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Robust Time-Varying Parameter Identification
for Composite Load Modeling

Chong Wang , Member, IEEE, Zhaoyu Wang , Member, IEEE, Jianhui Wang , Senior Member, IEEE,
and Dongbo Zhao, Senior Member, IEEE

Abstract—With the increasing integration of uncertain
resources, e.g., renewables, electric vehicles, and demand
responses, it is imperative to understand the characteristics
of loads for power system analysis and control. Challenges of
load modeling come from a variety of load components and
time-varying compositions. In addition, the existence of outliers
in measurements further complicates the problem. This paper
proposes a robust time-varying parameter identification tech-
nique for composite ZIP and induction motor load models. A
batch-model regression form, including time-varying parameters,
is established based on state transition models and observa-
tion models with current observations and previous predictions
to guarantee data redundancy. To deal with outliers, down-
weighting coefficients of measurements are calculated with a
projection statistics approach. Based on the batch-model regres-
sion and the down-weighting coefficients, parameter identification
at each sample time is formulated as a weighted least squares
optimization, which is solved by the Newton-Raphson approach
with the previous estimated parameters as the initial iteration val-
ues. In addition, parameters’ sensitivities to different outliers in
measurements are analyzed. Results on the IEEE 57-bus system
and IEEE 118-bus system show that the proposed algorithm can
robustly identify time-varying parameters for the composite load
models.

Index Terms—Composite load model, outliers, parameter iden-
tification, robust, time-varying.

NOMENCLATURE

Parameters/States of Composite Load Model

t Index of sample time.
ap,t, bp,t, cp,t Parameters for active power of ZIP load at t.
aq,t, bq,t, cq,t Parameters for reactive power of ZIP load at t.
Ht Inertia constant of induction motor at t.
id,t d-axis stator current at t.
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iq,t q-axis stator current at t.
PZIP,0 Base active power consumption of ZIP load.
PZIP,t Active power consumption of ZIP load at t.
PIM,t Active power consumption of induction motor

at t.
PCL,t Active power consumption of composite load

at t.
QZIP,0 Base reactive power consumption of ZIP load.
QZIP,t Reactive power consumption of ZIP load at t.
QIM,t Reactive power consumption of induction

motor at t.
QCL,t Reactive power consumption of composite

load at t.
Rr,t Rotor resistance at t.
Rs,t Stator resistance at t.
st Rotor slip at t.
Tm0 Initial load torque.
Ud,t d-axis bus voltage at t.
Uq,t q-axis bus voltage at t.
V0 Nominal voltage magnitude.
Vt Voltage magnitude of the bus of interest at t.
v′d,t d-axis transient voltage at t.
v′q,t q-axis transient voltage at t.
Xm,t Magnetizing reactance at t.
Xr,t Rotor reactance at t.
Xs,t Stator reactance at t.
X
′
t Short circuit reactance at t.

λp,t, λq,t Proportions of ZIP load in active and reactive
power of composite load, respectively.

Notation for Algorithm

τt Vector of bus voltage at t.
ςt Vector of IM states at t.
ξt Vector of time-varying parameters t.
ωξ,t, ωx,t Vectors of process noises at t.
νt Vector of measurement noises at t.
f Nonlinear function vector of state transition

equations.
h Nonlinear function vector of observation

equations.
Rt Diagonal covariance matrix with respect to the

batch model.
xt Vector of states and parameters at t.
x̃t|t−1 Prediction at t based on estimation at t − 1.
x̃t−1, τ̃t−1 Estimations at t − 1.
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Xt Input vector of batch-mode regression at t.
X(n)

t , X(n+1)
t Vectors at n and n+ 1 iterations, respectively.

X̃t Estimation of batch-mode regression at t.
yt Output vector of batch-mode regression at t.
G, J, F, H Nonlinear function vectors.
et Batch-model noise vector at t.
Mt k-dimensional matrix.
dj,t jth row vector in Mt.
μ, σ Mean and standard deviation.
MDj,t Mahalanobis distance of dj,t at t.
PSj,t Projection statistics value of dj,t at t.
ωj,t Weighted coefficient of measurement j at t.
D A constant.
vT,t True value at t.
vE,t Estimated value at t.
REt Relative error at t.
MVP Mean value of parameter.
MAPE Mean absolute percentage error.

I. INTRODUCTION

THE INTEGRATION of uncertain power resources [1]–[3]
and loads results in high-frequency changes of load

characteristics, which have great influences on power system
operation [4]–[6]. In addition, the outliers in measurements [7]
could compromise model identification results. Therefore, it is
imperative to develop new algorithms that are robust to bad
measurements and have the ability to tract time-varying load
characteristics.

There are two main approaches, i.e., the component-based
approach and the measurement-based approach, for load
modeling [8]. Some research focused on the component-based
model [9], [10]. This model has a good physical representation
of terminal devices, and it can be used in different operation
conditions. However, since physical behaviors and their mathe-
matical relations cannot be always achieved, it is often difficult
to apply this model to complex loads. For the measurement-
based approach [11]–[15], the measurements at buses of
interest are used to derive the load pattern. The measurement-
based model is a generic representation without knowing the
detailed characteristics of loads, and it is based on practi-
cal measurements from systems. However, a model derived
from measurements at a specific location during a certain
period lacks of generalizability. To use the measurement-based
approach, the load structure should be first determined. The
common load structures include three categories: static model,
dynamic model, and composite model.
• Static model: This model represents active and reac-

tive power as functions of voltage/frequency but not
time. Common static models consist of ZIP models [16],
exponential models [17] and frequency dependent mod-
els [18]. The static models in the Electric Power Research
Institute (EPRI) LOADSYN program include the three
common static models [19], [20].

• Dynamic model: It expresses active and reactive power
as functions of not only voltage but time. One typi-
cal dynamic load model is a third-order induction motor

(IM) model [16]. Another dynamic model is the exponen-
tial recovery load (ERL) model, which is often applied
to the scenario that loads slowly recover within a time
period [21], [22]. This model can also be employed to
express on-load tap changers (OLTCs) that recover the
nominal voltage after disturbances.

• Composite model: Based on the static and dynamic
models, many research studies focus on composite load
models [23], [24], which can offer more accurate char-
acteristics. For example, composite loads, including ZIP
models and IM models, are most widely used for dynamic
analysis in the U.S. industry [25]. Complex load (CLOD)
models [26], including large/small motors, constant MVA,
shunt capacitors and transformer saturation effects, are
developed in the PSS@E software to represent dynamic
load behaviors. In addition, a composite load model with
80% static load and 20% dynamic load is implemented by
the Western Systems Coordinating Council (WSCC). For
this model, the static part is derived based on the existing
data provided by WSCC members, and the dynamic part
is represented by an induction motor model. To improve
the model, WECC added the electrical distance between
the end-users and the transmission system. By 2012, the
WECC load model has been tested and implemented in
software such as Siemens PTI PSS@E and PowerWorld
Simulator.

Parameters of the selected model structure are optimized
to ensure a minimum error between the recorded data and
the model output. Many algorithms based on statistical tech-
niques and heuristic techniques are proposed to optimize
load model parameters. With respect to statistical techniques,
weighted least square-based estimation [27], least square-
based parameter estimation [28], maximum likelihood-based
estimation [29] and gradient-based parameter estimation [30]
have been proposed to identify the parameters. For the
weighted least square approach, it can be used to solve the
problem with unequal variances of noises, and the weight of
each measurement depends on its variability. High variability
effects of measurements can be reduced. However, it is not
easy to determine the weights, and the weights may increase
the computational complexity. For the maximum likelihood
approach, the probability density function of measurements
is needed to define the likelihood function, which may be
unknown in practice. In addition, this approach is a time-
consuming task. The gradient-based approach is vulnerable
to data pollution. With respect to heuristic techniques, genetic
algorithm [31], neural network [32] and simulated annealing
algorithm [33] have been proposed to identify the parame-
ters. The genetic algorithm is a multi-point search algorithm
that can be easily adjusted to different problems. However,
the high computational cost is a main obstacle in applying
the genetic algorithm to complex models. The neural network
approach can adaptively train and update models based on
measurements without knowing the structure of load models.
However, it is difficult to determine algorithm settings, and it
has a slow convergence rate. The simulated annealing algo-
rithm does not require mathematical representations of load
models, and can handle highly nonlinear models. However,
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repeated annealing with a schedule is very slow, especially
when the cost function is difficult to compute. In addition,
there are some other approaches based on the local model
network (LMN) [34] and historical load data [35] for load
modeling. In [34], the proposed LMN-based method requires
no pre-defined standard load models, and can achieve max-
imum the generalizability with the best linear or nonlinear
structure by using the hierarchical binary tree learning algo-
rithm. Boroojeni et al. [35] presents a generic approach for
modeling historical load data, and the proposed approach can
deal with non-seasonal and seasonal cycles of load data with
moving-average and auto-regressive components, which only
rely on historical load data without requiring any additional
inputs.

The integration of uncertain resources results in high
frequency of changes of load model parameters, i.e., time-
varying parameters. In addition, outliers in measurements may
compromise estimated results for these parameters. To deal
with these challenges, a robust time-varying parameter iden-
tification technique for the static ZIP load model is proposed
in [36]. However, dynamic characteristics of loads are not
included in [36]. The contribution of this paper is to propose
a robust time-varying parameter identification technique for
static and dynamic loads considering possible outliers in mea-
surements. To ensure data redundancy, current observations
and previous predictions are used to construct a batch-mode
regression form based on the state transition models and
the observation models. To reduce the negative impacts of
outliers, a projection statistics (PS) approach is used to cal-
culate the robust distances of a k-time sequence to obtain
the down-weighting coefficient for each measurement. Robust
time-varying parameter identification at each sample time is
formulated as an optimization problem with minimizing the
weighted squares error, and the Newton-Raphson approach is
used to solve the optimization problem.

The rest of the paper is organized as follows. Section II
describes the framework of the proposed robust time-varying
parameter identification. Section III presents the time-varying
ZIP and IM load models, and Section IV shows the robust
time-varying parameter identification. Section V presents sim-
ulation results and Section VI concludes the paper.

II. FRAMEWORK OF ROBUST TIME-VARYING

PARAMETER IDENTIFICATION

This section shows the framework of the robust time-varying
parameter identification. First, the time resolution of the model
and the definitions of some blocks in the framework are
introduced, and then the relations between the blocks are
presented.

A. Time Resolution and Definitions of Blocks

Fig. 1 shows the typical time frame for a full range of
power system phenomena from microseconds to hours [37].
The dynamics of loads investigated in this paper belong to
the topic of electromechanical transient, and the range of the
time resolution is from 10−2s to 1s. The dynamic load model

Fig. 1. Range of power system phenomena from microseconds to hours.

investigated in this paper can be deployed in power system
dynamic studies.

To implement robust parameter identification at each sample
time, several critical blocks are included, as shown in Fig. 2.
The robustness means that the proposed method has high iden-
tification accuracy for time-varying parameters of load models
even when there are outliers in measurements.

1) State Transition Model: Given that states/parameters
are time-varying and they have relations at adjacent sam-
ple time, the state transition model relates these time-varying
states/parameters. The state transition model includes a series
of discrete differential equations. Its inputs consist of esti-
mated parameters/states at the preceding sample time, and the
outputs are discrete differential equations.

2) Observation Model: The observation model represents
the mathematical relation between states/parameters and prac-
tical measurements, and it includes a group of algebraic
equations. Its inputs consist of estimated parameters/states
at the preceding sample time and the measurements at the
current sample time. Its outputs are a group of algebraic equa-
tions representing the relation between states/parameters and
measurements.

3) Projection Statistics: The PS approach is used to achieve
the weighted coefficient for each measurement. Outliers will
have small weighted coefficients. The inputs of this block con-
sist of the estimated states/parameters at the preceding sample
time and the measurements at the current sample time. The
outputs are weighted coefficients for measurements.

4) Batch Model: The batch model includes a group of
regression equations derived from the state transition model
and the observation model, including states/parameters and
measurements. Its inputs include the state transition model and
the observation model, and its outputs consist of the regression
models.

5) Weighted Least Squares: At each sample time, param-
eter identification is formulated as a weighted least squares
optimization. Its inputs include the batch model, wighted
coefficients, and the initial iteration values. Its outputs are the
estimated parameters/states.

B. Relations of Blocks

The relations between different blocks are shown in Fig. 2.
For example, at the sample time t, the state transition model is
established based on the estimated parameters and states at the
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Fig. 2. Framework of robust time-varying parameter identification.

Fig. 3. Equivalent circuit of ZIP and IM load model.

sample time t − 1. The observation model is achieved based
on the estimated parameters and states at the sample time t−1
and the measurements at the sample time t. The batch-mode
regression, in which current measurements and previous esti-
mations guarantee data redundancy, is constructed by using the
established state transition model and the observation model.
To deal with possible outliers, down-weighting coefficients for
measurements are achieved by calculating robust distances of
a k-time sequence with the PS approach. To estimate states and
parameters, a nonlinear model of the least square with down-
weighting coefficients is established. The Newton-Raphson
approach, with the estimated parameters and states at the sam-
ple time t − 1 as the initial iteration values, is employed to
solve the nonlinear model.

III. TIME-VARYING LOAD MODELING

This section first shows the load model with time-varying
parameters, including a ZIP model and a IM model. Then,
a batch model is established based on the time-varying ZIP
and IM models. Fig. 3 shows the equivalent circuit of the
composite ZIP and IM model. The mathematical models are
introduced in the following subsections.

A. Time-Varying ZIP Model

The ZIP model is one of typical static load models. It
consists of constant impedance (Z), constant current (I) and
constant power (P) components. Considering different weather
conditions, customer behaviors and system operation condi-
tions, the percentages of Z, I and P are usually time-varying.

Its mathematical formulations can be expressed as follows.

PZIP,t = PZIP,0

(
ap,t

(
Vt

V0

)2

+ bp,t

(
Vt

V0

)
+ cp,t

)
(1)

QZIP,t = QZIP,0

(
aq,t

(
Vt

V0

)2

+ bq,t

(
Vt

V0

)
+ cq,t

)
(2)

where ap,t, bp,t and cp,t satisfy ap,t + bp,t + cp,t = 1 ∀t, and
aq,t, bq,t and cq,t satisfy aq,t + bq,t + cq,t = 1 ∀t.

B. Time-Varying IM Model

The structure of the IM model is shown in Fig. 3. To include
the impacts of different weather conditions, customer behav-
iors and so on, the parameters of the IM model are considered
to be time-varying. The IM model can be expressed as:

dv′d,t

dt
= −Rr,t

Xr,t + Xm,t

(
v′d,t +

X2
m,t

Xr,t + Xm,t
iq,t

)
+ stv

′
q,t (3)

dv′q,t

dt
= −Rr,t

Xr,t + Xm,t

(
v′q,t −

X2
m,t

Xr,t + Xm,t
id,t

)
− stv

′
d,t (4)

dst

dt
= 1

2Ht

(
Tm0(1− st)

2 − v′d,tid,t − v′q,tiq,t

)
(5)

where the d-axis stator current id,t and the q-axis stator current
iq,t are calculated as follows.

id,t =
Rs,t

(
Ud,t − v′d,t

)
+ X′t

(
Uq,t − v′q,t

)
R2

s,t + X′t2
(6)

iq,t =
Rs,t

(
Uq,t − v′q,t

)
− X′t

(
Ud,t − v′d,t

)
R2

s,t + X′t2
(7)

where the d-axis bus voltage Ud,t and the q-axis bus voltage
Uq,t satisfy the following equation.

Vt =
√

U2
d,t + U2

q,t (8)

The short circuit reactance X′t is expressed as

X′t = Xs,t + Xm,t · Xr,t

Xm,t + Xr,t
(9)
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With the states, time-varying parameters and the bus volt-
age, the active and reactive power of the IM model can be
expressed as

PIM,t =
[
Rs,t

(
U2

d,t + U2
q,t − Ud,tv

′
d,t − Uq,tv

′
q,t

)
− X′t

(
Ud,tv

′
q,t − Uq,tv

′
d,t

)]/
(R2

s,t + X′t
2
) (10)

QIM,t =
[
X′t

(
U2

d,t + U2
q,t − Ud,tv

′
d,t − Uq,tv

′
q,t

)
− Rs,t

(
Ud,tv

′
q,t − Uq,tv

′
d,t

)]/
(R2

s,t + X′t
2
). (11)

C. Time-Varying Composite Model

With active and reactive power of the composite ZIP and IM
model, the total active and reactive power can be computed as

PCL,t = λp,tPZIP,t +
(
1− λp,t

)
PIM,t (12)

QCL,t = λq,tQZIP,t +
(
1− λq,t

)
QIM,t (13)

Since the ZIP model represents active/reactive power as
functions of voltage and the IM model relates active/reactive
power as functions of voltage/time, the impact of system
frequency is not involved.

For the models (1)-(13), there are bus voltage variables, IM
state variables, and time-varying parameter variables, which
are denoted as

τt =
[
Ud,t, Uq,t

]T (14)

ςt =
[
v′d,t, v′q,t, st

]T
(15)

ξt =
[
Rs,t, Xs,t, Xm,t, Xr,t, Rr,t, Ht,

ap,t, bp,t, aq,t, bq,t, λp,t, λq,t
]T (16)

Normally, parameter changes are very small within a short
period, and the transition of parameters between different time
intervals can be expressed as

ξt = ξt−1 + ωξ,t (17)

where ωξ,t is the process noise vector.
Based on (3)-(5) and (17), discrete state transitions and

parameter transitions can be generalized as

xt = f(xt−1, τt−1)+ ωx,t (18)

where xt is a vector, which defined as [ςT
t , ξT

t ]T , and ωx,t is
the process noise vector.

With (1), (2), and (9)-(13), an observation equation is
generalized as

zt = h(xt, τt)+ νh,t (19)

where zt is the measurement vector which includes active
power, reactive power and bus voltage, h is the nonlinear
function vector, and νh,t is the measurement noise vector.

D. Batch-Model Construction

This section shows the batch-mode construction. With the
estimation vectors x̃t−1 and τ̃t−1, the prediction x̃t|t−1 at time
t can be achieved as follows.

x̃t|t−1 = f
(
x̃t−1, τ̃t−1

)
(20)

Integrate (19) and (20) to one matrix form, and we can get[
x̃t|t−1

zt

]
=

[
xt

h(xt, τt)

]
+

[
ωx,t

νh,t

]
(21)

which can be generalized as

yt = g(Xt)+ et (22)

where Xt = [xT
t τT

t ]T include parameter variables, IM state
variables and bus voltage variables. yt can be expressed as
[x̃T

t|t−1 zT
t ]T , and et = [ωT

x,t υT
h,t]

T is the batch-model noise
vector, which satisfies E[eteT

t ] = Rt.

IV. ROBUST TIME-VARYING PARAMETER IDENTIFICATION

This section first shows a typical optimization model
for parameter/state estimation. Second, down-weighting
coefficients for measurements are achieved by calculating the
distances of a k-time sequence with the PS approach. Third,
the optimization model with down-weighting coefficients of
measurements is presented, and the solution algorithm based
on the Newton-Raphson method is employed.

A. Parameter Identification Model

Since yt in (22) has some noises, the objective is to find Xt,
which ensures that the error between the estimation outputs
and the measurements is minimum.

X̃t = arg min
Xt

G(Xt)

G(Xt) = (yt − g(Xt))
T · Rt · (yt − g(Xt)) (23)

where (23) is a nonlinear optimization problem. Minimizing
this optimization can achieve the estimated parameters and
states. However, this model includes all recorded measure-
ments, which may consist of outliers, resulting in the cor-
ruption of the estimated results. Hence, the next subsection
introduces an approach to deal with possible outliers.

B. Down-Weighting Approach Based on Projection Statistics

The critical point of the down-weighting approach is to sys-
tematically down-weight the proportion of possible outliers,
rather than removing them directly. This approach can not
only keep an acceptable level of statistical efficiency, but have
a good robustness, typically for some boundary outliers that
are beyond but close to the outlier detection threshold. A pro-
jection statistic value is a distance of a data point from the
bulk of the point cloud. To detect outliers in measurements,
we first establish a k-dimensional matrix M, which consists of
residuals and predictions.

Mt =
[
mt−k+1, mt−k+2, . . . , mt

]
(24)

mt−k+1 =
[

X̃t−k+1|t−k

yt−k+1 − g(X̃t−k+1|t−k)

]
(25)

where X̃t−k+1|t−k is the predictions at time t− k+ 1 with the
estimation at t − k.
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The distance of a point from the cloud can be used to iden-
tify outliers. One distance proposed by Donoho [38] is the
Mahalanobis distance that is expressed as

MDj,t = max‖u=1‖
dT

j,tu− μ

σ
(26)

where μ and σ are the sample mean and standard deviation
of the projections of dj,t on all directions of the vector u.
However, this distance should include all directions, and is
computationally intractable. To reduce computational burden,
the sample median absolute deviation and the sample median
were suggested by Donoho and Gasko [39] to calculate the
distance, as shown in (27). This distance is defined as the
projection statistics value, which is expressed as

PSj,t = max‖u=1‖

∣∣∣∣dT
j,tu−med

i

(
dT

i,tu
)∣∣∣∣

1.4826 med
j

∣∣∣∣dT
j,tu−med

i

(
dT

i,tu
)∣∣∣∣

(27)

where med(∗) denotes the median of the vector ∗. In practice,
it is difficult to get the projections on each direction, and it was
suggested in [39] that only vectors u that originate at median
and pass through dj,t are investigated.

With (27), the distance of each point, i.e., the row of the
matrix M, from the data can be calculated. When it is larger
than a given threshold, the corresponding point can be con-
sidered as an outlier, which is downweighted by the following
formulation.

wj,t = min

(
1,

D2

PS2
j,t

)
(28)

where D is selected to be 1.5 that can have statistical
efficiency [40].

C. Down-Weighting Parameter Identification Model

With the down-weighting coefficients, the parameter iden-
tification model can be rewritten as

X̃t = arg min
Xt

J(Xt)

J(Xt) = (yt − g(Xt))
T ·Wt · Rt · (yt − g(Xt)) (29)

where Wt is a diagonal matrix defined as diag[w1,t, w2,t, . . . ].
This model is a nonlinear optimization model, and the estima-
tions at time t should satisfy the following condition.

F(Xt) = ∂J(Xt)

∂Xt
= 0 (30)

where F is a nonlinear function vector. In this paper, it is
assumed that the parameters are time-varying but not mutant.
Thus, for the estimation at time t, we take the estimated
X̃t−1 at time t − 1 as an initial iteration value, and use the
Newton-Raphson method to solve the nonlinear equation (30).

Fig. 4. Simulation processes.

D. Sensitivity of Parameters to Outliers

Outliers in measurements, i.e., active power, reactive power
and voltage, can corrupt the estimations, and their impacts on
different estimations may be different. This section shows the
analysis of sensitivity of parameters to outliers. According to
the Newton-Raphson method, the estimations are updated with
the following equation.

X(n+1)
t = X(n)

t −
[
H

(
X(n)

t

)]−1 · F
(

X(n)
t

)
(31)

where H is the Hessian matrix, which is expressed as

H
(

X(n)
t

)
= ∂F

∂X

∣∣∣∣
X(n)

t

(32)

The updating equation shows that the amount of estimation
update depends on the values of the function F and the inverse
Hessian matrix. For the inverse Hessian matrix, we can use
its eigenvalue to qualitatively analyze the amount of estima-
tion update. For example, if the ith eigenvalue of the inverse
Hessian matrix and the ith element of the vector F are both
large, the amount of the ith parameter update in the vector Xt
will be accordingly large.

V. CASE STUDIES

This section validates the proposed robust time-varying
parameter identification. First, the effectiveness of the
proposed method is verified by the case studies. Second,
sensitivities of different parameters to outliers in the mea-
surements of active power, reactive power and voltage are
analyzed. The IEEE 57-bus system and the IEEE 118-bus
system with composite ZIP and IM loads are used to vali-
date the proposed method. To illustrate the results, we only
focus on the measurements of the buses of interest.
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Fig. 5. Parameter identification results comparison for Xs,t (a), Rs,t (b), Xr,t (c), Rr,t (d), λp,t (e), λq,t (f), ap,t (g), bp,t (h), and aq,t (i).

A. Simulation Processes

Fig. 4 shows the simulation processes, and the algorithm 1
shows the pseudocodes for the simulation processes. There are
three main steps.

1) First Step: Time-domain simulations (TDS) are
preformed in this step to obtain the simulated data, e.g.,
active/reactive power and voltage. The original data of the
system and the power flow are used to calculate the initial
state value. At a certain point, there are operations/faults in
the system, and the system topology is updated correspond-
ingly. With the preceding states and the updated topology,
the states at the current sample time are calculated by solv-
ing differential-algebraic equations (DAEs) alternately. If the
simulation time is over, simulated data are obtained. If not,
update load parameters and achieve the states for the following
samples repeatedly.

2) Second Step: The second step is to generate mea-
surements (GMT) of voltage, active power, and reactive
power. Based on the simulated data from the first step,
Gaussian noises are added to these data, and get the simulated
measurements.

3) Third Step: The third step is to use the proposed
time-varying parameter identification (TVPI) technique to
estimate the parameters at each sample time based on
the simulated measurements obtained from the second
step.

Fig. 6. Estimated active power and true active power.

B. 57-Bus System

1) Effectiveness of Proposed Method: This section shows
the effectiveness of the proposed method. The mean values
of the parameters Rs,t, Xs,t, Xm,t, Xr,t, Rr,t, Ht, ap,t, bp,t, aq,t,
bq,t, λp,t, λq,t for the composite ZIP and IM model are 0.05,
0.2, 4, 0.2, 0.01, 20, 0.3, 0.5, 0.2, 0.4, 0.9 and 0.9. For each
parameter, a Gaussian random variable with zero mean and
standard deviation MVP/100 is added to simulate continuous
parameter changes. MVP is the mean value of the parameter.
Each measurement is assumed to be corrupted with a Gaussian
noise with zero mean and standard deviation 0.005. There are
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Algorithm 1 Pseudocodes for Simulation Processes
1: function TDS(Original Data)
2: Power flow calculation
3: Initial value calculation
4: for t = 1→ T do
5: while Operations/faults occur do
6: Topology update
7: end while
8: Obtain simulated data at t with DAEs
9: end for

10: end function
11:
12: function GMT(Simulated Data)
13: for t = 1→ T do
14: Measurement[t] ← SimulatedData[t] + Noise[t]
15: end for
16: end function
17:
18: function TVPI(Measurements)
19: for t = 1→ T do
20: With (1)-(19), construct batch model (20)-(22).
21: Calculate downweighted coefficient wj,t with (24)-(28).
22: Construct identification model (29).
23: while Tolerance > Given Value do
24: Update estimated values with (31) and (32).
25: end while
26: end for
27: end function

Fig. 7. Estimated reactive power and true reactive power.

500 samples and the sample time is 0.1s. We assume that the
measurements of active power, reactive power, the real part of
voltage, and the imaginary part of voltage have outliers with
40% at the sample time 100, 200, 300, and 400, respectively.
We use the metrics of relative error (RE) and mean abso-
lute percentage error (MAPE) to evaluate the accuracy of the
proposed time-varying parameter identification technique.

Fig. 5 shows the parameter identification results. The green
dash-dotted lines are true values of the parameters, which are
time-varying. The red solid lines are estimated values by using
the proposed robust algorithm, i.e., the weighted least squares
with PS. The black dotted lines are estimated values with-
out the robust algorithm, i.e., the conventional weighted least
squares. Results show that the proposed robust algorithm is
able to mitigate the negative impacts caused by outliers. Small
MAPEs of the first scenario in Table I show that the proposed
algorithm has good performance. For the second scenario in

Fig. 8. (a) Relative errors of estimated active power. (b) Relative errors of
estimated reactive power.

Fig. 9. (a) MAPEs of Xs,t by using algorithm with PS and without PS.
(b) MAPEs of λp,t by using algorithm with PS and without PS.

Table I, the mean values of the parameters λp,t and λq,t are 0.4
and 0.4, respectively. The mean values of the other parameters
are the same with those in the first scenario. Small MAPEs
show that the proposed algorithm has good performance again.

Fig. 6 shows the estimated/true active power, and Fig. 7
shows the estimated/true reactive power. Fig. 8 (a) shows
the probability density function of the relative errors of the
estimated active power, and Fig. 8 (b) shows the probability
density function of the relative errors of the estimated reac-
tive power. The relative error is defined as (33), in which
REt is the relative error at t, vT,t is the true value at t, and
vE,t is the estimated value at t. The relative errors of esti-
mated active power satisfy a Gaussian distribution with mean
zero and standard deviation 1.4541, and the relative errors of
estimated reactive power satisfy a Gaussian distribution with
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TABLE I
MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) (%)

Fig. 10. Relative errors of estimated parameters to outliers in different measurements.

mean zero and standard deviation 1.4478. The small relative
errors show the accuracy of the proposed method. REt and
MAPE are defined as follows.

REt =
∣∣vT,t − vE,t

∣∣/∣∣vm,t
∣∣× 100% (33)

MAPE =
(∑

t

REt

)
/N (34)

Fig. 9 shows MAPEs of the estimated Xs,t and λp,t with
different proportions of ZIP in the composite load. The x-axis
represents the proportion of ZIP in the composite load, and
the y-axis represents MAPE. When the proportion of ZIP in
the composite load has different values, MAPEs of the param-
eters identified by using the algorithm with PS have smaller
values than those identified by using the algorithm without PS.
In addition, MAPEs of the parameters identified by using the

algorithm with PS have small changes with different propor-
tions of ZIP in the composite load. This means that MAPEs
by using the algorithm with PS have the low sensitivity to
different proportions of ZIP in the composite load.

2) Sensitivity Analysis: This section shows the sensitivity
of different parameters to outliers. Fig. 10 shows the relative
errors of the parameters to different values and different types
of outliers. For example, the relative errors of the estimated
Xs,t increase with larger outliers of active power, reactive
power and real part of voltage. But, the relative errors of
the estimated Xs,t have no obvious changes with larger out-
liers of imaginary part of voltage. For the estimated Rs,t, the
relative errors with larger outliers of active power, reactive
power, real part of voltage and imaginary part of voltage
have the similar increase pattern. For the parameter Xm,t, out-
liers of active power, reactive power, real part of voltage and
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Fig. 11. Value of the first order partial derivative of the objective when active
power outliers occur.

Fig. 12. Value of the first order partial derivative of the objective when
reactive power outliers occur.

TABLE II
EIGENVALUES CORRESPONDING TO PARAMETERS

Fig. 13. Relative errors of estimated parameters Xs,t with different
Rs,t and Xs,t .

imaginary part of voltage have small impacts on the relative
errors.

According to Section IV-D, the amount of estimation
updates can be qualitatively analyzed by using the first order

Fig. 14. Probability of relative errors of estimated active power of the
composite ZIP and IM loads at different buses in IEEE 118-bus system.

Fig. 15. Probability of relative errors of estimated reactive power of the
composite ZIP and IM loads at different buses in IEEE 118-bus system.

partial derivative of the objective (F) and the eigenvalues of
the inverse Hessian matrix. Table II shows the average eigen-
values corresponding to the parameters. Fig. 11 shows the
first order partial derivative of the objective when there are
outliers in measurements of active power. The x-axis repre-
sents the parameter, and the y-axis represents the value of
the first order partial derivative. If the value of the first order
partial derivative significantly increases with the increasing
outliers, the relative errors of the estimated parameter tend to
be sensitive to these outliers. For example, the first order par-
tial derivative with respect to Xs,t in Fig. 11 increases rapidly
with the increasing outliers in measurements of active power,
so the relative errors of the estimated Xs,t markedly increase
when outliers in measurements of active power increase, i.e.,
the black line in Fig. 10 (a). Since the eigenvalue correspond-
ing to Xs,t is larger than that corresponding to Rs,t and the
increment of the first order partial derivative with respect to
Xs,t is larger than that with respect to Rs,t, the relative errors
of the estimated Xs,t are also larger than that of the estimated
Rs,t, i.e., the black lines in Fig. 10 (a) and (b). This indicates
that Xs,t is more sensitive to the outliers in measurements of
active power compared to Rs,t. Because the first order partial
derivative with respect to Xm,t is very small with the increas-
ing outliers in measurements of active power, as shown in
Fig. 11, the relative errors of the estimated Xm,t are also small,
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Fig. 16. MAPEs of Xs,t (a), Xr,t (b), Xm,t (c), Rs,t (d), λq,t (e), λp,t (f), bq,t (g), and aq,t (h).

as shown in Fig. 10 (c). This indicates that Xm,t is not sensi-
tive to outliers in measurements of active power. Similarly, the
sensitivities of other parameters to outliers in measurements
of active power can be qualitatively analyzed.

Fig. 12 shows the first order partial derivative of the objec-
tive when there are outliers in measurements of reactive power.
If the value of the first order partial derivative significantly
increases with increasing values of the outliers, the relative
errors of the estimated parameter tend to be sensitive to these
outliers. For example, the first order partial derivative with
respect to Xs,t has a large value with a large outlier, so the
relative errors of estimated Xs,t remarkably increase with large
outliers in measurements of reactive power. Furthermore, since
the increment with respective to Xs,t in Fig. 12 is smaller than
that in Fig. 11, the relative errors with reactive power out-
liers are smaller than those with active power outliers, i.e.,
the values of the red dash-dotted are smaller than those of
the black solid line in Fig. 10 (a). This indicates that the sen-
sitivity of Xs,t to outliers in measurements of active power
is higher compared to outliers in measurements of reactive
power. Similarly, the sensitivities of other parameters to out-
liers in measurements of reactive power can be qualitatively
analyzed.

In addition, Fig. 13 shows the relative errors of the esti-
mated Xs,t with active power outliers when Xs,t and Rs,t have
different values. The x-axis and the y-axis represent Rs,t and

Xs,t, respectively. The z-axis represents the relative error of
the estimated Xs,t. When the values of Rs,t and Xs,t are both
0.1, the relative error of the estimated Xs,t is around 8%. When
the values of Rs,t and Xs,t are both 0.5, the relative error of
the estimated Xs is around 0.2%. Results show that the accu-
racy of the estimated parameters is impacted by the values of
parameters.

C. IEEE 118-Bus System

This section shows the results on the IEEE 118-bus system
in which 50 buses are connected to composite ZIP and IM
loads. For each composite ZIP and IM load, there are 500
samples for simulation, and the sample time is 0.1s. Table III
shows the buses with composite ZIP and IM loads. The mean
values of the parameters Rs,t, Xs,t, Xm,t, Xr,t, Rr,t, Ht, ap,t,
bp,t, aq,t, bq,t, λp,t, λq,t for each composite ZIP and IM
model are 0.07, 0.5, 4, 0.4, 0.01, 20, 0.3, 0.5, 0.2, 0.4, 0.4
and 0.4. A Gaussian random variable with zero mean and
standard deviation MVP/100 is added to each parameter to
simulate continuous parameter changes. Each measurement is
assumed to have a Gaussian noise with zero mean and standard
deviation of 0.005.

Fig. 14 shows the probabilities of the relative errors of the
estimated active power of the composite loads at different
buses and samples. The x-axis presents the relative error, and
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TABLE III
BUSES WITH COMPOSITE ZIP AND IM LOADS

the y-axis presents the probability. Results show that the range
of the most relative errors of the estimated active power is from
−1.5% to 1.5%. Fig. 15 shows the probabilities of the rela-
tive errors of the estimated reactive power of the composite
loads. Results show that the range of the most relative errors
of the estimated reactive power is from −1.5% to 1.5%. The
small relative errors validate the effectiveness of the proposed
parameter identification technique.

MAPEs of the parameters Xs,t, Xr,t, Xm,t, Rs,t, λq,t, λp,t,
bq,t and aq,t are presented in Figs. 16 (a), (b), (c), (d), (e),
(f), (g), and (h), respectively. The x-axis for each figure rep-
resents MAPE, and the y-axis represents the probability. The
results with different outliers’ rates and different algorithms
are compared. The red markers ‘+’ are results by using the
algorithm with PS when the outliers’ rate is 1.5%, and the
red markers ‘◦’ are results by using the algorithm without PS
when the outliers’ rate is 1.5%. The blue markers ‘�’ are
results by using the algorithm with PS when the outliers’ rate
is 4.5%, and the blue markers ‘
’ are results by using the
algorithm without PS when the outliers’ rate is 4.5%. With
the same outliers’ rate, MAPEs of the estimated parameters
by using the algorithm with PS are smaller than those without
PS. For example, when the outliers’ rate is 1.5%, MAPEs of
Xs,t by using the algorithm with PS (the red markers ‘+’ in
Fig. 16 (a)) is smaller than those without PS (the red mark-
ers ‘◦’ in Fig. 16 (a)). In addition, with the same approach,
MAPEs of the estimated parameters with a lower outliers’ rate
are smaller than those with a higher outliers’ rate. For exam-
ple, MAPEs of Xs,t by using the algorithm with PS when the
outliers’ rate is 1.5% (the red markers ‘+’ in Fig. 16 (a)) are
smaller than those with the 4.5% outliers’ rate (the blue mark-
ers ‘�’ in Fig. 16 (a)). Small MAPEs show that the proposed
algorithm has good performance.

VI. CONCLUSION

This paper proposed a robust time-varying parameter iden-
tification technique for the composite ZIP and IM load model.
The data redundancy for parameter identification was guar-
anteed by using the batch-model regression. Down-weighting
coefficients of measurements, used to deal with outliers, were
achieved by calculating robust distances of a k-time sequence
with the PS approach. The optimization of the weighted
squares error was solved by the Newton-Raphson approach
with the estimated parameters at the previous sample time as
an initial iteration value. Sensitivity analysis was conducted
to qualitatively achieve the change patterns of the parameters

to different types of outliers. The major findings are as fol-
lows. 1) The proposed method can identify the time-varying
parameters of the composite ZIP and IM model with a high
accuracy. 2) The down-weighting coefficients based on the
PS approach can robustly deal with outliers in measurements.
3) The first order partial derivative of the objective can be
used to qualitatively analyze the sensitivity of the parameters
to outliers.

The wide deployment of renewable energy sources intro-
duces additional dynamics into power systems as inverter-
based distributed generators (DGs) are now interfaced with
the systems. This is especially true for a microgrid that is a
cluster of loads and DGs. In the future work, we will consider
the influences of these inverter-based DGs on the dynamic load
modeling.
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