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Abstract—This paper proposes a parameter identification tech-5
nique for composite ZIP and electronic loads by leveraging the6
support vector machine (SVM) approach. Since the active power7
and the reactive power of electronic loads are piecewise functions of8
the voltage magnitude, the operating modes of electronic loads are9
determined by the voltage magnitude. To improve the accuracy of10
parameter identification, two filters (Hampel and Savitzky–Golay)11
are employed to preprocess measurements to reduce noise. The12
data after noise reduction serve as training data for the regression13
model that is solved by the SVM approach. Numerical results show14
that the SVM approach with filters can identify the parameters of15
the composite ZIP and electronic load model with high accuracy.

Q1
16

Index Terms—Electronic load, noise reduction, parameter iden-17
tification, support vector machine, ZIP load.18

I. INTRODUCTION19

LOAD modeling is important to power system analysis and20

control. Because more novel smart grid technologies such21

as power electronics are used in power systems, load modeling22

faces challenges from a variety of load components and a lack23

of detailed load information. Fig. 1 shows typical energy con-24

sumption in homes by end users in 1987, 1993, 2005, and 200925

[1], [2]. Statistical data show that electronic loads increased26

from 17% to 35% over that period, and new electronic devices27

continue to proliferate [3]. Since electronic devices continue28

to grow and the operating characteristics of these electronic de-29

vices are different from conventional loads such as space heating30

and water heating, their impacts must be included in models of31

when modeling load behavior.32

The existing load modeling techniques can be classified into33

two broad categories: component-based models [4], [5] and34

measurement-based models. Component-based models explic-35

itly represent physical characteristics of loads. However, it is36
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Fig. 1. Statistical data of typical energy consumption in homes by end uses
in 1978, 1993, 2005, and 2009.

a challenge to aggregate component-based models at the trans- 37

mission -system level due to a lack of information about the load 38

composition. Because more measurements can be obtained from 39

phasor measurement units (PMUs) [6], [7], measurement-based 40

models [8]–[14] have been used widely for load modeling. A 41

measurement-based model has a generic representation without 42

the need for detailed load characteristics. It is based on mea- 43

surements from a specific location during a certain period, so 44

it may not be suitable for other regions and other periods. It 45

is also based on pre-specified load structures. For example, the 46

ZIP model [15] and the exponential model [16] are usually used 47

to relate active/reactive power to bus voltage, and the frequency 48

dependent model [17] represents active/reactive power as bus 49

voltage/frequency. These models only represent the static char- 50

acteristics of loads. To include dynamic characteristics of loads, 51

dynamic models such as the induction motor (IM) model [15] 52

and the exponential recovery load model [18], [19] are usually 53

used. These relate active/reactive power to bus voltage and time. 54

In addition, composite models (e.g., the combination of the static 55

models and the dynamic models) are employed to capture load 56

behaviors accurately [20]–[23]. 57

The operating characteristics of power electronics are dif- 58

ferent from conventional loads. Bonneville Power Administra- 59

tion (BPA) and the Western Electricity Coordinating Council 60

(WECC) tested electronics such as variable-frequency drives 61

and personal computers in their laboratories [24], [25]. The 62

variable-frequency drives behave as constant power loads and 63

trip at 60%–70% of voltage. The personal computers work as 64

constant power loads that turn off at about 50% voltage and 65

restart at about 60% voltage. Other electronics have similar op- 66

erating characteristics. Based on these characteristics, WECC 67

[25] and the North American Electric Reliability Corporation 68
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Fig. 2. Framework of the proposed method.

(NERC) [26] represent the models of electronics as piecewise69

functions with respect to bus voltage. These piecewise charac-70

teristics were not included in the existing studies [15]–[23].71

Parameters of an appropriate load model are usually opti-72

mized by means of nonlinear least-squares (NLS) to achieve73

the minimum difference between the model outputs and the74

recorded measurements. Algorithms based on statistical tech-75

niques [27]–[29] and heuristic techniques [30]–[32] can be used76

to identify the parameters, and measurements with noise are usu-77

ally directly used as algorithm inputs. However, potential out-78

liers in measurements [33] may deviate parameter identification.79

In addition, current algorithms cannot deal with parameter iden-80

tification for electronic models that are represented as piecewise81

functions.82

To deal with the above-mentioned challenges, this paper pro-83

poses a SVM-based parameter identification approach for the84

composite ZIP and electronic load model. The main contribu-85

tions of this paper are three-fold: (1) The operation character-86

istics of electronic loads are represented as piecewise functions87

with respect to voltage, and a composite ZIP and electronic load88

model is proposed. (2) Noise reduction techniques based on the89

Hampel filter and the Savitzky-Golay filter are used to reduce90

noise to improve the accuracy of parameter identification. (3)91

The SVM algorithm with the noise filters is used to identify the92

parameters of the composite load model.93

The rest of the paper is organized as follows. Section II de-94

scribes the framework of the proposed parameter identification95

for the ZIP and electronic load model. Section III presents com-96

posite ZIP and Electronic load modeling, and Section IV shows97

the algorithm for parameter identification. Section V shows the98

simulation results, and Section VI concludes the paper.99

II. FRAMEWORK OF THE PROPOSED PARAMETER100

IDENTIFICATION101

Fig. 2 shows the framework of the proposed method. There102

are three key steps in this framework: mode identification, noise103

reduction, and parameter identification.104

� Mode identification: Because power consumption of elec- 105

tronic loads can be expressed as a piecewise function of 106

voltage magnitude, different voltage magnitudes may re- 107

sult in different operating modes. In this step, a voltage 108

jump check is performed first, and then curve fitting is 109

performed based on voltage measurements to obtain the 110

operating modes according to the voltage magnitude. With 111

the operating modes, the regression model of the compos- 112

ite ZIP and electronic load can be determined. The details 113

are explained in the following sections. 114
� Noise reduction: Based on practical voltage measurements 115

and power measurements, a new group of data after noise 116

reduction will be employed as training data to improve the 117

accuracy of parameter identification. The cleaned data are 118

obtained by reducing noises from the practical measure- 119

ments by means of the Hampel filter and the Savitzky- 120

Golay filter. 121
� Parameter identification: Based on the new group of data 122

after noise reduction, the support vector machine approach 123

will be used to identify the parameters of the regression 124

model of the composite ZIP and electronic load. 125

III. COMPOSITE ZIP AND ELECTRONIC LOAD MODELING 126

This section first shows the mathematical formulation of the 127

ZIP and electronic load model, and then shows the derivation of 128

the regression model for the composite ZIP and electronic load 129

model. 130

A. ZIP Model 131

The ZIP model is one of the typical static load models. It in- 132

cludes constant impedance (Z), constant current (I), and constant 133

power (P). It is usually employed to represent the relationships 134

between power and the voltage of interest. The mathematical 135

formula is expressed as follows: 136

PZIP,t = PZIP,0

(
ap

(
Vt

V0

)2

+ bp

(
Vt

V0

)
+ cp

)
(1)

QZIP,t = QZIP,0

(
aq

(
Vt

V0

)2

+ bq

(
Vt

V0

)
+ cq

)
(2)

where PZIP,t and QZIP,t are active power and reactive power, 137

respectively, at the bus of interest at time t, V0 is the nomi- 138

nal voltage, PZIP,0 and QZIP,0 are base active/reactive power. 139

Vt is the voltage magnitude at time t. ap , bp , and cp are the 140

parameters for active power of the ZIP load, and they satisfy 141

ap + bp + cp = 1. aq , bq , and cq are the parameters for reactive 142

power of the ZIP load, and they satisfy aq + bq + cq = 1. The 143

first term on the left side of (1) represents active power of the 144

constant impedance load, and PZIP,0 · ap/V 2
0 is the constant 145

conductance. The second term on the left side of (1) represents 146

the active power of the constant current load, and PZIP,0 · bp/V0 147

is the constant current. The third term represents active power of 148

the constant power load, and PZIP,0 · cp is the constant power. 149
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TABLE I
COEFFICIENT OF ELECTRONIC LOAD

B. Electronic Model150

The electronic load defined in the software PowerWorld has151

the following characteristics:152
� If the terminal voltage is higher than a threshold value Vd1 ,153

active power and reactive power of the electronic load are154

constant P and Q.155
� If the voltage is between two threshold values Vd1 and Vd2156

(Vd1 > Vd2), the active power and reactive power of the157

electronic load are linearly reduced to zero.158
� α represents a fraction of the electronic load. If α is larger159

than zero, it will be reconnected linearly as the voltage160

recovers.161

The electronic load defined in the WECC composite load162

model is similar to that defined in PowerWorld, and its mathe-163

matical formula is expressed as follows:164

PE,t = ct · PE,0 (3a)

QE,t = ct · QE,0 (3b)

where PE,t and QE,t are active/reactive power of the electronic165

load at time t, PE,0 and QE,0 are base active/reactive power,166

respectively. ct is a coefficient related with the bus voltage, and167

it is listed in Table I. The modes depend on the terminal voltage.168

In Table I, Vd1 and Vd2 are two threshold values, and α is a169

fraction of the electronic load that recovers from low voltage170

trip. Vmin,t is a value tracking the lowest voltage but not below171

Vd2 , and it is a known value at each sample. Its value can be172

expressed as follows:173

Vmin,t = max {Vd2 ,min {Vt, Vmin,t−1}} (4)

As shown in Table I, the mode of an electronic load depends174

on its terminal voltage. To illustrate the modes of the electronic175

load under different conditions, we show an example in Fig. 3.176

We assume that we have a voltage curve that is impacted not177

only by the load but also by the external grid, as shown in178

Fig. 3(a). Because Vmin,t is defined to track the lowest voltage,179

its trajectory from t1 to t3 is the same as the trajectory of Vt180

in Fig. 3(a) because Vt decreases gradually over this period, as181

shown in Fig. 3(b). From t3 to t4 , Vmin,t keeps the value Vd2182

because it should not be less than Vd2 . From t4 to t6 , Vmin,t183

maintains the value Vd2 since Vd2 is smaller than Vt .184

Based on the conditions in Table I, as defined by WECC, the185

operating modes are determined according to voltage. Take the186

Fig. 3. (a) An example of bus voltage of an electronic load. (b) Trajectory of
Vm in , t at each sample. (The five modes are used for the sake of exposition, and
the practical operation may not cover all five modes.)

scenario in Fig. 3 as an example. From t1 to t2 , because Vt ≥ Vd1 187

and Vmin,t ≥ Vd1 , the electronic load is in Mode 4. From t2 to 188

t3 , the electronic model is in Mode 2 because Vd2 ≤ Vt < Vd1 189

and Vt ≤ Vmin,t . From t3 to t4 , the electronic load is in Mode 190

1 because the bus voltage is less that Vd2 . From t4 to t5 and t5 191

to t6 , the electronic load is in Mode 3 and Mode 5, respectively. 192

In this research, we adopt the electronic load model defined by 193

WECC. 194

For the component-level load, the voltage thresholds are 195

known parameters. For an aggregate load that includes many 196

electronic loads, we can first classify the electronic loads into 197

different categories; the loads in a certain category share the 198

same voltage thresholds. Then, we use the criteria in Table I to 199

determine the mode of loads in each category, and obtain the 200

formulations of the composite model’s parameters in different 201

modes. Because different categories have different thresholds, 202

the mode of the aggregate load is the Cartesian product of the 203

mode of each category. 204

C. Composite Model 205

With the ZIP model and the electronic load model, the com- 206

posite model can be expressed as 207

Pt = (1 − βp) · PZIP,t + βp · PE,t (5a)

Qt = (1 − βq ) · QZIP,t + βq · QE,t (5b)

where βp and βq are the coefficients representing the portions 208

of electronic loads in entire active/reactive power, respectively. 209

Pt and Qt are active/reactive power of the composite load, 210

respectively. 211

According to (1) and (2), we know that active power and 212

reactive power of the ZIP load are functions of Vt and V 2
t . In 213

addition, active power and reactive power of the electronic load 214

are functions of Vt according to (3a), (3b) and (4). We rewrite 215
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TABLE II
PARAMETERS FOR ACTIVE POWER OF COMPOSITE MODEL

(5a) and (5b) as216

Pt = λ1 · V 2
t + λ2 · Vt + λ3 (6a)

Qt = γ1 · V 2
t + γ2 · Vt + γ3 (6b)

where λ1 , λ2 , and λ3 are the coefficients of active power, and217

the detailed formulations for these parameters in five modes218

are listed in Table II. The conditions for the five modes are the219

same as the conditions listed in Table I. γ1 , γ2 , and γ3 are the220

coefficients of reactive power, and they have similar expressions221

to the coefficients of active power.222

IV. ALGORITHMS FOR PARAMETER IDENTIFICATION223

This section introduces voltage jump check, curve fitting for224

mode identification, noise filters for noise reduction, and a sup-225

port vector machine for parameter identification.226

A. Voltage Jump Check227

Because we consider the steady-state model, we ignore the228

high-order dynamics of components. However, voltage may229

change a great deal due to different system conditions. This230

large change is considered a voltage jump. If we smooth the231

noise of all samples before and after the jump, the data af-232

ter noise smoothing may be very different from the original233

sample. To deal with this, we analyze the voltage data and the234

power data together to check whether a voltage jump occurs.235

When a voltage jump occurs, the corresponding samples will236

not be used together to smooth noise. A voltage jump occurs237

when |Vt − Vt−1 |/Vt−1 ≥ VG and |Pt − Pt−1 |/Pt−1 ≥ PG . Vt238

and Vt−1 are voltage measurements at t and t − 1, respectively.239

Pt and Pt−1 are the real power measurements at t and t − 1,240

respectively. VG and PG are the given threshold values. Be-241

cause noises usually satisfy a normal distribution, about 99.7%242

of noises are within three standard deviations based on the243

3-sigma rule. Because the values of voltage jumps are much244

larger than noise, VG and PG can be set to be larger than three245

standard deviations (e.g., six standard deviations).246

Fig. 4. A simple case for curve fitting.

B. Curve Fitting 247

Due to measurement noise, it is difficult to determine the op- 248

erating modes when the measurements are close to the threshold 249

values Vd1 and Vd2 . For example, samples A, B, C, D, E, and 250

F in Fig. 4 are around the threshold Vd1 . If we directly use the 251

values of the samples A, B, C, D, E, and F to determine the 252

modes, the operation shifts back and forth between two modes 253

according to the mode criteria listed in Table I. The nosie may 254

influence the mode selection. In practice, we should use the true 255

values to identify modes. Hence, we first fit the curves of volt- 256

age around the threshold values Vd1 and Vd2 to help identify the 257

modes. After curve fitting, samples A, B, C, and D are consid- 258

ered to belong to a mode, and samples E and F are considered 259

to belong to another mode. 260

We use a polynomial function with an nth degree to fit the 261

curve: 262

V̂t = c0 + c1t + c2t
2 + · · · + cn tn (7)

where t is the sample time, and c0 , . . . , cn are the coefficients. 263

To find the coefficients, we can solve the problem: 264

min
∑

t

(Vt − V̂t)
2

(8)

where Vt is the measurement at sample t. For this optimization, 265

we can choose 50 samples around the threshold values Vd1 and 266

Vd2 and a polynomial function with a third or fourth degree, 267

and in this case overfitting will not occur. The model in (8) is 268
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Fig. 5. Hampel filter.

a typical least-squares optimization model, which is solved by269

the curve fitting toolbox in Matlab.270

C. Noise Filter271

Noise in practical measurements has great impacts on pa-272

rameter identification. Parameter identification for load model-273

ing estimates the unknown parameters of the load model based274

on measurements. Noises and outliers impact the accuracy of275

the estimated parameters. To ensure high accuracy of parame-276

ter identification, a new group of data is derived based on the277

practical measurements by using filters. Because the Savitzky-278

Golay filter has an advantage in better preserving the amplitude279

of some high-frequency components and the Hampel filter has280

an advantage in robust outlier detection, these two filters are281

used to reduce noise.282

1) Hampel Filter: The Hampel filter detects and removes283

noises and outliers by means of the Hampel identifier, and it284

depends on the three-sigma rule of statistics. For example, xi in285

Fig. 5 has a median of a window including itself, and l adjacent286

samples on the two sides of xi are calculated:287

mi = median(xi−l , . . . , xi , . . . , xi+ l) (9)

where mi is the median, and l is the length of a sliding window,288

as shown in Fig. 5.289

In addition, the standard deviation of each sample with respect290

to its window median is calculated by using the median absolute291

deviation:292

MADi = median

× (|xi−l − mi |, . . . , |xi − mi |, . . . , |xi+ l − mi |)
(10)

σi = κ · MADi (11)

where σi is the standard deviation, and κ = 1√
2erf c−1 1/2

≈293

1.4826.294

If the sample xi satisfies the condition |xi − mi | > N · σi ,295

in which N is a given threshold, the sample xi will be replaced296

by mi .297

2) Savitzky-Golay Filter: The Savitzky-Golay filter depends298

on the least-squares polynomial fitting through a moving win-299

dow with the data in time domain, as shown in Fig. 6. For a300

sample xi , we consider a polynomial with an nth degree:301

y = c0 + c1(x − xi) + c2(x − xi)2 + · · · + cn (x − xi)n

(12)

where c0 , c1 , . . . , cn are the coefficients. For the sample xi as-302

sociated with l samples to the left and l samples to the right, we303

Fig. 6. Savitzky-Golay filter.

have 2l + 1 equations: 304

yi−l = c0 + c1(xi−l − xi) + · · · + cn (xi−l − xi)n

...

yi = c0

...

yi+ l = c0 + c1(xi+ l − xi) + · · · + cn (xi+ l − xi)n (13)

For these 2l + 1 equations, the least-square approximated 305

solution should be found. Equation (13) can be written in a 306

matrix form as follows: 307

A · c = y

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 xi−l − xi · · · (xi−l − xi)
n

...
...

...
...

1 0 · · · 0
...

...
...

...

1 xi+ l − xi · · · (xi+ l − xi)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c =
[
c0 c1 · · · cn

]T
y =

[
yi−l · · · yi · · · yi+ l

]T
(14)

where the superscript T denotes matrix/vector transpose. The 308

least-squares solution for (14) is derived by using the following 309

formula: 310

c = (AT · A)−1 · (AT · y) (15)

The value c0 works as a new data after noise reduction. For 311

example, the sample S1 is the original sample, and S2 is the data 312

after noise reduction with the Savitzky-Golay filter. Because the 313

Savitzky-Golay filter is a filter through a moving window with 314

the measurements in a time domain, we will stop the fit after the 315

last measurement in time domain is processed by the filter. 316
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Fig. 7. (a) Vapnik ε-insensitive loss objective for SVM regression estimation.
(b) Use of slack variables ξ and ξ∗ for points that cannot satisfy the ε accuracy.

D. Support Vector Machine for Linear Regression317

This section first presents the basic model of the support318

vector machine approach for the linear regression, and then319

shows its dual model and its quadratic program.320

1) Basic Model of Support Vector Machine: It is assumed321

that we have data {(x1 , y1), . . . , (xN , yN )}, and the regression322

of the data can be written as follows:323

yi = kT xi + b (16)

where yi , b ∈ R, k, xi ∈ Rn , and i ∈ {1, . . . , N}. The esti-324

mated parameters k and b can be found by minimizing the em-325

pirical risk of training data. One typical objective for estimation326

is the squared error defined as follows:327

min
∑

i

(yi − kT xi − b)
2

(17)

For the standard SVM regression, a ε-insensitive loss objec-328

tive proposed by Vapnik is used:329 ∣∣yi − kT xi − b
∣∣
ε

=

{
0, if

∣∣yi − kT xi − b
∣∣ ≤ ε∣∣yi − kT xi − b

∣∣− ε, otherwise
(18)

where ε denotes the accuracy required by users, as shown in330

Fig. 7. Theoretically, the SVM approach can be applied to any331

convex objective function. In general, a 1-norm objective is332

more robust than a 2-norm objective (e.g., when dealing with333

non-Gaussian nosie on training data).334

For the ε-insensitive loss objective, we expect to find one335

function that is as flat as possible has the largest deviation ε.336

One way to guarantee this is to minimize the Euclidean norm337

(i.e., kT k) with some linear constraints, as follows:338

min
1
2
kT k (19a)

s.t. yi − kT xi − b ≤ ε ∀i (19b)

kT xi + b − yi ≤ ε ∀i (19c)

However, some points may be beyond the constraints in (19).339

Similar to the soft margin employed in SVM by Vapnik and340

Cortes [34], slack variables ξi and ξ∗i are introduced to deal with341

infeasible constraints in (19), and the optimization model can342

be rewritten as follows: 343

min
1
2
kT k + C

N∑
i=1

(ξi + ξ∗i ) (20a)

s.t. yi − kT xi − b ≤ ε + ξi ∀i (20b)

kT xi + b − yi ≤ ε + ξ∗i ∀i (20c)

ξi, ξ
∗
i ≥ 0 ∀i (20d)

where the constant C > 0 is a parameter, which determines the 344

trade off between the flatness of the regression function and the 345

tolerance of deviations greater than ε, as illustrated in Fig. 7(b). 346

2) Dual Model and Quadratic Programming: The optimiza- 347

tion model (20) is complex due to the high dimensionality of 348

the input space. Therefore, its dual model is used to obtain 349

the optimal solution. A Lagrangian function with respect to 350

the constraints and the original objective is first established by 351

introducing a group of dual variables, as follows: 352

L(k, b, ξi , ξ
∗
i , βi , β

∗
i , ηi , η

∗
i ) =

1
2
kT k + C

N∑
i=1

(ξi + ξ∗i )

−
N∑

i=1

βi

(
ε + ξk − yi + kT xi + b

)

−
N∑

i=1

β∗
i

(
ε + ξ∗k + yi − kT xi − b

)

−
N∑

i=1

(ηiξi + η∗
i ξ

∗
i ) (21)

where L is the Lagrange function, and βi , β∗
i , ηi , and η∗

i are 353

Lagrangian multipliers that satisfy the following constraints. 354

βi, β
∗
i , ηi , η

∗
i ≥ 0 ∀i (22)

For the Lagrangian function in (21), the primal and dual 355

variables at the solution correspond to a saddle point [35]. The 356

saddle point can be characterized as follows: 357

max
βi ,β ∗

i ,ηi ,η ∗
i

min
k,b,ξi ,ξ ∗

i

L(k, b, ξi , ξ
∗
i , βi , β

∗
i , ηi , η

∗
i ) (23)

with conditions for optimal solution. 358

∂L

∂k
= k −

N∑
i=1

(βi − β∗
i )xi = 0 (24a)

∂L

∂b
=

N∑
i=1

(βi − β∗
i ) = 0 (24b)

∂L

∂ξi
= C − βi − ηi = 0 ∀i (24c)

∂L

∂ξ∗i
= C − β∗

i − η∗
i = 0 ∀i (24d)
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TABLE III
PARAMETERS OF COMPOSITE LOAD

Substituting (24a), (24b), (24c), and (24d) to (21) produces359

the dual optimization model.360

max
βi ,β ∗

i

−1
2

N∑
i=1

N∑
j=1

(βi − β∗
i )(βj − β∗

j )x
T
i xj

− ε

N∑
i=1

(βi + β∗
i ) +

N∑
i=1

yi(βi − β∗
i ) (25a)

s.t.
N∑

i=1

(βi − β∗
i ) = 0 (25b)

0 ≤ βi, β
∗
i ≤ C ∀i (25c)

The Lagrangian multipliers βi and β∗
i can be obtained by solv-361

ing the quadratic optimization model (25a), (25b), and (25c).362

Then, parameter k can be described as a linear combination of363

the training data with the condition (24a) as follows:364

k =
N∑

i=1

(βi − β∗
i )xi (26)

V. CASE STUDIES365

This section validates the proposed parameter identification366

approach for the composite ZIP and electronic loads. The effec-367

tiveness of the proposed method is verified by the case studies,368

and the sensitivities of the approaches to outliers are compared.369

A. Data Description370

A revised IEEE 123-bus system [36] is employed for simula-371

tions. To illustrate the results, we focus on the measurements of372

bus 6, which is connected with a composite ZIP and electronic373

load. The detailed parameters for the composite load are shown374

in Table III. To test the model and the identification algorithm,375

1,000 operating points are simulated to obtain the true values376

including voltage and power. Then, noises are added to the true377

values in p.u. to generate the signals. The noises are assumed to378

satisfy a Gaussian distribution with zero mean and a standard379

deviation of 0.001. To compare the results, we consider 1,000380

scenarios, each of which has 1,000 signals with different noise381

added to the true values. The number of samples for curve fitting382

around the threshold values is 50. The threshold values of VG383

and PG for checking voltage jumps are both set to 0.05 (p.u.).384

Fig. 8. (a) Voltage measurements and fitting curve. (b) Operating modes for
different samples.

TABLE IV
ESTIMATIONS OF λ1 , λ2 , AND λ3 UNDER DIFFERENT MODES

FOR SIMULATED DATA

The lengths of the noise filers are set to be 5. The order of the 385

Savitzky-Golay filter is three. Because the order of the filter is 386

three (i.e., a polynomial function with a thrid degree is used) 387

and the length of the filter is five (i.e., five samples are used), it 388

will not be overfitting. 389

To identify the load parameters, the modes should be deter- 390

mined first. Fig. 8(a) shows the signals of one scenario. The 391

black dots represent the voltage measurements, and the red line 392

is the fitting curve of the voltage around the threshold values of 393

VG and PG . Fig. 8(b) shows the modes of the bus of interest 394

in the analysis period. There are three modes: mode 2, mode 3, 395

and mode 5. 396

B. Effectiveness of Proposed Method 397

Table IV shows the estimate of λ1 , λ2 , and λ3 under differ- 398

ent modes. It is observed that the results based on SVM with 399

the Savitzky-Golay filter (SG-SVM) are the closest to the true 400

values and the results based on SVM with the Hampel filter 401

(H-SVM) are the second closest to the true values. Fig. 9 shows 402

the probability density function (PDF) of relative errors (REs) 403

of the parameter λ1 by using different algorithms. The mean 404

values of REs with SVM, H-SVM, and SG-SVM are 6.79%, 405
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Fig. 9. Probability density functions of relative errors of λ1 using (a) SVM,
(b) H-SVM, and (c) SG-SVM.

Fig. 10. Probability density functions of relative errors of λ2 using (a) SVM,
(b) H-SVM, and (c) SG-SVM.

3.66%, and 3.08%, respectively. Fig. 10 shows the REs’ PDF of406

the parameter λ2 with different algorithms. The mean values of407

REs with SVM, H-SVM, and SG-SVM are 3.17%, 1.71%, and408

1.42%, respectively. Fig. 11 shows the REs’ PDF of the param-409

eter λ3 by means of different algorithms. The mean values of410

REs with SVM, H-SVM, and SG-SVM are 3.54%, 1.91%, and411

1.60%, respectively.412

Fig. 11. Probability density functions of relative errors of λ3 by using
(a) SVM, (b) H-SVM, and (c) SG-SVM.

Fig. 12. REs of the parameters (a) λ1 , (b) λ1 , and (c) λ1 under mode 5.

Fig. 12 shows REs of the parameters λ1 , λ2 , and λ3 un- 413

der mode 5 using different algorithms. The mean values of 414

REs of the estimated λ1 with SVM, H-SVM, and SG-SVM are 415

4.56%, 2.64%, and 2.29%, respectively. For the estimated λ2 , 416
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Fig. 13. REs of the parameters (a) λ1 , (b) λ1 , and (c) λ1 under mode 2.

the mean values of REs with SVM, H-SVM, and SG-SVM are417

4.53%, 2.62%, and 2.27%, respectively. For the estimated λ3 ,418

the mean values of REs are 1.34%, 0.77%, and 0.67%, respec-419

tively. Fig. 13 shows the results under the mode 2 with different420

algorithms. The mean values of REs of the estimated λ1 with421

SVM, H-SVM, and SG-SVM are 7.10%, 3.13%, and 2.75%,422

respectively. For the estimated λ2 , the mean values of REs with423

SVM, H-SVM, and SG-SVM are 1.18%, 0.52%, and 0.45%,424

respectively. For the estimated λ3 , the mean values of REs with425

SVM, H-SVM, and SG-SVM are 1.36%, 0.59%, and 0.52%,426

respectively. Based on these results, we can conclude that SG-427

SVM has the best performance, followed by H-SVM, and SVM428

has the worst performance.429

Fig. 14 shows REs with different standard deviations of noise.430

Even though the standard deviations of noise increase, the re-431

sults using H-SVM and SG-SVM have lower REs. In addition,432

outliers may be associated with measurements, and the capabil-433

ity to deal with these outliers is critical. Fig. 15 shows REs of λ1434

of mode 3 by using different approaches with different outlier435

rates. H-SVM has the best performance in dealing with outliers,436

followed by SG-SVM, and SVM has the worst performance.437

To further test the algorithm, additional voltage curves are438

used. The test system and the parameters are the same as the439

Fig. 14. REs with increased standard deviations of noises.

Fig. 15. (a) Relative errors when outliers’ rate is 1%. (b) Relative errors when
outliers’ rate is 2%. (c) Relative errors when outliers’ rate is 3%. (d) Relative
errors when outliers’ rate is 4%.

scenario in Fig. 8. The new voltage curve and the corresponding 440

modes are shown in Fig. 16. In this test, we consider a voltage 441

jump scenario. To guarantee that the voltage jump is not an out- 442

lier associated with the voltage measurements, we also check 443

power data. If they both have jumps, the corresponding data will 444

not be considered an outlier. In this case, the measurements be- 445

fore and after the jump will not be used together to smooth noise. 446

For this test, we have four modes. Table V shows REs of the es- 447

timated parameters with different approaches. This test shows 448

that SG-SVM has the best performance to deal with outliers, 449

followed by H-SVM, and SVM has the worst performance. 450
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Fig. 16. (a) Part of voltage curve. (b) Part of power curve. (c) Voltage curve.
(d) Operating modes at different samples.

TABLE V
RES OF ESTIMATED PARAMETERS WITH DIFFERENT APPROACHES

UNDER MODES FOR SIMULATED DATA

The above sample measurements are based on simulations.451

To further validate the model and the algorithm, we also used452

Chroma Programmable AC/DC Electronic Load 63804 and453

Manual Variable Transformer R42207 to generate experimental454

data. With different modes, the power is equivalent to a constant455

impedance load, a constant current load, and a constant power456

load. This can be programed using Chroma Programmable457

AC/DC Electronic Load, and Manual Variable Transformer458

R42207 is used to generate the terminal variable voltage.459

Fig. 17 shows voltage and power. In this test, PZIP,0 = 800 W,460

PE,0 = 400 W, V0 = 200 V, Vd1 = 209, Vd2 = 154, ap = 0.2,461

bp = 0.4, cp = 0.4, α = 0.25, and βp = 0.2. There are four462

modes: mode 4, mode 2, mode 1, and mode 3. Table VI shows463

Fig. 17. (a) Voltage curve. (b) Power curve.

TABLE VI
RES OF ESTIMATED PARAMETERS WITH DIFFERENT APPROACHES

UNDER MODES FOR EXPERIMENTAL DATA

REs of the parameters. SG-SVM has the best performance to 464

deal with noise, followed by H-SVM, and SVM has the worst 465

performance. 466

VI. CONCLUSIONS 467

This paper focuses on parameter identification for the com- 468

posite ZIP and electronic load by using the support vector ma- 469

chine (SVM) approach. Because the power consumption of the 470

electronic load is a piecewise function of voltage magnitude, 471

the approximated voltage curve, which determines the operat- 472

ing modes of the electronic loads, is achieved by using the curve 473

fitting approach. To improve the accuracy of parameter identi- 474

fication, two filters (i.e., the Hampel filter and the Savitzky- 475

Golay filter) are employed to preprocess measurements to re- 476

duce noises before using the SVM approach. Several tests were 477

used to validate the model and the method. The major findings 478

are as follows: (1) SG-SVM has the best performance to deal 479
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with noise, followed by H-SVM, and SVM has the worst per-480

formance. (2) H-SVM has the best performance to deal with481

outliers, followed by SG-SVM, and SVM has the worst perfor-482

mance.483

Usually, one critical factor determining the data quality is484

the measurement unit. In practice, we can analyze the historical485

data from the measurement unit. If the measurements from the486

unit have a high rate of outliers, H-SVM can be selected. If the487

measurements from the unit have a very low rate of outliers, we488

can select SG-SVM.489
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