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Abstract—This paper proposes a novel method to co-optimize the5
distribution system operation and repair crew routing for outage6
restoration after extreme weather events. A two-stage stochastic7
mixed integer linear program is developed. The first stage is to8
dispatch the repair crews to the damaged components. The second9
stage is distribution system restoration using distributed gener-10
ators, and reconfiguration. We consider demand uncertainty in11
terms of a truncated normal forecast error distribution, and model12
the uncertainty of the repair time using a lognormal distribution. A13
new decomposition approach, combined with the progressive hedg-14
ing algorithm, is developed for solving large-scale outage manage-15
ment problems in an effective and timely manner. The proposed16
method is validated on modified IEEE 34- and 8500-bus distribu-17
tion test systems.

Q1
18

Index Terms—Outage management, power distribution system,19
repair crews, routing, stochastic programming.20

NOMENCLATURE21

Sets and Indices22

N Set of damaged components and the depot.23

m/n Indices for damaged components and the24

depot.25

c Index for crews.26

i/j Indices for buses.27

ΩB Set of buses.28

ΩK (.,i) Set of lines with bus i as the to bus.29

ΩK (i,.) Set of lines with bus i as the from bus.30

ΩK (l) Set of lines in loop l.31

Manuscript received November 7, 2017; revised March 24, 2018 and June
8, 2018; accepted July 7, 2018. This work was supported in part by the U.S.
Department of Energy Office of Electricity Delivery and Energy Reliability,
and in part by the Iowa Energy Center, Iowa Economic Development Authority
and its utility partners. Paper no. TPWRS-01684-2017. (Corresponding author:
Zhaoyu Wang.)

A. Arif is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA, and also with the Department
of Electrical Engineering, King Saud University, Riyadh 11451, Saudi Arabia
(e-mail:,aiarif@iastate.edu).

S. Ma and Z. Wang are with the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames, IA 50011 USA (e-mail:,sma@iastate.edu;
wzy@iastate.edu).

J. Wang is with the Department of Electrical Engineering, Southern Methodist
University, Dallas, TX 75205 USA (e-mail:,jianhui@smu.edu).

S. M. Ryan is with the Department of Industrial and Manufacturing Systems
Engineering, Iowa State University, Ames, IA 50010 USA (e-mail:, smryan@
iastate.edu).

C. Chen is with the Energy Systems Division, Argonne National Laboratory,
Lemont, IL 60439 USA (e-mail:,morningchen@anl.gov).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2018.2855102

ΩSB Set of substations. 32

ΩSW Set of lines with switches. 33

k Index for distribution line. 34

t Index for time. 35

S Set of scenarios. 36

s Index for scenario. 37

Parameters 38

C Number of crews. 39

oc/dc Start/end point of crew c. 40

PBm a x
k /QBm a x

k Active/reactive power limit of line k. 41

PGm a x
i /QGm a x

i Active/reactive power limits of DGs. 42

PD
i,t,s/QD

i,t,s Diversified active/reactive demand at bus i and 43

time t in scenario s. 44

PU
i,t,s/QU

i,t,s Undiversified active/reactive demand at bus i 45

and time t in scenario s. 46

Tm,s The time needed to repair damaged component 47

m in scenario s. 48

Rk/Xk Resistance/reactance of line k. 49

TR
m,n Travel time between m and n. 50

ωi Priority weight of load at bus i. 51

λ The number of time steps a load needs to return 52

to normal condition after restoration. 53

Decision Variables 54

xm,n,c Binary variable indicating whether crew c 55

moves from damaged component m to n. 56

αm,c,s Arrival time of crew c at damaged component 57

m in scenario s. 58

βs
i,j,t Binary variable equals 1 if i is the parent bus 59

of j and 0 otherwise in scenario s. 60

fm,t,s Binary variable equal to 1 if damaged compo- 61

nent m is repaired at time t in scenario s. 62

PL
i,t,s/QL

i,t,s Active/reactive load supplied at bus i and time 63

t in scenario s. 64

PG
i,t,s/QG

i,t,s Active/reactive power generated by DG at bus 65

i in scenario s. 66

PB
k,t,s/QB

k,t,s Active/reactive power flowing on line k. 67

uk,t,s Binary variables indicating the status of the 68

line k at time t in scenario s. 69

Vi,t,s Voltage at bus i and time t in scenario s. 70

yi,t,s Connection status of the load at bus i and time 71

t in scenario s. 72

zm Binary variable equal to 1 if damaged compo- 73

nent m is a critical component to repair. 74
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I. INTRODUCTION75

NATURAL catastrophes have highlighted the vulnerabil-76

ity of the electric grids. In 2017, Hurricane Harvey and77

Hurricane Irma caused electric outages to nearly 300,000 [1]78

and 15 million customers [2], respectively. The loss of electric-79

ity after a hurricane or any natural disaster can cause significant80

inconvenience and is potentially life threatening. Improving out-81

age management and accelerating service restoration are critical82

tasks for utilities. A crucial responsibility for the utilities is to83

dispatch repair crews and manage the network to restore ser-84

vice for customers. Relying on utility operators’ experience to85

dispatch repair crews during outages may not lead to an op-86

timal outage management plan. Therefore, there is a need to87

design an integrated framework to optimally coordinate repair88

and restoration.89

Some research has been conducted to integrate repair and90

restoration in power transmission systems. In [3], a determinis-91

tic mixed integer linear programming (MILP) model was solved92

to assign repair crews to damaged components without consid-93

ering the travel time. Reference [4] presented a dynamic pro-94

gramming model for routing repair crews. Routing repair crews95

in transmission systems has been discussed by Van Henten-96

ryck and Coffrin in [5]. The authors presented a deterministic97

two-stage approach to decouple the routing and restoration mod-98

els. The first stage solved a restoration ordering problem using99

MILP. The ordering problem formulation assumed that only one100

damaged component can be repaired at each time step. The goal101

of the first stage was to find an optimal sequence of repairs to102

maximize the restored loads. The second-stage routing problem103

was formulated as a constraint programming model and solved104

using Neighborhood Search algorithms and Randomized Adap-105

tive Decomposition.106

In previous work, we developed a cluster-first route-second107

approach to solve the deterministic repair and restoration108

problem [6]. However, a major challenge in solving the dis-109

tribution system repair and restoration problem (DSRRP) is its110

stochastic nature. Predicting the repair time accurately for each111

damaged component is almost impossible. In this paper, we112

consider the uncertainty of the repair time and the customer113

load demand. We propose a two-stage stochastic mixed-integer114

program (SMIP) to solve the stochastic DSRRP (S-DSRRP).115

The first stage in the stochastic program is to determine the116

routes for each crew. The second stage models the operation117

of the distribution system, which includes distributed genera-118

tion (DG) dispatch and network reconfiguration by controlling119

line switches. The routing problem is modeled as a vehicle120

routing problem (VRP), which has a long history in operations121

research [7]. The routing problem is an NP-hard combinato-122

rial optimization problem with exponential computation time.123

Adding uncertainty and combining distribution system oper-124

ation constraints with the routing problem further increase the125

complexity. To solve the large-scale S-DSRRP efficiently, a new126

decomposition algorithm is developed and combined with the127

Progressive Hedging (PH) algorithm. Our algorithm decom-128

poses the S-DSRRP into two stochastic subproblems. The goal129

of the first subproblem is to find a set of damaged components130

that, if repaired, will maximize the served load. In the second131

Fig. 1. Forecast of active power consumption of a load.

subproblem, the repair crews are dispatched to the selected dam- 132

aged components by solving S-DSRRP. The two subproblems 133

are solved repeatedly, using parallel PH, until crews have been 134

dispatched to repair all damaged components. The algorithm for 135

solving the decomposed S-DSRRP is referred to as D-PH. The 136

key contributions of this paper include: 1) improving our pre- 137

viously developed deterministic DSRRP formulation in [6] by 138

considering cold load pickup, and reducing the number of deci- 139

sion variables by refining crew routing constraints; 2) modeling 140

the uncertainty of the repair time and the demand in DSRRP; 141

3) formulating a two-stage stochastic problem for repair and 142

restoration; and 4) developing a new decomposition algorithm 143

combined with parallel PH for solving large-scale S-DSRRP. 144

The rest of the paper is organized as follows. Section II states 145

the modeling assumptions and presents the uncertainty in the 146

model. Section III develops the mathematical formulation. In 147

Section IV, the proposed algorithm is presented. The simulation 148

and results are presented in Section V, and Section VI concludes 149

this paper. 150

II. MODELING ASSUMPTIONS AND UNCERTAINTY 151

After a disastrous event that results in damages to the electric 152

grid infrastructure, utilities first need to conduct damage assess- 153

ment before mobilizing repair crews. Damage assessors patrol 154

the network to locate and evaluate the damages to the grid, be- 155

fore the repair crews are dispatched. Damage assessment can 156

be performed with the help of fault/outage identification algo- 157

rithms, reports from customers, and aerial survey after extreme 158

conditions. This paper is concerned with the phase after dam- 159

age assessment; i.e., repairs and DG/switch operation. Hence, 160

we assume that the locations of the damages are known from 161

the assessment phase. Furthermore, it is assumed that the DGs 162

in the system are controllable ones that are installed as back-up 163

generators [8]. In addition, each crew has the resources required 164

to repair the damages. After determining the locations of dam- 165

aged components, repair crews are dispatched to the damaged 166

components to repair and restore the system. 167

In this paper, the uncertainties of repair time and load are rep- 168

resented by a finite set of discrete scenarios, which are obtained 169

by sampling. The lognormal distribution is used to model the 170

repair time, as recommended in [9]. Load uncertainty is mod- 171

eled in terms of load forecast error [10]. Define PF
i,t as the load 172

forecast for the load at bus i at time t, Fig. 1 shows an example 173

of a 24-hour load profile. A load forecast error is generated in- 174

dependently for every hour. The forecast error for the load at bus 175

i and time t in scenario s is a realization of a truncated normal 176
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Fig. 2. Generated scenarios of active power of a load.

random variable ei,t,s , so that the error is bounded using a fixed177

percentage (e.g., 15%). The active demand for the load at bus i178

and time t in scenario s is then obtained as follows:179

PD
i,t,s = PF

i,t(1 + ei,t,s) (1)

where a similar equation is used to obtain the corresponding180

realization for reactive power. By bounding the error to ±15%,181

equation (1) states that the actual load is within 15% of the fore-182

casted load. Fig. 2 shows an example of 30 generated scenarios183

for one load, where PF
i,t is the load forecast, and PD

i,t,s is the184

generated scenario.185

Each damaged component m is characterized by the186

repair time Tm,s in scenario s. Define T s = [T1,s , T2,s , T3,s ,187

. . . , TD,s ] ∈ RD as the vector of real numbers repre-188

senting the repair time for each damaged component189

in scenario s, where D is the number of damaged190

components. For I loads and time horizon T , let es =191

[e1,1,s , e1,2,s , ..., e1,T ,s , e2,1,s , ..., e2,T ,s , ..., eI ,1,s , ..., eI ,T ,s ] ∈192

RI ·T represent the load forecast error in each time period in193

scenario s. By combining T s and es , the number of random194

variables is D + I · T , and we assume they are mutually195

independent. Therefore, for |S| scenarios, we can define a196

matrix ξ ∈ RD+I ·T ×|S | whose rows consist of random variables197

and columns consist of scenarios as follows:198

s = 1 s = 2 s = 3 . . . s = |S|

ξ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1,1 T1,2 T1,3 . . . T1,|S|

T2,1 T2,2 T2,3 . . . T2,|S|
...

...
...

. . .
...

TD,1 TD,2 TD,3 . . . TD,|S|

e1,1,1 e1,1,2 e1,1,3 . . . e1,1,|S|

e1,2,1 e1,2,2 e1,2,3 . . . e1,2,|S|
...

...
...

. . .
...

e1,T ,1 e1,T ,2 e1,T ,3 . . . e1,T ,|S|

e2,1,1 e2,1,2 e2,1,3 . . . e2,1,|S|

e2,2,1 e2,2,2 e2,2,3 . . . e2,2,|S|
...

...
...

. . .
...

e2,T ,1 e2,T ,2 e2,T ,3 . . . e2,T ,|S|
...

...
...

. . .
...

eI ,T ,1 eI ,T ,2 eI ,T ,3 . . . eI ,T ,|S|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v = 1
v = 2
...

v = D

v = D + 1
v = D + 2
...

v = D + T

v = D + T + 1
v = D + T + 2
...

v = D + 2T

...

v = D + I T

where ξv,s is the realization of random variable v in scenario s. 199

According to the Monte Carlo sampling procedure, the proba- 200

bility Pr(s) of each scenario is 1/|S|. 201

III. MATHEMATICAL FORMULATION 202

The repair and restoration problem can be divided into two 203

stages. The first stage is to route the repair crews, which is char- 204

acterized by depots, repair crews, damaged components and 205

paths between the damaged components. The second stage is 206

distribution system restoration using DGs and reconfiguration. 207

In practice, these two subproblems are interdependent. There- 208

fore, we propose a single MILP formulation that integrates the 209

two problems for joint distribution system repair and restora- 210

tion, with the objective of maximizing the picked-up loads. The 211

utility solves the optimization problem to obtain the best route 212

for the repair crews. The crews are then dispatched to repair the 213

damaged components. For example, the crews may have to re- 214

place a pole or reconnect a wire. This repair process is included 215

in the model through the repair time. Meanwhile, the utility con- 216

trols the DGs and switches to restore power to the consumers. 217

A. First Stage: Repair Crew Routing 218

The routing problem can be defined by a complete graph with 219

nodes and edges G(N,E). The node set N in the undirected 220

graph contains the depot and damaged components, and the 221

edge set E = {(m,n)|m,n ∈ N ;m �= n} represents the edges 222

connecting each two components. Our purpose is to find an op- 223

timal route for each crew to reach the damaged components. 224

The value of xm,n,c determines whether the path crew c trav- 225

els includes the edge (m,n) with m preceding n. The routing 226

constraints for the first stage problem are formulated as follows: 227

∑
∀m∈N

xoc ,m ,c = 1,∀c (2)

∑
∀m∈N

xm,dc ,c = 1,∀c (3)

∑
∀n∈N \{m}

xm,n,c −
∑

∀n∈N \{m}
xn,m,c = 0 , ∀c,

m ∈ N\ {oc , dc} (4)
∑
∀c

∑
∀m∈N \{n}

xm,n,c = 1,∀n ∈ N\ {oc , dc} (5)

Constraints (2) and (3) guarantee that each crew starts and 228

ends its route at the defined start and end locations. For example, 229

if crew 1 is located at the depot, then xoc ,2,1=1 means that 230

crew 1 travels from the depot to the damaged component 2. 231

Constraint (4) is known as the flow conservation constraint; i.e., 232

once a crew repairs the damaged component, the crew moves 233

to the next location. Constraint (5) ensures that each damaged 234

component is repaired by only one of the crews. 235
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Fig. 3. CLPU condition as a delayed exponential model, and the shaded areas
represent the two-block model.

B. Second Stage: Distribution Network Operation236

1) Objective:

max
∑
∀s

∑
∀t

∑
∀i

Pr(s) ωiyi,t,sP
D
i,t,s (6)

The objective (6) of the second stage is to maximize the ex-237

pected priority-weighted served loads over the time horizon. In238

this paper, we consider two load priorities levels: high and low239

[11]. Note that load priorities can be changed by the utilities as240

desired. The method in [11] is used to calculate the weights for241

each load. In the second stage, DGs and line switches are opti-242

mally operated in response to the realization of the repair times.243

Once a damaged line is repaired and energized, it provides a244

path for the power flow.245

2) Cold Load Pickup (CLPU): After an extended period of246

outage, the effect of cold load pick-up (CLPU) may happen,247

which is caused by the loss of diversity and simultaneous oper-248

ation of thermostatically controlled loads. As depicted in Fig. 3,249

the normal steady-state load consumption is defined as the di-250

versified load, and undiversified load is the startup load con-251

sumption upon restoration. The time when the load experiences252

an outage is t0 , t1 is the time when the load is restored, and253

t3 is the time when the load returns to normal condition. The254

typical behavior of CLPU can be represented using a delayed255

exponentially decaying function [12], which is shown in Fig. 3,256

where t2 − t1 is the exponential decay delay, and t3 − t1 is the257

CLPU duration. This exponential function can be approximated258

using a linear combination of multiple blocks.259

In this paper, we employ two blocks to represent CLPU as260

suggested in [12]. The first block is for the undiversified load PU261

and the second for the diversified load PD (i.e., the steady-state262

load consumption) as shown in Fig. 3. The use of two blocks263

decreases the computational burden imposed by nonlinear char-264

acteristics of CLPU and provides a conservative approach to265

guarantee the supply-load balance. For a time horizon T and266

time step Δt, the CLPU curve is sampled as shown in Fig. 4,267

where λ is the number of time steps required for the load to268

return to normal condition. The value of λ equals the CLPU du-269

ration divided by the time step. The CLPU constraint for active270

power can be formulated as follows:271

PL
i,t,s = yi,t,sP

D
i,t,s + (yi,t,s − yi,max(t−λ,0),s)PU

i,t,s ,∀i, t, s

(7)

Fig. 4. Two-blocks CLPU condition as a delayed exponential model, with
time step Δt.

where yi,0,s is the initial state of load i immediately after an 272

outage event; i.e., yi,0,s = 1 and PL
i,0,s = PD

i,0,s if the load is 273

not affected by the outage. If a load goes from a de-energized 274

state to an energized state at time step t = h (yi,h−1,s = 0 and 275

yi,h,s = 1), it will return to normal condition at time step h + λ, 276

as yi,h,s − yi,max(h+λ−λ,0),s = 0. Before time step h + λ, PU
i,t,s 277

is added to PD
i,t,s to represent the undiversified load. The function 278

max (t − λ, 0), is used to avoid negative values. We assume that 279

the duration of the CLPU decaying process is one hour in the 280

simulation [12]. Moreover, the study in [13] showed that the 281

total load at pick-up time can be up to 200% of the steady state 282

value, thus, PU
i,t,s is set to be equal to PD

i,t,s . Similarly, the CLPU 283

constraint for reactive power can be formulated as follows: 284

QL
i,t,s = yi,t,sQ

D
i,t,s + (yi,t,s − yi,max(t−λ,0),s)

× QU
i,t,s ,∀i, t, s (8)

3) Distribution Network Optimal Power Flow: The power 285

flow model mostly used in transmission network restoration is 286

the linear DC optimal power flow model which neglects reactive 287

power and voltage levels. AC optimal power flow, on the other 288

hand, is nonlinear and will greatly increase the computational 289

burden of the problem. Therefore, linearized Distflow equations 290

are used to calculate the power flow and the voltages at each 291

node. Linearized Distflow equations have been used and veri- 292

fied in the literature [14]–[18]. The equations are formulated as 293

follows: 294

∑
∀k∈K (.,i)

PB
k,t,s + PG

i,t,s =
∑

∀k∈K (i,.)

PB
k,t,s + PL

i,t,s ,∀i, t, s (9)

∑
∀k∈K (.,i)

QB
k,t,s + QG

i,t,s =
∑

∀k∈K (i,.)

QB
k,t,s + QL

i,t,s ,∀i, t, s

(10)

Vj,t,s − Vi,t,s +
RkPB

k,t,s + XkQB
k,t,s

V1
≤ (1 − uk,t,s)M,

∀k, t, s (11)

(uk,t,s − 1)M ≤ Vj,t,s − Vi,t,s +
RkPB

k,t,s + XkQB
k,t,s

V1
,

∀k, t, s (12)

1 − ε ≤ Vi,t,s ≤ 1 + ε , ∀i, t, s (13)
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Constraints (9) and (10) represent the active and reactive power295

balance constraints, respectively. The voltage at each bus is296

expressed in constraints (11) and (12), where V1 is the reference297

voltage. A disjunctive method is used to ensure that the voltage298

levels of two disconnected buses are decoupled. The values used299

for M are explained in Section III-B6. Constraint (13) defines300

the allowable range of voltage deviations, where ε is set to be301

5% [19].302

We consider dispatchable DGs for supplying loads in the303

distribution network, and automatic switches to reconfigure the304

network. The automatic switches are controlled by uk,t,s , k ∈305

ΩSW . The following constraints define the capacity of the DGs,306

line flow limits, and switching status of the lines:307

0 ≤ PG
i,t,s ≤ PGm a x

i , ∀i, t, s (14)

0 ≤ QG
i,t,s ≤ QGm a x

i , ∀i, t, s (15)

− uk,t,sP
Bm a x
k ≤ PB

k,t,s ≤ uk,t,sP
Bm a x
k , ∀k, t, s (16)

− uk,t,sQ
Bm a x
k ≤ QB

k,t,s ≤ uk,t,sQ
Bm a x
k , ∀k, t, s (17)

uk,t,s = 1,∀k �∈ {ΩSW ∪ N\{0}}, s (18)

Constraints (14) and (15), respectively, define the real and308

reactive output limits for DGs. Constraints (16) and (17) set the309

limits of the line flows and indicate that the power flow through310

a damaged line equals zero, which is achieved by multiplying311

the line limits by uk,t,s . Constraint (18) maintains the switching312

status of a line uk,t,s to be 1 when there is no damage and/or no313

switch.314

Once a load is served, it should remain energized, as enforced315

by the following constraint:316

yi,t+1,s ≥ yi,t,s , ∀i, t, s (19)

4) Radiality Constraints: The distribution network is recon-317

figured dynamically using switches to change the topology of318

the network. Radiality constraints are introduced to maintain319

radial configuration. The method used in [20] is employed in320

this paper. Radiality is enforced by introducing constraints for321

ensuring that at least one of the lines of each possible loop in322

the network is open. A depth-first search method [20] is used323

to identify the possible loops in the network and the lines asso-324

ciated with them. The following constraint can then be used to325

ensure radial configuration:326

∑
k∈ΩK ( l )

uk,t,s ≤ |ΩK (l) | − 1,∀l, t, s (20)

where |ΩK (l) | is the number of lines in loop l. Constraint (20)327

guarantees that at least one line is disconnected in each loop.328

Alternatively, the radiality constraints can be represented by329

(21)–(24) based on the spanning tree approach [21], [22].330

0 ≤ βs
i,j,t ≤ 1,∀i, j ∈ ΩB , t, s (21)

βs
i,j,t + βs

j,i,t = uk,t,s , ∀k, t, s (22)

βs
i,j,t = 0, ∀i ∈ ΩB , j ∈ ΩSB , t, s (23)
∑

∀i∈ΩB

βs
i,j,t ≤ 1, ∀j ∈ ΩB , t, s (24)

Two variables βi,j,t and βj,i,t are defined to model the spanning 331

tree. For a radial network, each bus cannot be connected to more 332

than one parent bus and the number of lines equals the number 333

of buses other than the root bus. Constraint (22) relates the 334

connection status of the line and the spanning tree variables βi,j,t 335

and βj,i,t . If the distribution line is connected, then either βi,j,t or 336

βj,i,t must equal one. Constraint (23) designates substations as 337

and indicates that they do not have parent buses. Constraint (24) 338

requires that every bus has no more than one parent bus. The 339

spanning tree constraints guarantee that the number of buses 340

in a spanning tree, other than the root, equals the number of 341

lines [21]. In this paper, we use constraint (20) to ensure the 342

radiality as the spanning tree constraints in (21)–(24) will add 343

|ΩB | × |ΩB | × |T | × |S| variables. 344

5) Restoration Time: The arrival time and consequently the 345

time when each component is repaired must be calculated to 346

connect the routing and power operation problems. Once a crew 347

arrives at a damaged component m at time αm,c , they spend a 348

time Tm,s to repair the damaged component, and then take time 349

TR
m,n,c to arrive at the next damaged component n. Therefore, 350

αm,c,s + Tm,s + TR
m,n = αn,c,s if crew c travels the path m to 351

n. The travel time between the damaged components and depot 352

can be obtained through a geographic information system (GIS). 353

The arrival time constraints are formulated as follows: 354

αm,c,s + Tm,s + TR
m,n − (1 − xm,n,c) M ≤ αn,c,s

∀m ∈ N\{dc}, n ∈ N\ {oc ,m} , c, s (25)

αn,c,s ≤ αm,c,s + Tm,s + TR
m,n + (1 − xm,n,c) M

∀m ∈ N\{dc}, n ∈ N\ {oc ,m} , c, s (26)

Disjunctive constraints are used to decouple the times to arrive 355

at components m and n if the crew does not travel from m to 356

n. In order to determine when will the damaged component be 357

restored and can be operated again, we enforce the following 358

constraints: 359

0 ≤ fm,t,s ≤ 1,∀m ∈ N\ {oc , dc} , t, s (27)
∑
∀t

fm,t,s = 1 , ∀m ∈ N\ {oc , dc} , s (28)

For example, if component m is repaired at t = 3, then fm = 360

{0, 0, 1, 0, ..., 0}. The restoration time for component m can be 361

found by
∑

∀t t fm,t . 362

The restoration time depends on the arrival time and the repair 363

time, where the relationship is modeled using the following 364

equations: 365

∑
∀t

tfm,t,s ≥
∑
∀c

(
αm,c,s + Tm,s

∑
∀n∈N

xm,n,c

)

∀m ∈ N\ {oc , dc} , s (29)

∑
∀t

tfm,t,s ≤
∑
∀c

(
αm,c,s + Tm,s

∑
∀n∈N

xm,n,c

)

+ 1 − ε,∀m ∈ N\ {oc , dc} , s (30)
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Fig. 5. Time sequence of the repair process.

366 0 ≤ αm,c,s ≤ M
∑
n∈N

xm,n,c , ∀m ∈ N\ {oc , dc} , c, s (31)

Constraints (29) and (30) determine the time when a damaged367

component is repaired by adding its repair time to the arrival368

time. The two equations are used to define �tfm,t	, since the369

time horizon has integer values. If the damaged component370

is not repaired by a crew c, then the arrival time and repair371

time for this crew should not affect constraints (29) and (30),372

which is realized by using constraint (31) to set αm,c = 0. Fig. 5373

demonstrates the time sequence of the repair process and how374

to find the restoration time. Starting from the depot, if both375

travel time and repair time are 4 hours, the restoration time is376 ∑
∀t t fm,t = 8.377

The routing and power operation problems are connected with378

the following constraint:379

um,t,s =
t∑

t̄=1

fm,t̄,s , ∀m ∈ N\ {oc , dc} , t, s (32)

Constraint (32) indicates that the restored component becomes380

available after it is repaired, and remains available in all subse-381

quent time periods. We assume that the repair time includes the382

time it takes to re-energize the component; therefore, if compo-383

nent m is repaired at t = 4, it can be used at t = 4 and thereafter.384

For example, if t = [1, 2, ..., 6] and fm = [0, 0, 0, 1, 0, 0] then385

um,t = [0, 0, 0, 1, 1, 1].386

6) Big M: The value used for M depends on the constraint.387

An inappropriately large M may increase the computation time,388

and a small value may introduce infeasibility. In constraint (11)389

and (12), the maximum and minimum values for the voltage are390

1.05 and 0.95 per unit. Hence, the largest possible difference391

between any two voltages (Vj,t,s − Vi,t,s) is 0.1 per unit. Also,392

the maximum drop in voltage (RkPB
k,t,s + XkQB

k,t,s)/V1 is 0.1393

per unit. Accordingly, the minimum value of M in (11) and (12)394

is 0.2 per unit.395

In the routing constraints, the crews must arrive at the dam-396

aged components before starting the repairs. For example, if397

the time horizon is T = 10, and the repair time for some dam-398

aged component m is Tm,s = 1, then the crew should arrive399

at αm,c,s = 9 at the latest in order to repair the component.400

Note that the time horizon should be chosen such that all dam-401

aged components can be repaired in the optimization problem.402

Therefore, the minimum value of M in (31) equals the time403

horizon minus the minimum repair time. The minimum repair404

time is used to obtain the largest difference between T and405

the repair times of the components. Denote the value of M406

in (31) as M27 . For (25) and (26), the value of M should be407

larger than the time horizon T . In a worst-case scenario, the ar- 408

rival time of crew c at damaged component m is αm,c,s = M27 , 409

and the crew does not repair damaged component n, as per equa- 410

tion (31), αn,c,s = 0. Consequently, (25) and (26) are translated 411

to−M ≤ 0 − M27 − Tm,s − TR
m,n ≤ M . Hence, the minimum 412

value of M in (25) and (26) equals M27 plus the maximum repair 413

and travel times. 414

C. Two-Stage Stochastic Program 415

In this paper, we formulate the stochastic DSRRP as a two- 416

stage stochastic program. In the first stage, the crews are dis- 417

patched to the damaged components. Therefore, the first-stage 418

variable is xm,n,c . After realization of the repair times and 419

loads, the distribution network is operated in the second stage. 420

The second-stage variables are defined in vector γs, which in- 421

cludes (α, f, PB , PG , PL ,QB ,QG,QL, u, V, y, β). The exten- 422

sive form (EF) of the two-stage stochastic DSRRP is formulated 423

as follows: 424

ζ(weighted kWh) = max
x,γ

∑
∀s

∑
∀t

∑
∀i

Pr(s)ωiyi,t,sP
D
i,t,s

s.t. (2)−(5), (7)−(32) (33)

u, x, y ∈ {0, 1} (34)

IV. SOLUTION ALGORITHM 425

In this section, we decompose S-DSRRP and present the 426

algorithm for solving the decomposed problem. 427

A. Progressive Hedging 428

Watson and Woodruff adapted the PH algorithm [23] to ap- 429

proximately solve stochastic mixed-integer problems. The PH 430

algorithm decomposes the extensive form into subproblems, 431

by relaxing the non-anticipativity of the first-stage variables. 432

Hence, for |S| scenarios, the stochastic program is decomposed 433

into |S| subproblems. PH can solve the subproblems in parallel 434

to reduce the computational burden for large-scale instances. 435

The authors of [24] effectively implemented PH for solving the 436

stochastic unit commitment problem. A full description of the 437

PH algorithm can be found in [23]. 438

To demonstrate the PH algorithm, we first define a compact 439

form for the general two-stage stochastic program as follows: 440

ζ = min
δ,γs

aT δ +
∑
∀s

Pr(s) bs
T γs (35)

s.t. (δ,γs) ∈ Qs ,∀s (36)

where a and bs are vectors containing the coefficients associated 441

with the first-stage (δ) and second-stage (γs) variables in the 442

objective, respectively. The restriction (δ, γs) ∈ Qs represents 443

the subproblem constraints that ensures a feasible solution. The 444

PH algorithm is described in Algorithm 1, using a penalty factor 445

ρ and a termination threshold ε. 446

The PH algorithm starts by solving the subproblems with 447

individual scenarios in Step 2. Notice that for an individual 448

scenario, the two-stage model boils down to a single-level prob- 449

lem. Step 3 aggregates the solutions to obtain the expected 450
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Algorithm 1: The Two-Stage PH Algorithm.
1: Let τ := 0
2: For all s ∈ S, compute:
3: δs

(τ ) := arg minδ {aT δ + bs
T γs : (δ,γs) ∈ Qs}

4: δ̄(τ ) :=
∑

s∈S Pr(s)δs
(τ )

5: ηs
(τ ) := ρ(δs

(τ ) − δ̄(τ ))
6: τ := τ + 1
7: For all s ∈ S compute:
8: δs

(τ ) := arg minδ {aT δ + bs
T γs + ηs

(τ−1)δ +
ρ
2 ||δ − δ̄(τ−1) ||2 : (δ,γs) ∈ Qs}

9: δ̄(τ ) :=
∑

s∈S Pr(s)δs
(τ )

10: ηs
(τ ) := ηs

(τ−1) + ρ(δs
(τ ) − δ̄(τ ))

11: μ(τ ) :=
∑

s∈S Pr(s)||δs
(τ ) − δ̄(τ ) ||

12: If μ(τ ) < ε, then go to Step 5. Otherwise, terminate

value δ̄. The multiplier ηs is updated in Step 4. The first four451

steps represent the initialization phase. In Step 6, the subprob-452

lems are augmented with a linear term proportional to the mul-453

tiplier η
(τ−1)
s and a squared two norm term penalizing the454

difference of δ from δ̄(τ−1) , where τ is the iteration num-455

ber. Steps 7-8 repeat Steps 3-4. The program terminates once456 ∑
s∈S Pr(s)||δs

(τ ) − δ̄(τ ) || < ε; i.e., all first-stage decisions δs457

converge to a common δ̄. The termination threshold ε is set to458

be 0.01 in this paper.459

B. Decomposed S-DSRRP460

The proposed algorithm iteratively selects a group of dam-461

aged components and dispatches the crews until all damaged462

components are repaired. The S-DSRRP is decomposed into463

two subproblems.464

1) Subproblem I: The first subproblem determines C critical465

damaged components to repair. This problem is formulated as a466

two-stage SMIP. In the first stage, the critical damaged compo-467

nents are determined, and the distribution network is operated in468

the second stage. The first subproblem is formulated as follows:469

z∗ := arg max
z,γ̄s

∑
∀s

∑
∀t

∑
∀i

Pr(s) ωi yi,t,sP
D
i,t,s (37)

s.t.(7) − (20)
∑

∀m∈N \{0}
zm ≤ C (38)

um,t,s ≤ zm ,∀m, t, s (39)

Tm , s∑
t=1

um,t,s = 0,∀m, s (40)

470

where γ̄s includes (PB , PG, PL ,QB ,QG,QL, u, V, y, β). De-471

fine binary variable zm to equal 1 if damaged component m is a472

critical damaged component to repair. The goal of this subprob-473

lem is to find a number of damaged components that, if repaired,474

will maximize the served load. In order to obtain a manageable475

problem for the second subproblem, we set the number of se-476

lected (critical) damaged components to be equal to the number477

Algorithm 2: D-PH algorithm for solving S-DSRRP.

Input: C, PD
i,t,s , Q

D
i,t,s , Tm,s , Rk ,Xk , TR

m,n , wi,N

Output: αm,c,s , P
G
i,t,s , Q

G
i,t,s , uk,t,s , xm,n,c , yi,t,s

1: for r = 1 to �|N\{depot}|/C� do
2: Solve using PH {Subproblem I}
3: z∗ := arg maxz,γ̄s

{(36) : s.t. (7)−(20), (38)−(40)}
4: N ′(r) = {m|z∗m = 1,∀m ∈ N}
5: if N ′(r) is null then
6: break {All loads can be served}
7: end if
8: Solve using PH {Subproblem II}
9: ζ := maxx,γs

{(33) : s.t.(2)−(5), (7)−(20),
(25)−(32), (41)}

10: For each crew, update the starting location:
11: oc = {m|x∗

m,dc ,c = 1,∀m ∈ N}
12: N = N\N ′(r) {update damaged components}
13: end for
14: if N is not null then
15: Repeat Step 7 {route the repair crews to the remaining

damaged components}
16: end if

of crews; i.e., C. In this subproblem, all routing constraints are 478

neglected, and we assume that the crews instantaneously begin 479

repairing the selected damaged components. The objective of 480

Subproblem I (37) is to maximize the served loads, while con- 481

sidering distribution network operation constraints. Constraint 482

(38) limits the number of damages to be repaired. If zm equals 0, 483

then um,t,s must be 0, which is enforced by (39). Constraint (40) 484

sets um,t,s to be 0 until time Tm,s has passed. After determining 485

the critical components, we proceed to the second subproblem. 486

2) Subproblem II: The second subproblem is formulated 487

similarly to (33). The crews are dispatched to the damaged 488

components obtained from Subproblem I in the first stage, and 489

the distribution network is operated in the second stage. Each 490

cycle of Subproblem I and Subproblem II is defined as a dispatch 491

cycle. The dispatch cycle is denoted by r. Define the subset of 492

critical damaged components and starting point as N ′(r). Note 493

that the starting point after the first dispatch cycle is the cur- 494

rent location of the crew instead of the depot. Subproblem II 495

solves the two-stage S-DSRRP for N ′(r), which is formulated 496

as follows: 497

ζ = max
x,γs

(33)

s.t. (2)−(5), (7)−(20), (25)−(32)

um,t,s = 0,∀t, s,m ∈ N\N ′(r) (41)

Constraint (41) states that if component m is damaged and is 498

not being repaired, then um,t,s equals 0. The two subproblems 499

are repeated until all damaged components are repaired. 500

Algorithm 2 presents the pseudo-code for the D-PH algo- 501

rithm. The number of dispatch cycles is equal to the number 502

of damaged components divided by the number of crews; i.e., 503

�|N\{depot}|/C�. If there are 11 damages and 3 crews, then the 504
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number of dispatch cycles will be 3, and the remaining damaged505

components are considered in Steps 11–12. The algorithm starts506

by solving Subproblem I in Step 2 using PH. After obtaining z∗507

in dispatch cycle r, the subset of critical damaged components,508

N ′(r), is defined in Step 3. If N ′(r) is null, then all loads can be509

served without repairing any damaged components. Therefore,510

the loop ends and the routing problem is solved for N in Step 12.511

Subproblem II is solved next using PH in Step 7 to route the512

crews and operate the distribution network. We then update oc513

in Step 8 by using the results obtained from the Subproblem II.514

The end point for the crews is set to be the depot, but the variable515

xm,dc ,c is used only to determine the starting locations for the516

next dispatch cycle. The crews return to the depot after all repair517

tasks are finished in the final dispatch cycle. The set of dam-518

aged components is updated in Step 9 by removing the repaired519

lines. Step 11 checks whether there are any remaining damaged520

components, and then solves Subproblem II to finish the repairs.521

V. SIMULATION AND RESULTS522

Modified IEEE 34- and 8500-bus distribution feeders are used523

as test cases for the repair and restoration problem. Detailed524

information on the networks can be found in [25] and [26],525

respectively. The stochastic models and algorithms are imple-526

mented using the PySP package in Pyomo [27]. IBM’s CPLEX527

12.6 mixed-integer solver is used to solve all subproblems. The528

experiments were performed on Iowa State University’s Condo529

cluster, whose individual blades consist of two 2.6 GHz 8-Core530

Intel E5-2640 v3 processors and 128GB of RAM. The scenario531

subproblems are solved in parallel by using the Python Remote532

Objects library. To ensure a fast response for the outage, and533

the convergence of the algorithm, we impose a 30-minute time534

limit on each subproblem; i.e., a one-hour time limit [28] for535

each dispatch cycle.536

A. Case I: IEEE 34-Bus Distribution Feeder537

The IEEE 34-bus feeder is modified by adding three dispatch-538

able backup DGs installed at randomly selected locations, and539

two-line switches. High-priority loads are chosen arbitrarily.540

The capacity of the DGs is 150 kW. The travel time between541

damaged components ranges from 15 to 30 minutes, and the542

time step used in the simulation is one hour. We assume three543

crews, one depot, and seven damaged lines. The outage is as-544

sumed to have occurred at 12 AM. The Monte Carlo sampling545

technique is used to generate 1000 random scenarios with equal546

probability, and the simultaneous backward scenario reduction547

algorithm [29] is applied to reduce the number of scenarios to548

30. The General Algebraic Modeling System (GAMS) provides549

a toolkit named SCENRED2 for implementing the scenario550

reduction algorithm [30]. For the repair time, a lognormal dis-551

tribution is used with parameters μ = −0.3072 and σ = 1.8404552

[31], and unrealistic values (e.g., 0.01 hours) are truncated. On553

the other hand, the load forecast error is generated using a trun-554

cated normal distribution with limits ± 15% [10]. Samples of555

the 30 generated scenarios are shown in Table I for the repair556

time.557

TABLE I
SAMPLES OF THE REPAIR TIMES (IN HOURS) FOR THE 30 GENERATED

SCENARIOS USING THE LOGNORMAL DISTRIBUTION

Fig. 6. Routing solution for the IEEE 34-bus network obtained by D-PH.

The aim of this test is to analyze and visualize the D- 558

PH algorithm. Since there are 7 damaged lines and 3 crews, 559

the algorithm requires 3 dispatch cycles. The algorithm con- 560

verges after 10 minutes, where dispatch cycles 1, 2, and 3 con- 561

verges after 5, 3, and 2 minutes, respectively. The routing so- 562

lution is shown in Fig. 6. In the first dispatch cycle, Lines 5–6, 563

12–13, and 31–32 are selected as critical lines. Repairing line 564

5–6 provides a path for the power flow coming from the substa- 565

tion. Line 31–32 is prioritized as it is connected to a high-priority 566

load. Line 12–13 is repaired to provide electricity to the lower 567

portion of the network. Line 4–20 is repaired after Line 12–13 568

as DG1 can provide energy to the load at bus 20 temporarily 569

before the line is repaired. 570

Next, we present a detailed solution of the second-stage vari- 571

ables for one possible realization, we use Scenario 1 from 572

Table I. The first-stage solution (crew routing) is shown in Fig. 6, 573

while some of the second-stage variables, including switching 574

operation and DG output, are detailed in Table II. Switch 24–28 575

is turned on so that DG2 can supply part of the network on the 576

right-hand side. In this scenario, the first line repaired is 31–32, 577

but the load at bus 32 is not served as DG2 is at its limit. Line 578

12–13 is repaired next and the load at bus 10 is restored. Switch 579

7–21 remains off until line 5–6 is repaired, to provide a path for 580

the power coming from the substation. The substation restores 581

eight loads at this point (4 AM), while loads at buses 11, 16, and 582

24 are not restored until the next hour due to the higher demand 583

caused by CLPU. Switch 7–21 and 24–28 are turned off once 584

line 7–8 and line 9–10 are repaired, respectively. Note that by 585

using switches 7–21 and 24–28, all loads are served before re- 586

pairing lines 7–8 and 9–10. Finally, the back-up DGs are turned 587

off since the loads can be supplied by the substation. 588

To show the importance of considering uncertainty in the 589

problem, we calculate the expected value of perfect information 590

(EVPI) and the value of the stochastic solution (VSS). EVPI is 591
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TABLE II
SWITCH STATUS, DG OUTPUT, AND SEQUENCE OF REPAIRS FOR THE IEEE

34-BUS FEEDER

Fig. 7. Routing solution obtained by using the expected values.

the difference between the wait-and-see (WS) and the stochastic592

solutions. It represents the value of knowing the future with cer-593

tainty. WS is the expected value of reacting to random variables594

with perfect foresight. It is obtained by calculating the mean of595

all deterministic solutions of the scenarios. VSS indicates the596

benefit of including uncertainty in the optimization problem.597

VSS is the difference between the stochastic solution and the598

expected value solution (EEV). To obtain EEV, we first solve599

the deterministic problem using the expected value (EV) of the600

random variables, where the average repair time is 4 hours and601

the load forecast error is zero. Then we set the first-stage vari-602

able as a fixed parameter and solve the stochastic problem to603

find the value of EEV. Furthermore, the expected energy not604

supplied (EENS) is calculated as follows:605

EENS =
∑
∀s

Pr(s)

(∑
∀t

∑
∀i

(1 − yi,t,s)PD
i,t,s

)
(42)

The route obtained by solving the deterministic problem with606

average repair time and zero load forecast error is shown in607

Fig. 7. EEV is then found to be 30524.13 and the EENS for this608

routing plan is 1907.5 kWh, as shown in Table III. By solving609

the extensive form of the S-DSRRP using Pyomo with CPLEX610

solver, we obtained the routes shown in Fig. 8, after 25 hours.611

Observe that the difference between Fig. 7 and Fig. 8 lies around612

line 4–20. Repairing line 4–20 early gives DG1 the opportunity613

to support the substation and meet the higher demand caused614

by CLPU and the high forecast error. The importance of line615

TABLE III
RESULTS OF THE STOCHASTIC SIMULATION ON THE IEEE 34-BUS FEEDER,

WITH 7 DAMAGED COMPONENTS

Fig. 8. Routing solution obtained by solving the extensive form.

4–20 and DG1 is not captured in the EEV solution as the uncer- 616

tainty is not considered in the decision making process. D-PH 617

algorithm achieved a solution close to the EF solution in 10 min- 618

utes, with EENS 21.2 kWh lower than the one obtained for EF. 619

The relative gap is obtained by comparing the objective of the 620

different methods to the solution obtained using EF, which is 621

only 0.1% for D-PH. The same route as D-PH is obtained by 622

solving the complete problem (29) using the PH algorithm, but 623

the computation time increases to 27 minutes. Though D-PH 624

has a slightly lower objective value than EF, the computation 625

time is improved considerably. Furthermore, the results show 626

the advantage of using PH over EF, as the computation time for 627

EF is 25 hours, whereas PH converges in 27 minutes. 628

B. Case II: IEEE 8500-Bus Distribution Feeder 629

The IEEE 8500-bus feeder test case, shown in Fig. 9, is used 630

to examine the scalability of the developed approach for large 631

networks. Five 500 kW DGs are randomly installed in the net- 632

work. The potential loops in the network are identified using a 633

depth-first search method [32] in MATLAB to form the radiality 634

constraint. There are 5 loops in the network, which are found in 635

60.72 seconds. It is assumed that there are 6 crews and 20 ar- 636

bitrarily selected damaged lines, labeled in Fig. 9. Monte Carlo 637

sampling is used to generate 1000 random scenarios, which are 638

reduced to 30 using SCENRED2. Since there are 6 crews and 639

20 damaged lines, the D-PH has four dispatch cycles. The com- 640

plete routing solution is obtained after 79 minutes, where the 4 641

dispatch cycles converged after 23, 25, 18, and 13 minutes. The 642

alternative methods, i.e., EEV, EF, and PH, did not converge to 643

a feasible solution after 24 hours. The routing solution obtained 644

using D-PH is shown in Table IV. Fig. 10 shows the change in 645

percentage of load supplied for one sample scenario. By chang- 646

ing the topology of the network and using the backup DGs, 37% 647
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Fig. 9. 8500-bus IEEE distribution network with 20 damaged lines.

TABLE IV
ROUTING SOLUTION FOR THE 8500-BUS TEST CASE

Fig. 10. Percentage of load served for the 8500-bus test case.

Fig. 11. Sensitivity analysis of optimal objective value versus the number of
scenarios.

of the loads can be served. The number of served loads start to648

increase as the crews repair the damaged components, and 95%649

of the loads are restored after five hours.650

To test whether the scenario set can represent the uncertain-651

ties, we apply one of the solution stability tests presented in [33].652

We perform a sensitivity analysis with different numbers of sce-653

narios for the IEEE 8500-bus system. The stochastic problem654

is solved to compare the objective values under different num-655

bers of scenarios. The solution is stable if the deviation of these656

objective values is small [33]. The largest number of scenarios 657

we consider is 100. The results are shown in Fig. 11. It can be 658

seen that the variation of these objective values is very small, 659

thus, the presented method is stable. This shows that using 30 660

scenarios can represent the uncertainties in the problem. 661

VI. CONCLUSION 662

In this paper, we proposed a two-stage stochastic approach 663

for the repair and restoration of distribution networks. The sce- 664

narios are generated using Monte Carlo sampling, considering 665

the uncertainty of the repair time and load. We developed a 666

decomposition approach to solve the stochastic problem. The 667

approach starts with identifying the critical components to re- 668

pair in its first subproblem, and then routes the crews in the 669

second subproblem. Both subproblems are formulated as two- 670

stage stochastic programs. Parallel Progressive Hedging is em- 671

ployed in the algorithm where the subproblem for each scenario 672

is solved separately. For small cases, the proposed method pro- 673

vides solutions that have similar quality as the one found by 674

solving the extensive form, while the computational burden is 675

significantly reduced. The proposed approach managed to solve 676

large cases in a reasonable time while other methods did not 677

provide a feasible solution within 24 hours. The results demon- 678

strate the effectiveness of the proposed approach in balancing 679

computational burden and solution quality. 680
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