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Abstract—This article proposes a model-free secondary voltage1

control (SVC) for microgrids (MG) using nonlinear multiple mod-2

els adaptive control. Firstly, a linear robust adaptive controller3

is designed to guarantee the voltage stability in the bounded-4

input-bounded-output (BIBO) manner so as to meet the operation5

requirements of MGs. Secondly, a nonlinear adaptive controller is6

developed to improve the voltage tracking performance with the7

help of artificial neural networks (ANNs). A switching mechanism8

for coordinating such two controllers is designed to guaran-9

tee the closed-loop stability while achieving accurate voltage10

tracking. By an online identification based on the input and out-11

put data of MGs, the proposed method does not resort to any12

apriori information of system model and primary control, thus13

exhibiting good robustness, ease of deployment and disturbance14

rejection.15

Index Terms—Artificial neural network (ANN), microgrid16

(MG), multiple models, adaptive control, secondary voltage17

control (SVC).18

NOMENCLATURE19

Abbreviations20

ANN Artificial neural network21

BIBO Bounded-input bounded-output22

DER Distributed energy resource23

LAC Linear adaptive controller24

ARMAX Auto-regressive moving average with exogenous25

input model26

MG Microgrid27

MGCC Microgrid central controller28

NAC Nonlinear adaptive controller29

PI Proportion-Integral30

PV Photovoltaic31

SVC Secondary voltage control32

SNR Signal-to-noise ratio.33
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Variables 34

J Objective function 35

E∗ Vector of voltage reference from SVC 36

eL, eN Error vectors of linear and nonlinear models 37

ē Voltage tracking error vector 38

h Linear-transformed unmodeled dynamics 39

δh, δĥ Residual between real voltage and estimated 40

voltage and its estimation using ANN 41

k Time step index 42

vref
o Predefined voltage reference 43

vo Vector of voltage magnitude 44

voi Terminal voltage magnitude of the ith DER 45

vodi, voqi dq components of voi 46

Ŵ Estimation of the ideal weight matrix 47

�, �̄ Vector of output and input voltage and its 48

rearrangement 49

y Linear transformed output voltage vector 50

ŷL, ŷN Estimated transformed output voltage vectors 51

using linear and nonlinear model identifier 52

� Positive constant 53

ε Small positive constant 54

μ Non-negative constant 55

� Unmodeled dynamics 56

x Compact state variable vector of a MG 57

ψ i State vector of the ith DER 58

ξ Performance index of switching mechanism. 59

Parameters 60

A(·) Matrix polynomial of nth-order backward shift 61

operator 62

B(·) Matrix polynomial of (n− 1)th-order backward 63

shift operator 64

d Relative degree 65

F(·) Diagonal and stable weight matrix polynomial 66

K(·), L(·) Matrix polynomials of (n− 1)th-order 67

m Number of DERs 68

n MG system order 69

R Diagonal real matrix 70

ρ Bound of magnitude of unmodeled dynamics 71

θ Input-output parameter matrix 72

θ̂L, θ̂N Estimated parameter matrices using linear and 73

nonlinear models 74

�T Sampling time of secondary control. 75
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Sets76

� Set of linear parameter matrix polynomials77

R Set of real numbers.78

I. INTRODUCTION79

M ICROGRIDS (MGs) are localized small-scale power80

systems consisting of interconnected loads and dis-81

tributed energy resources (DERs), which can operate in both82

grid-connected and islanded modes. Compared with traditional83

fossil-fuel-based power grids, they have the advantages of fast84

demand response, low-carbon consumption, flexible utilization85

of DERs and high self-healing capability, etc [1], [2].86

Despite of many benefits, MGs also bring some new control87

challenges. One of the key issues is the voltage tracking in the88

islanded mode. As known, hierarchical control is a popular89

choice for MGs, in which the primary voltage control with fast90

response maintains the stability while the secondary voltage91

control (SVC) corrects the voltage deviations [1], [2].92

As per the control architecture and communication require-93

ments, MG control methods can be classified into three94

main categories: centralized, decentralized and distributed [3].95

Centralized approaches are usually implemented with a96

microgrid central controller (MGCC) and point-to-point com-97

munication network. It has well served the industry for decades98

and performs many practical merits. For instance, they are99

easy to implement and house and often less costly for small-100

scale systems [4]. Moreover, centralized architecture provides101

the best foundation for advanced control applications since102

all relevant data can be collected and processed in a single103

controller. However, it may suffer from single point of fail-104

ure [5]. Redundant communication systems can be installed to105

enhance the reliability; nonetheless, it will lead to additional106

cost [6]. Another solution is using decentralized or distributed107

control approaches. Decentralized control is implemented with108

local SVC controllers without communication network, assum-109

ing that the interactions between subsystems are negligible.110

However, this assumption does not always hold and might111

result in poor system-wide performance. Distributed control112

consists of local controllers and a sparse communication113

network. Averaging-based and consensus-based distributed114

SVC have been well investigated [7]. In the averaging-based115

SVC, each DER measures its required data and transmits them116

to all the other units [8]. The SVC signal is then calcu-117

lated by averaging the received data from other DERs [9].118

By employing the broadcast gossip algorithm, the required119

communication links can be reduced and the algorithm can120

converge to an equilibrium [10]. In the consensus-based SVC,121

the communication network is reduced more by transferring122

the required data just among the neighbor DERs [11]–[13].123

Conventional SVC methods are based on apriori accurate124

models [14]. The input-output feedback linearization con-125

trol [15] that builds on the full knowledge of MG models126

and primary control might contradict the concept of hierar-127

chical control. Any changes of system structure or parameters128

could affect the control performance and could even result129

in instability. Some nonlinear control methods, e.g., model130

predictive control [16], sliding mode control [17], internal 131

model control [18], also have similar drawbacks. Several SVC 132

strategies are designed based on specified models of primary 133

controllers and inner controllers [3], [19]–[21], which restricts 134

their generalization. A finite-time control-based method [22] 135

was proposed to overcome such drawback. To alleviate the 136

dependence on accurate models, robust control [23], predictive 137

control [24], and variable-structure control [25] methods have 138

been investigated. To overcome time-varying communication 139

delays and communication noise disturbances, robust sec- 140

ondary control approaches have been studied in [26], [27]. 141

However, partial model and uncertainty dynamics are still 142

required for robust control and variable-structure control, 143

though they do improve robustness. 144

Recently, model-free control has attracted a lot of atten- 145

tion due to its advantages of robustness and flexibility [28]. 146

Reference [29] proposed a data-driven adaptive voltage control 147

scheme for interlinking converters in interlinked hybrid ac/dc 148

MGs, where the inner loop adopts a data-driven adaptive volt- 149

age control and the SVC is essentially a Proportion-Integral 150

(PI) controller. In [30], a bi-level distributed voltage con- 151

trol scheme was proposed, where the high-level controller 152

is designed for loss minimization; the low-level controller 153

regulates the power output and terminal voltage. In [31], 154

a model-free sliding mode control was adopted where the 155

parameters are tuned with heuristic techniques, nevertheless, 156

it suffers from chattering problem due the nature of sliding 157

mode control [32]. Distributed averaging-based PI controllers 158

for secondary frequency and voltage control were developed 159

in [8], [9], [33]; however, they still require MG network 160

information for controller parameter design. 161

Though most of SVC methods establish on linearized [5], 162

[7], [11], [19] or nonlinear system models [3], [12], [20], [21], 163

unfortunately, the detailed MG information including network 164

topology, line impedances and loads, may be fully or par- 165

tially unavailable to establish accurate models in some cases. 166

Moreover, since there are uncertainty dynamics and distur- 167

bances in DER-rich MGs, it is very hard to precisely capture 168

such dynamics [34], [35]. Clearly, models with poor accu- 169

racy can significantly deteriorate the control performance. For 170

the existing model-free control methods, they mostly resort to 171

PI control, which often suffers from high starting overshoot, 172

high sensitivity to controller gains and sluggish response to 173

disturbances [36]. 174

Our Contribution: To address these challenges, we propose 175

a multi-variable robust adaptive SVC method for MGs, which 176

builds on the multiple models and artificial neural networks 177

(ANNs) that are exploited to estimate the unmodeled dynam- 178

ics of MGs. The controller consists of two separate linear and 179

nonlinear modes that are coordinated by a tailored switch- 180

ing strategy. In normal operation, the SVC operates under 181

the nonlinear control mode which achieves the accurate volt- 182

age tracking. It will switch to the linear control mode so as 183

to guarantee the stability once there are large disturbances. 184

The proposed method is inherently model-free, in the sense 185

that it does not rely on apriori knowledge of MG topology, 186

line impedances and load demands, which enables indepen- 187

dent designs between different control layers while enhancing 188
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Fig. 1. Diagram of secondary and primary control structure of MG.

the robustness against uncertainties. We rigorously prove the189

global bounded-input-bounded-output (BIBO) stability of the190

controller and the equivalence between the tracking error and191

identification error of unmodeled dynamics. This implies that192

the accurate tracking can be achieved by properly designing193

the hyper-parameters of ANNs. Besides, we also analyze and194

test the robustness of the controller against time delays and195

communication noise disturbances.196

The remainder of this article is organized as follows.197

Section II briefly introduces MGs with a hierarchical con-198

trol structure. Section III presents the model-free SVC along199

with the closed-loop stability analysis. Simulation results are200

presented in Section IV. Section V offers conclusions and201

future directions. All of the technical proofs are collected in202

the Appendix.203

II. PROBLEM STATEMENT204

A. Hierarchical Control of MGs205

The hierarchical control structure is illustrated in Fig. 1.206

Primary control generally results in voltage deviations since207

it follows the droop control law. SVC is therefore used to208

compensate the deviations of voltage. In the islanded mode,209

the reference voltages, compactly denoted by Vref
o , are gen-210

erally set as the nominal voltage of the MG, while in the211

grid-tied mode, they are determined by the tertiary control [3].212

SVC generates control inputs E∗i , i = 1, . . . , m, according to213

the references and they are dispatched to each local primary214

controller of DERs. Then, the primary control calculates the215

voltage reference v∗oi for the local inner control loops. Finally,216

the measured output voltages of DERs voi are measured and217

fed back to the SVC.218

The secondary control has much slower dynamic response219

compared to primary control, which decouples the primary220

and secondary control [2]. This enables independent controller221

design at different layers. However, the flexibility of primary222

control is always limited to guarantee control performance223

when model-based control algorithms (e.g., feedback lineariza-224

tion and sliding mode control) are applied in the secondary225

layer. The a prior structures and parameters of primary con-226

trol should be considered in SVC design and uncertainties227

and disturbances of primary layer could lead to instability and228

large tracking errors of MGs. This motivates us to develop a229

robust model-free SVC without knowing any specifications of 230

primary layer. 231

B. Islanded MG System Description 232

In an islanded MG, the primary and inner control structures 233

of inverter-based DERs are shown in Fig. 2. In the islanded 234

mode, the control input of primary droop voltage controller is 235

E∗i ,∀i, which is obtained from SVC and the system output is 236

the terminal voltage voi. Such MG system can be compactly 237

expressed by a nonlinear state-space model as, 238

ẋ(t) = f
(
x(t), E∗(t)

)
(1a) 239

vo(t) = g(x(t)) (1b) 240

where vo := [vo1, . . . , vom]T ; x := [xT
1 , . . . , xT

m]T ; 241

E∗:=[E∗1, . . . , E∗m]T ; xi denotes the internal state variables of 242

ith DER; f and g are the functions representing the nonlinear 243

dynamic system. 244

Remark 1: Note that, Fig. 2 is only used to illustrate how 245

the control signal E∗i acts on the primary control layer, which 246

is actually not needed for our SVC design benefiting from the 247

model-free nature. In addition, this article focuses on SVC, so 248

the design of frequency control is not limited, which also gives 249

freedom to primary control, e.g., the PLL may not be needed 250

when droop characteristics control the frequency [37]. Besides, 251

functions f and g and state variables x are not necessarily 252

required. 253

III. MODEL-FREE SVC BASED ON NONLINEAR MULTIPLE 254

MODELS ADAPTIVE CONTROL 255

In this section, a novel SVC method based on nonlinear 256

multiple models adaptive control with unmodeled dynamics is 257

proposed. We first present the design of linear and nonlinear 258

controllers, respectively. Then, the controller parameter iden- 259

tification method is given. Finally, a switching mechanism is 260

designed to coordinate the linear and nonlinear parts. 261

A. Optimal Controller Design for Voltage Regulation 262

Given that the measurements are sampled, system (1) are 263

discretized as, 264

x(k + 1) = f
(
x(k), E∗(k)

)
, (2a) 265

vo(k) = g(x(k)), (2b) 266

where E∗ ∈ R
m, vo ∈ R

m, x ∈ R
n. The origin is an equilibrium 267

of function f and g. 268

If system (2) is observable for nth order, the state variables 269

of MGs x(k) can be expressed as a function of input and output 270

variables, vo(k), . . . , vo(k− n+ 1), E∗(k), . . . , E∗(k− n+ 1). 271

Thus, (2) can be represented with only voltage control inputs 272

and voltage outputs by the auto-regressive moving-average 273

with exogenous input (ARMAX) model as, 274

A
(

z−1
)

vo(k + d) = B
(

z−1
)

E∗(k) 275

+ ϕ[vo(k + d − 1, . . . , vo(k + d − n), 276

E∗(k), . . . , E∗(k − n+ 1)
)]

, (3) 277
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Fig. 2. The diagram of control structure of the VSC-based DER. PLL denotes the phase-locked loop; LPF denotes the low-pass filter; SVPWM denotes the
space vector pulse width modulation.

where A(z−1) is a m × m matrix polynomial of nth-order278

backward shift operator; B(z−1) is a m × m matrix poly-279

nomial of (n − 1)th-order backward shift operator; d (1 ≤280

d ≤ n) is the relative degree; ϕ[ · ] ∈ R
n is the unmod-281

eled dynamics, which is a higher-order nonlinear function of282

vo(k), . . . , vo(k− n+ 1), E∗(k), . . . , E∗(k− n+ 1) [38]. n and283

d are unknown if the detailed model of primary controllers284

and MGs are not available. However, they can be determined285

by the method in [39]. Moreover, the following assumptions286

are widely believed to hold for MGs in practice.287

Assumption 1: (i) The internal dynamics of MGs are glob-288

ally uniformly asymptotically stable; (ii) matrix polynomials289

A(z−1) and B(z−1) lie in a closed and bounded set �.290

Assumption 1(i) ensures that the voltage control input E∗291

will not grow faster than the output voltage vo, indicating the292

MG is a minimum-phase system. Note that, this assumption is293

not necessary if the linear part of system (2) is asymptotically294

stable and thus, the proposed method can be applied to this295

kind of non-minimum-phase nonlinear system [40].296

To ensure the stability while improving the voltage tracking297

performance, two separate optimal controllers are designed.298

We first define a cost function on voltage tracking errors,299

J :=
∥∥∥F

(
z−1

)
vo(k + d)− Rvref

o (k)
∥∥∥

2
, (4)300

where vref
o ∈ R

m is voltage reference vector; F(·) denotes a301

m×m weight matrix polynomial, which is stable and diagonal;302

R is a m× m diagonal real matrix.303

To minimize (4), an optimal control law is designed as,304

L
(

z−1
)

B
(

z−1
)

E∗(k)+ K
(

z−1
)

vo(k)+ h[ · ] = Rvref
o (k) (5)305

where L(z−1) denotes a m × m (n − 1)th order polynomial,306

K(z−1) := K0 + K1z−1 + · · · + Kn−1z−n+1 is a m× m matrix307

polynomial and h[ · ] := L(z−1)ϕ[ · ]. L(z−1) and K(z−1) can308

be calculated by,309

F
(

z−1
)
= L

(
z−1

)
A

(
z−1

)
+ z−dK

(
z−1

)
. (6)310

h[·] in (5) is a linear transformation of unmodeled dynamics311

ϕ[ · ], which can be estimated using ANNs. Let ĥ[ · ] be its312

estimation, and then substitute (5) into (3), one can obtain, 313

F
(

z−1
)

vo(k + d) = Rvref
o (k)+ h[ · ]− ĥ[ · ] (7) 314

where F(z−1) can be selected as a diagonal matrix such that its 315

characteristic polynomial describes the poles of (7) and R can 316

be chosen as F(1). If we obtain the linear parts of the system, 317

the tracking error ē = F(z−1)vo(k+d)−Rvref
o (k) of the closed- 318

loop system equals h[ · ]− ĥ[ · ]. With proper configuration of 319

the ANNs, ē can be controlled to be arbitrarily small [38]. 320

If the high-order nonlinear term h[ · ] is small enough, (5) 321

can be simplified as a linear control law as, 322

L
(

z−1
)

B
(

z−1
)

E∗(k)+ K
(

z−1
)

vo(k) = Rvref
o (k). (8) 323

B. Multiple Models Adaptive Control Based on ANNs 324

1) Identification of Controller Parameters: To achieve 325

model-free control with unknown MG parameters, we propose 326

to exploit the adaptive control method. From (3) and (6), we 327

can obtain 328

y(k + d) = θT�(k)+ h
[
�̄(k)

]
, (9) 329

where y(k + d) := F(z−1)vo(k + d) denotes the transformed 330

output voltage; θ := [K0, . . . , Kn−1, LB0, . . . , LBn+d−2]T
331

denotes the input-output parameter matrix; �(k) := 332

[vo(k)T , . . . , vo(k− n+ 1)T , E∗(k)T , . . . , E∗(k− n− d+ 2)T ]T
333

is the vector collecting all the output and input voltages, and 334

�̄(k) = [vo(k), . . . , vo(k−n+1), E∗(k), . . . , E∗(k−n−d+2)]. 335

From Assumptions 1(ii), one can know that the parameter 336

matrix θ lies in a certain closed and bounded set. Assuming the 337

unmodeled dynamics h[ · ] are globally bounded by a known 338

positive constant ρ, i.e., ‖h[ · ]‖ ≤ ρ, we propose the linear 339

and nonlinear model estimators for parameter identification. 340

The linear estimator is designed as, 341

ŷL(k + d) = θ̂L(k)T�(k) (10) 342

where ŷL and θ̂L(k) are linear estimated transformed output 343

voltage and linear estimated parameter vectors, respectively. 344
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The update law is designed as,345

θ̂L(k) = proj
{
θ̂
′
L(k)

}
, (11)346

θ̂
′
L(k) = θ̂L(k − d)+ ηL(k)�(k − d)eL(k)T

1+ ‖�(k − d)‖2 , (12)347

ηL(k) =
{

1 if ‖eL(k)‖ > 2ρ,

0 otherwise,
(13)348

where eL(k) is the identification error of linear model, i.e.,349

eL(k) = y(k)− θ̂L(k − d)T�(k − d), (14)350

θ̂
′
L(k) = [K̂1,0(k), . . . , K̂1,n−1(k), L̂

′
1,0(k) B̂

′
1,0(k), . . . ,351

L̂1,n+d−2(k) B̂1,n+d−2(k)]T ; proj{·} is a projection operator as352

proj{θ̂ ′L(k)} =
{
θ̂
′
L(k) if |L̂1,0(k)B̂1,0(k)| ≥ hmin,

[· · · , hmin, . . .]T otherwise,
353

(15)354

where hmin > 0 is defined based on prior knowledge. This355

aims to prevent the control signal from being too big due to356

the too small identification parameter L̂1,0(k)B̂1,0(k).357

The nonlinear estimator is designed as,358

ŷN(k + d) = θ̂N(k)T�(k)+ δĥ
[
�̄(k)

]
, (16)359

where ŷN and θ̂N are nonlinear estimated transformed output360

voltage and nonlinear estimated parameter vectors, respec-361

tively. δĥ[�̄(k)] is the estimation of δh[�̄(k)] by ANNs at time362

instant k with δh[�̄(k)] = y(k+ d)− θ̂N(k)T�(k). According363

to [41], the only requirement on the update laws of θ̂N(k) and364

Ŵ(k) is that they always lie in certain compact set. Hence, the365

update law of θ̂N(k) is designed similar to that of θ̂L(k) where366

the difference is the definition of identification error, i.e.,367

eN(k) = y(k)− θ̂N(k − d)T�(k − d)− δĥ
[
�̄(k − d)

]
. (17)368

2) Nonlinear Identifier and Controller Based on ANNs:369

The voltage tracking performance of MGs heavily depends on370

the accuracy of estimation of the unmodeled dynamics, i.e.,371

δh[�̄(k)]. As reported in [41], [42], ANNs are the universal372

approximators. Hence, by a proper choice of the structure and373

parameters of ANNs, the identification error of unmodeled374

dynamics ‖δĥ− δh[�̄(k)]‖ can be made arbitrarily small over375

a compact set. We choose the back propagation (BP) ANN to376

estimate the unmodeled dynamics δh[�̄(k)].377

To guarantee that the hyper-parameters are well-tuned, we378

use the random search algorithm in [43] to calibrate the379

hyper-parameters based on the performance on a validation380

set. According to [38], with well-tuned hyper-parameters and381

appropriate training algorithm, one can obtain the estimation of382

ideal parameter matrix, Ŵ(k) (containing weights and biases).383

Then, by taking Ŵ(k) and �(k) as the input vectors of the384

ANN function, it can achieve accurate and fast estimation of385

unmodeled dynamics. From a system theoretical point of view,386

ANNs are convenient families of nonlinear mappings as,387

δĥ
[
�̄(k)

] = φ
[
Ŵ(k),�(k)

]
388

= Ŵ3(k)�
(

Ŵ2(k)�
(

Ŵ1(k)�(k)+ b̂1

)
+ b̂2

)
389

+ b̂3 (18)390

where φ[·] represents the function of ANNs; Ŵi and b̂i denote 391

the ideal weight and bias vectors, respectively, i = 1, 2, 3; � 392

represents a vector of activation functions. 393

3) Linear Adaptive Controller and ANN-Based Nonlinear 394

Adaptive Controller: Finally, the linear adaptive controller 395

(LAC) is designed as 396

θ̂L(k)T�(k) = Rvref
o (k). (19) 397

Moreover, the nonlinear adaptive controller (NAC) based on 398

ANN is designed as 399

θ̂N(k)T�(k)+ δĥ
[
�̄(k)

] = Rvref
o (k). (20) 400

4) Controller Design for Time Delays: In hierarchical con- 401

trol, the sampling time of SVC is larger than the primary 402

control. The communication delays between the two levels can 403

affect the stability and tracking performance of MGs. So, we 404

consider a discrete-time system whose sampling time is equal 405

to that of voltage measurement. We round the time delays to 406

an integer multiple of the sampling period. 407

When there is no communication delay, i.e., d = 1, the 408

predicted output v̂o(k) is computed with θ̂(k − 1). However, 409

when time delay exists, i.e., d > 1, the measured output 410

voltage vo(k) depends on the control input E∗(k − d) which 411

is calculated with estimated parameters θ̂(k − d) using the 412

then available measurement. Therefore, the identification error 413

e(k) using θ̂(k − 1) is equal to the tracking error ē(k) with 414

delayed measurements. To solve this problem, the update law 415

is designed in the form of (11)–(13). It can be elaborated that 416

the sequence θ̂(k) are divided into d subsequences and each 417

one updates itself when data is available. Note that, Ŵ in (18) 418

also needs to be split into d sequences and the corresponding 419

ANNs update their parameters in their own time-scale. 420

C. Switching Mechanism 421

LAC aims to guarantee the stability while NAC is designed 422

to achieve accurate voltage tracking. As shown in Fig. 3, the 423

error between the weighted output voltage Fvo of MGs and 424

weighted desired voltage reference Rvref
o are given to the lin- 425

ear and nonlinear loops simultaneously at each time step k. In 426

the nonlinear loop, NAC generates the voltage control signals 427

E∗Ni and transfers it to the nonlinear identified model based on 428

ANNs. It is the same for the linear loop except that the con- 429

troller and identifier are replaced by LAC and ARMAX model 430

without ANN. Then, both linear and nonlinear identification 431

errors, eL and eN , are sent to the switching logic block. This 432

block decides which controller is selected in the current time 433

step. Finally, the selected voltage control signal is adopted in 434

the primary control of DERs. 435

The performance index of switching mechanism is proposed 436

based on a similar logic in [41]: 437

ξj(k) =
k∑

s=d

ηj(s)
(∥∥ej(s)

∥∥2 − 4ρ2
)

2
(
1+ ‖�(s− d)‖2) 438

+ μ

k∑

s=k−M+1

(
1− ηj(s)

)∥∥ej(s)
∥∥2 (21) 439
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Fig. 3. The diagram of closed-loop MG system with proposed SVC using
nonlinear multiple models adaptive control. When j switches to ‘L’, the linear
estimator and controller are used; otherwise, the nonlinear ones are selected.

ηj(k) =
{

1 if
∥∥ej(s)

∥∥ > 2ρ,

0 otherwise,
(22)440

where μ ≥ 0 is a constant and M is a positive integer.441

We select the linear or nonlinear controller according to the442

smaller performance index:443

ξ∗ = min[ξL, ξN]. (23)444

Note that, the performance index (21) is comprised of two445

terms. The first term is designed to differentiate signals with446

different rates to guarantee the boundedness of all signals,447

thus realizing stable switching. The second term is a mea-448

sure of estimation errors over a period and is used to improve449

control performance [41]. When the linear or nonlinear iden-450

tifier predicts the voltage with smaller errors, the second term451

decreases, thus the corresponding controller will be chosen.452

Properly selecting μ and M can enhance the stability. An453

outstanding advantage of such switching mechanism is that454

the stability and tracking performance can be decoupled. This455

means the hyper-parameters and training method of ANNs do456

not affect the stability.457

When the ANN is degraded or disturbed, eN increases.458

Consequently, ξL < ξN and LAC is chosen. LAC keeps work-459

ing to guarantee the stability until the ANN-based controller460

recovers. As eN decreases, ξL is greater than ξN and the461

controller NAC is chosen to improve the performance. A462

proper selection of μ and ρ can enhance the voltage tracking463

performance while guaranteeing closed-loop stability.464

Remark 3: According to the switched systems theory [44], it465

is possible to guarantee the stability with better performance466

by frequently switching controllers for unstable subsystems.467

However, such frequent switching may deteriorate the con-468

trol performance or even cause instability in subsystems.469

Therefore, designing an appropriate switching mechanism is470

essential [45]. Our switching mechanism considers both the471

stability and voltage tracking performance.472

D. Analysis of Stability and Tracking Error Convergence473

In this section, we analyze the stability and voltage tracking474

errors of the closed-loop MG system with the proposed SVC475

method, which are detailed by the following propositions.476

Proposition 1 (BIBO-Stability): For the system (3) with the477

control algorithm (10)–(22), suppose Assumption 1 holds and478

Algorithm 1 Model-Free SVC
1: Measure the MG output voltage vo(k) and establish data vector
�(k − d) together with SVC input E∗(k) at current time step.

2: procedure CONTROLLER SELECTION
3: Calculate the identification errors eL(k) and eN(k) using (14)

and (17), respectively.
4: Calculate ξL(k) and ξN(k) with (21) and (22).
5: if ξL(k) � ξN(k) then
6: j switches to position L and select linear controller
7: else
8: Let j = N and select nonlinear controller.
9: end if

10: end procedure
11: procedure CONTROLLER CALCULATION
12: if j = L then
13: Estimate LAC parameters θ̂L(k) with (11)–(15), and

calculate the SVC input E∗(k) using (19).
14: else
15: Estimate NAC parameters θ̂L(k) with (17)–(18) and

calculate E∗(k) using (20).
16: end if
17: end procedure
18: Let k = k + 1, and return to Step 1.

‖h[ · ]‖ ≤ ρ, the inputs E∗ and output voltages vo of MGs are 479

uniformly bounded, i.e., 480

max
0≤τ≤k

{‖vo(τ )‖, ∥∥E∗(τ )
∥∥} ≤ � (24) 481

which holds for some positive constant �. 482

There are many kinds of stability definitions, such as 483

Lyapunov stability, asymptotic stability, etc. For MG system 484

which is nonlinear, these stability definitions only require the 485

voltages converge to the stable operation point without bound- 486

edness. However, in practical operation, it is more important 487

to ensure the voltage not to exceed the stability bound rather 488

than to converge in infinite time. Therefore, in this article, 489

we define the stability in a BIBO manner, which guarantees 490

that all the output voltages of MGs are bounded. It is worth 491

noting that our proposed control strategy naturally guarantees 492

the inputs are bounded, which implies our method is much 493

feasible in practice. 494

Proposition 2 (Tracking Error Convergence): With proper 495

hyper-parameter calibration of ANNs and the proposed adap- 496

tive control method, the voltage tracking errors asymptotically 497

converge to an arbitrarily small positive constant ε, i.e., 498

lim
k→∞‖ē(k)‖ = lim

k→∞

∥∥∥F
(

z−1
)

vo(k)− Rvref
o (k − d)

∥∥∥ < ε. 499

The proofs can be found in the Appendix. 500

E. Algorithm Implementation 501

The overall SVC algorithm design is presented in 502

Algorithm 1. Firstly, vo(k) is measured and sent to the SVC 503

controller. The sampling rate of secondary control can be cho- 504

sen from 100 Hz to 1 kHz [46]. Combining vo(k) and E∗(k) 505

with the historical data, we construct the data vector �(k−d). 506

The number of historical data depends on the n and d, which 507

can be identified using the method in [39]. Then, the linear and 508

nonlinear identifiers and controllers are established in the con- 509

trol center. The parameters ρ and μ in (21)–(23) can affect the 510
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Fig. 4. MG test system.

TABLE I
PI PARAMETERS OF DERS

TABLE II
MG PARAMETERS

tracking performance. As ρ decreases, the accuracy of linear511

parts increases. But if ρ is too small, the parameter updating512

process converges slowly. μ represents the weight of tracking513

performance. To balance the stability and control performance,514

μ is usually selected around 1.5 [38]. The widely-used two-515

way communication network between MGCC and DERs is516

required [47].517

IV. CASE STUDIES518

A. Simulation Setup519

The proposed SVC is tested on a widely used MG system520

(see Fig. 4), originally consisting of four inverter-based DERs521

and two loads [48]. The control system of DERs has been522

shown in Fig. 2. The MG parameters are given in Table II.523

The sampling periods of primary and secondary control are524

set as 10−4 s and 0.01 s, respectively. The total simulation525

time is 10 s. All the dynamic simulations are implemented in526

MATLAB/Simulink environment.527

We establish a feed-forward ANN consisting of two hidden528

layers (50 and 8 nodes, respectively). To obtain the training529

set, we first only adopt the LAC and make vref
o time-varying530

instead of a constant. When finishing this case, we select the531

Fig. 5. Voltage tracking performance of the proposed controller.

current and historical control inputs E∗(k), . . . , E∗(k−n+1), 532

k = 1, . . . , 1000 and output voltages vo(k+d−1), . . . , vo(k+ 533

d − n) as the inputs of the training of ANN. While the 534

errors between the output voltage of the linear model with 535

LAC and real voltages h(�̄(k)) = vo(k + d) − v̂o(k + d) = 536

y(k) − θ̂L(k)T�(k) are used as the output of the training 537

set. The ANN is trained offline using back-propagation with 538

Levenberg-Marquardt algorithm [49]. The learning rate is set 539

as lr = 0.9, and the momentum factor is selected as mc = 0.8. 540

The activation function for the first and second hidden lay- 541

ers are selected as “tansig” and “purelin”, respectively. The 542

offline training of ANN takes 29.36 s and 1675 iterations. 543

The mean squared error of training and test are 9.94 × 10−6
544

and 3.85× 10−3, respectively. The trained ANN is integrated 545

into the NAC as an identifier. 546

B. Tracking Performance 547

The voltage tracking performance is shown in Fig. 5. The 548

reference voltages are set as 300 V. The SVC is not applied 549

until t = 2.5 s. Before that though voltages are stable, steady 550

state errors still exist. Once SVC is implemented, the volt- 551

age magnitudes are restored to the reference values rapidly. 552

At t = 5 s, a constant power load is attached to the system. 553

To show the robustness of the model-free method, a parame- 554

ter perturbation that Lc1 is reduced by 25% is triggered since 555

t = 7.5 s. From Fig. 5(b), we notice that when large dis- 556

turbances happen, the control mode oscillates between the 557

LAC and NAC due to the degradation of ANNs. The switch- 558

ing mechanism is trying to balance the tracking performance 559

and stability. Once ANN recovers, it switches back to NAC. 560

The results show that the proposed SVC exhibits good voltage 561

tracking performance and robustness to the uncertain pertur- 562

bations. Fig. 6 shows that the active power outputs of DERs 563

are allocated according to their rated power. 564

C. Stability of LAC 565

One may doubt that what if the ANN is not well-trained or 566

its hyper-parameters are not well-tuned. To verify the stabi- 567

lization of the proposed controller, we only use the LAC by 568
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Fig. 6. Active power outputs using multiple models adaptive control.

Fig. 7. Stability performance of voltage using LAC.

fixing j← L. The results are shown in Fig. 7. Due to the inac-569

curacy of linearized model, the parameters are kept updating570

automatically, which leads to the oscillations of output volt-571

ages. However, the stability is still guaranteed and the errors572

between real and reference voltages are maintained bounded,573

even when large disturbances occur.574

D. Comparison With Feedback Linearization Control575

A comparison study with input-output feedback lineariza-576

tion control, which is well-known as nonlinear control method577

requiring precise model, is carried out in this section. When578

load 3 is attached at t = 5 s, we assume the information of579

load change is known by the secondary controller based on580

feedback linearization. Similarly, an unknown parameter per-581

turbation occurs at t = 7.5 s. As shown in Fig. 8, though the582

feedback linearization controller can deal with the known large583

load fluctuation, it fails to restore and stabilize the output volt-584

ages in case of uncertainties. The corresponding active power585

outputs are shown in Fig. 9.586

E. Comparison With PID Control587

To compare the proposed method with the existing model-588

free approaches, in this section, we conduct simulations by589

the most widely-used model-free PID control. Fig. 10 and590

Fig. 11 show that, under the same conditions, the PID con-591

trol can realize accurate voltage tracking and is robust to592

unknown parameter perturbation. However, compared with593

the proposed method, PID control performs more sluggish594

Fig. 8. Voltage tracking performance of feedback linearization control.

Fig. 9. Active power outputs of DERs with feedback linearization control.

Fig. 10. Voltage tracking performance of PID control.

transient responses and much larger overshootings after large 595

load disturbance and parameter perturbation. 596

F. Effect of Time Delays 597

In this section, we test the robustness of the proposed con- 598

troller against time delays. The sampling time �T = 10 ms. 599

We set the time delays as {(d−1)×�T|d = 1, 2, 3, 5, 10, 20}, 600

respectively. Any fractional time delays are rounded up. Load 601

3 is attached at t = 5 s. Fig. 12 shows the comparison of 602

voltage tracking performances with different time delays of 603

DER1. The blue line shows the result without time delay, 604

i.e., d = 1. The red line shows the worst case with a delay 605

of 190 ms. The result shows that the proposed controller 606

can stabilize the system with any different delays. However, 607
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Fig. 11. Active power outputs of DERs with PID control.

Fig. 12. Voltage tracking performance with different time delays; SVC is
applied after 2.5 s; load 3 is attached at 5 s.

as time delay increases, the settling time and overshoot of608

transient responses become larger. For steady-state operation,609

there are larger oscillations under larger time delays.610

G. Effect of Communication Noise Disturbances611

The noise disturbances in communication links between sec-612

ondary and primary levels widely exist in the SVC of MGs613

and may degrade the dynamic performance of the controller.614

To study the influence of communication noise disturbances on615

the proposed SVC method, white noises with signal-to-noise616

ratio (SNR) of 30 dB, 20 dB and 10 dB are added to the com-617

munication links between SVC and primary level. Note that618

smaller SNR indicates larger noise disturbance, and the SNR619

is usually between 30 to 40 dB in MGs [50], [51]. As shown in620

Fig. 13, the proposed SVC method can realize voltage tracking621

and BIBO stability with some ripples under small communi-622

cation noise disturbances; however, the dynamic performance623

degrades when noise enlarges.624

V. CONCLUSION625

In this article, we proposed a novel model-free SVC using626

nonlinear multiple models adaptive control. The MGs with pri-627

mary control are treated as a “black-box” when designing the628

SVC. The proposed controller consists of two separate parts,629

i.e., LAC and NAC, which are coordinated by a switching630

mechanism. The unmodeled nonlinear dynamics are online631

Fig. 13. Voltage tracking performance with different communication noise
disturbances. Communication noises with 30 dB, 20 dB and 10 dB SNR are
added at 2.5 s, 5 s, and 7.5 s, respectively.

estimated by ANNs. We have proved that the tracking errors can 632

be achieved arbitrarily small given a proper nonlinear identifica- 633

tion. The simulation results show that such switching mechanism 634

can guarantee BIBO stability of the closed-loop system while 635

achieving accurate tracking. The proposed controller is robust 636

to uncertainties, disturbances and time delays. 637

Due to the advantages of flexibility and robustness, the 638

distributed and decentralized model-free secondary voltage 639

control will be further investigated in our future works. 640

APPENDIX 641

Proof of Proposition 1: This proof can be separated into two 642

parts: the BIBO stability of output voltage and the convergence 643

of voltage tracking error. For the proof of stability, we first 644

prove that SVC input E∗ and output voltage vo are bounded 645

by e, then we use the contradiction argument to prove that e 646

is bounded, and that means E∗ and vo are also bounded. 647

Define the parameter identification error of linear estimator 648

as ψL(k) = θ̂L(k)− θ . By (12), it follows that 649

ψL(k) = ψL(k − d)+ ηL(k)�(k − d)eL(k)T

1+ ‖�(k − d)‖2 . (25) 650

Following the proof in [41] and from the logic function (22), 651

it can be proven that θ̂L(k) is bounded. In addition, 652

lim
N→∞

N∑

k=d

ηL(k)
(‖eL(k)‖2 − 4ρ2

)

2
(
1+ ‖�(k − d)‖2) <∞, (26) 653

lim
k→∞

ηL(k)
(‖eL(k)‖2 − 4ρ2

)

2
(
1+ ‖�(k − d)‖2) → 0. (27) 654

From (14) and (19), we have 655

eL(k) = F
(

z−1
)

vo(k)− Rvref
o (k − d). (28) 656

Since F(z−1) is stable, then from (28), there exist positive 657

constants 
1 and 
2 such that 658

‖�(k − d)‖ ≤ 
1 + 
2 max
0≤τ≤k

‖eL(τ )‖. (29) 659

which indicates that the input E∗ and output voltage vo are 660

bounded by the linear identification error eL. 661

To prove the boundedness of eL, we utilize the proof by 662

contradiction argument. Suppose that eL(k) is unbounded, then 663
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there must exist a positive time constant T , such that ‖eL(k)‖ >664

2ρ and aL(k) = 1 for k > T , i.e., there exists a monotonic665

increasing sequence ‖eL(kn)‖ such that limkn→∞ ‖eL(kn)‖ =666

∞. Then, it follows that667

lim
kn→∞

ηL(kn)
(‖eL(kn)‖2 − 4ρ2

)

2
(
1+ ‖�(kn − d)‖2)668

≥ lim
kn→∞

ηL(kn)
(‖eL(kn)‖2 − 4ρ2

)

2
(

1+ (

1 + 
2 max0≤τ≤k‖eL(τ )‖)2

)669

≥ lim
kn→∞

ηL(kn)
(‖eL(kn)‖2 − 4ρ2

)

2
(
1+ (
1 + 
2‖eL(kn)‖)2)670

≥ 1

2
2
2

671

> 0. (30)672

However, it contradicts (27) which means eL(k) is bounded.673

Thus, it proves the BIBO stability for LAC. For NAC,674

from (17) and (20), it follows that,675

eN(k) = F
(

z−1
)

vo(k)− Rvref
o (k − d). (31)676

Since F(z−1) is stable, then from (31), there exist positive677

constants 
3 and 
4 such that678

‖�(k − d)‖ ≤ 
3 + 
4 max
0≤τ≤k

‖eN(τ )‖. (32)679

The first term in (21) is bounded according to (26), and680

the second term is also bounded due to the dead-zone func-681

tion (22). Hence ξL(k) is bounded. If ξN(k) is bounded,682

according to the switching mechanism function (21), we have683

lim
k→∞

ηN(k)
(‖eN(k)‖2 − 4ρ2

)

2
(
1+ ‖�(k − d)‖2) → 0. (33)684

In this case, both of linear of nonlinear identification errors685

of the closed-loop MG system ej(k), j = {L, N} satisfy that686

lim
k→∞

η(k)
(‖e(k)‖2 − 4ρ2

)

2
(
1+ ‖�(k − d)‖2) → 0, (34)687

where688

a(k) =
{

1, if ‖e(k)‖ > 2ρ,

0, otherwise.
(35)689

If ξN(k) is unbounded, considering ξL(k) is bounded, there690

must exist k0 > 0 such that ξL(k) ≤ ξN(k), ∀k ≥ k0. Then691

after time k0, the switching mechanism will choose the linear692

controller, thus the identification error e(k) = eL(k) which also693

satisfies (34).694

Finally, from (29), (32) and (34), it can be proved that vo695

and E∗ are bounded, i.e., the input and output of the closed-696

loop switching system are bounded while the identification697

error ej(k) satisfies698

lim
k→∞

∥∥ej(k)
∥∥ ≤ 2ρ, j = {L, N} (36)699

which indicates that there exist positive constants 
5 and 
6700

such that,701

‖�(k − d)‖ ≤ 
5 + 
6 max
0≤τ≤k

∥∥ej(τ )
∥∥ ≤ 
5 + 2
6ρ. (37)702

Let � = 
5 + 2
6ρ, it follows that 703

max
0≤τ≤k

{‖vo(τ )‖, ∥∥E∗(τ )
∥
∥} ≤ �. (38) 704

Now we have proven the BIBO voltage stability of the closed- 705

loop MG system with the proposed SVC. 706

Proof of Proposition 2: Switching mechanism always selects 707

the controller, with respect to the smaller identification error, 708

as the SVC input for MG system. Moreover, from (28) 709

and (31), the output voltage tracking error ē(k) is equiva- 710

lent to the smaller identification error. From (17), we have 711

the nonlinear identification error, 712

eN(k) = yN(k)− θ̂N(k − d)T�(k − d)− δĥ
[
�̄(k − d)

]
713

= yN(k)− (
yN(k)− δh

[
�̄(k − d)

])− δĥ
[
�̄(k − d)

]
714

= δh
[
�̄(k − d)

]− δĥ
[
�̄(k − d)

]
. (39) 715

When the hyper-parameters of the ANN are well-tuned, for 716

arbitrary small positive constant ε, the voltage tracking error 717

always satisfies ‖δh[�̄(k− d)]− δĥ[�̄(k− d)]‖ < ε. It means 718

the nonlinear identification error is always smaller than the 719

linear one, so that the tracking error will be automatically 720

selected as the nonlinear identification error, i.e., 721

lim
k→∞
‖ē(k)‖ = lim

k→∞
‖eN(k)‖ < ε. (40) 722
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