as a controllable voltage source, and the droop
control can be expressed as follows.

σθi(P
∗
i − Pi) + θ∗i − θi = 0 (2a)

σVi
(Q∗i −Qi) + V ∗i − Vi = 0 (2b)

where (2a) and (2b) are the angle droop and voltage droop
control laws [4] that are investigated in this letter. P ∗i and Q∗i
are rated active/reactive power for the droop control at the
bus i, and V ∗i and θ∗i are the rated voltage magnitude and
phase angle when the inverter supplies the grid to its rated
active/reactive power P ∗ and Q∗, and σVi

and σθi are the
voltage and angle droop gains. The angle (voltage) droop gain
relates the angle (voltage) difference between the inverter and
the connection point to the difference between actual injected
active (reactive) power and rated injected active (reactive)
power.
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C. New Interpretation of Droop Control Laws
The droop control laws in (2a) and (2b) are derived from

the full power flow equations (1a) and (1b) based on the
assumptions that Vi ≈ 1 and θi ≈ 0 for all buses. With
the assumptions, we have the following full power flow
counterparts.

θ∗i − θi ≈ ViV ∗i sin(θ∗i − θi) (3a)
V ∗i − Vi ≈ V ∗i cos(θ∗i − θi)− Vi

≈ Vi(V ∗i cos(θ∗i − θi)− Vi)
(3b)

With (3a)-(3a), the equations (2a) and (2b) can be approx-
imated as follows.

σθi(P
∗
i − Pi) + ViV

∗
i sin(θ∗i − θi) = 0 (4a)

σVi
(Q∗i −Qi) + Vi(V

∗
i cos(θ∗i − θi)− Vi) = 0 (4b)

where (4a) and (4b) are equations regarding active power flow
and reactive power flow, respectively. The parameters σθi and
σVi can be considered as line reactances with respect to the
active and reactive power equation, respectively. However, σθi
and σVi should be equal under this model. To make (4a)
and (4b) have practical physical meanings, we introduce an
equivalent reactance σi = max{σθi , σVi

} to replace σθi and
σVi in (4a) and (4b). We pick the maximum of the two as
the line reactance since increasing line impedance generally
decreases system stability margin [7]. This means that σi =
min{σθi , σVi

} results in an overestimated loading margin and
σi = max{σθi , σVi

} causes an underestimated loading margin.
To ensure the feasible loading margin, we should choose
σi = max{σθi , σVi

} producing an underestimated loading
margin.

With the introduced reactance σi, we have the following
approximate algebraic equations:

σi(P
∗
i − Pi) + ViV

∗
i sin(θ∗i − θi) = 0 i ∈ I (5a)

σi(Q
∗
i −Qi) + Vi(V

∗
i cos(θ∗i − θi)− Vi) = 0 i ∈ I (5b)

Pi − Pi,D = 0 i ∈ D (5c)
Qi −Qi,D = 0 i ∈ D (5d)

where Pi,D and Qi,D are active power and reactive power
of load at the bus i, respectively. The model with the full
power flow counterparts in (5) can be interpreted as connecting
a fictitious voltage source with voltage magnitude V ∗i and
voltage angle θ∗i to the inverter bus i ∈ I via a line with
reactance j(σi). Therefore, the model (5) is equivalent to an
augmented system in which there are n +m constant power
buses (n inverter buses and m load buses) and n+1 voltage-
controlled buses (n fictitious buses and 1 slack bus). Fig. 1
(a) and (b) show an original droop-controlled microgrid and
its equivalent system with the fictitious voltage source.

D. Condition for Power Flow Solvability
For the equivalent system from the original droop-controlled

microgrid, we define F as the set of fictitious buses, and the
system equations can be expressed as follows.[

IS′

ID′

]
=

[
YS′S′ YS′D′

YD′S′ YD′D′

] [
VS′

VD′

]
(6)

where S ′ = {S,F} and D′ = {D, I}. IS′ and ID′ are the
injected current vectors. VS′ and VD′ are bus voltage vectors.
Based on (6), we have the equation

VD′ = ED′ − ZD′D′ID′ (7)

where ED′ = −Y −1D′D′YD′S′VS′ and ZD′D′ = −Y −1D′D′ .
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Fig. 1. (a) Original system. (b) Equivalent system. (c) Flowchart of the
proposed model.

The Jacobian matrix of the model (1a)-(1b) where we have
i ∈ D′ can be expressed as follows.

J =

[
∂P/∂θ ∂P/∂V
∂Q/∂θ ∂Q/∂V

]
(8)

The sufficient condition for power flow solvability is that
the Jacobian J is nonsingular. Based on the chain rule, the
singularity of J coincides with that of the following Jacobian
matrix [8], [9].

J ′ =

[
∂P/∂IR ∂P/∂II
∂Q/∂IR ∂Q/∂II

]
(9)

where IR and II are real and imaginary parts of current.
Based on our previous work [8], the sufficient condition for

the nonsingular J is

|VD′(k)| >
∑
k′∈D′

|ZD′D′(k, k′)| · |SD′(k′)|
|VD′(k′)|

(10)

where SD′ is the power injection vector of buses belonging
to the set D′. The terms (k) and (k′) denote the kth and the
k′th elements of the corresponding vectors, the term (k, k′)
means the (k, k′)th element of the corresponding matrix. To
obtain this condition, we first use Wirtinger Calculus [10] to
transform the power flow Jacobian (9) to a complex matrix,
and then apply Levy-Desplanques theorem [8].

We define an index R as follows.

RD′ = |VD′(k)|

/∑
k′∈D′

|ZD′D′(k, k′)| · |SD′(k′)|
|VD′(k′)|

(11)

According to the sufficient condition, the system is within the
solvability boundary when RD′ > 1. The proximity of the
indicator to 1 can be viewed as an indication of the distance
to solvability boundary.

In practice, an angle droop-controlled microgrid can be
transformed into an equivalent system by means of the new
interpretation of droop control laws in Section II.C firstly.
Then, the sufficient condition in Section II.D is used to analyze
if the system is close to the solvability boundary. If yes, we
can reduce the parameter σVi and σθi in the droop control to
increase the distance of the operating point to the solvability
boundary. The flowchart of this process is shown in Fig. 1 (c).
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III. CASE STUDIES

The effectiveness of the model is tested on a modified
IEEE 123-bus system [11] with different droop-controlled
inverters. In simulations, V ∗, θ∗, P ∗, and Q∗ are set to
be 0.95, −0.1, 0.01 and 0.01 (p.u.), respectively. Table I
shows the comparison results with different droop-controlled
inverters under different algorithms. The second column gives
the locations of inverters. The third column shows the critical
loading factors of the original system. These critical loading
factors are obtained based on power flow calculation (PFC)
of the original system. The critical loading factor is defined
as the largest loading factor where power flow equations can
be solved. The fourth column and the fifth column present
the critical loading factors of the equivalent system based
on PFC and the sufficient condition (SC) used in this paper,
respectively. It is observed that the critical loading factor for
the equivalent system based on the sufficient condition can
be used to approximately check the power flow solvability of
the original system. Fig. 2 shows the values of log10(R) with
respect to different loading factors when having five droop-
controlled inverters. It is observed that the index decreases
with increasing loading factors.

TABLE I
CRITICAL LOADING FACTOR WITH DIFFERENT SCENARIOS

No.
Buses with

Droop-controlled Inverters
Original System

(PFC)
Equivalent System
(PFC) (SC)

S1 9 4.244 4.227 4.166
S2 9, 15 4.294 4.291 4.226
S3 9, 15, 18 4.394 4.385 4.319
S4 9, 15, 18, 24 4.462 4.461 4.393
S5 9, 15, 18, 24, 32 4.536 4.514 4.458
S6 9, 15, 18, 24, 32, 35 4.495 4.492 4.433
S7 9, 15, 18, 24, 32, 35, 38 4.525 4.523 4.462

Fig. 3 shows the critical loading factors with different
assumptions on equivalent σ. The red curve and the blue
curve represent σ = min{σV , σθ} and σ = max{σV , σθ},
respectively. For these two assumptions, one is relaxed and
the other is conservative. It is observed that the critical loading
factors based on the assumption σ = min{σV , σθ} are larger
than those based on the assumption σ = max{σV , σθ}.
This indicates that the assumption σ = min{σV , σθ} makes
the corresponding critical loading factors relaxed. To ensure
power flow solvability of the original model, we should
select the conservative assumption. This justifies our choice
of σ = max{σV , σθ}.

Fig. 4 shows the critical loading factors with different σV
and σθ. It is observed that the critical loading factors increase
when the values of σV and σθ decrease. This indicates that
the distance of the operating point to solvability boundary
increase when the values of σV and σθ decrease. In practical
systems, we can analyze the distance to solvability boundary
based on the proposed model and the sufficient condition. If
the operating point is close to solvability boundary, we can
reduce the values of σV and σθ to increase the distance to
solvability boundary.

IV. CONCLUSIONS

This letter proposes a new approach to analyze solvability
boundary of the droop-controlled microgrids. An equivalent
model, i.e., a fictitious voltage source, is used to represent
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the droop controls of AC inverters in microgrids. With the
equivalent model, a sufficient condition that uses the system
admittance and the present voltage/injected power is used to
indicate distance to solvability boundary. A modified IEEE
123-bus system is used to validate the proposed model.
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