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Abstract—This paper presents a review of the literature on1

state estimation (SE) in power systems. While covering some2

works related to SE in transmission systems, the main focus3

of this paper is distribution system SE (DSSE). This paper4

discusses a few critical topics of DSSE, including mathemati-5

cal problem formulation, application of pseudo-measurements,6

metering instrument placement, network topology issues, impacts7

of renewable penetration, and cyber-security. Both conventional8

and modern data-driven and probabilistic techniques have been9

reviewed. This paper can provide researchers and utility engi-10

neers with insights into the technical achievements, barriers, and11

future research directions of DSSE.12

Index Terms—Distribution system state estimation, pseudo-13

measurements, topology, cyber-security.14

I. INTRODUCTION15

D ISTRIBUTION System State Estimation (DSSE) is the16

process of inferring the values of system’s state variables17

using a limited number of measured data at certain locations18

in the system [1]. Thus, DSSE is basically a numerical pro-19

cess to map data measurements to state variables. While State20

Estimation (SE) is a well-developed and widely-used concept21

in transmission systems, its use at the distribution level is still22

the subject of active research. In recent years we have observed23

the rapid growth of Advanced Metering Infrastructure (AMI)24

in electric distribution systems (e.g., according to [2], the num-25

ber of advanced meters in the U.S. was estimated to be 64.726

million devices in 2015, out of a total number of 150.8 million27

meters, indicating a penetration rate of 42.9%.) Hence, DSSE28

is expected to become a significant function in monitoring and29

power management of smart grids [3]. A general schematic of30

DSSE function is shown in Fig. 1. Extending conventional31

SE approaches to active distribution systems is a challenging32

Manuscript received May 7, 2018; revised August 16, 2018; accepted
September 6, 2018. This work was supported by the Advanced Grid Modeling
Program at the U.S. Department of Energy Office of Electricity under
Grant DE-OE0000875.AQ1 Paper no. TSG-00701-2018. (Corresponding author:
Zhaoyu Wang.)

K. Dehghanpour, Z. Wang, Y. Yuan, and F. Bu are with the Department of
Electrical and Computer Engineering, Iowa State University, Ames, IA 50011
USA (e-mail: kavehd@iastate.edu; wzy@iastate.edu).

J. Wang is with the Department of Electrical Engineering, Southern
Methodist University, Dallas, TX 75275 USA, and also with the Energy
Systems Division, Argonne National Laboratory, Argonne, IL, USA (e-mail:
jianhui.wang@ieee.org).AQ2

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSG.2018.2870600

task due to several factors that are based on the consid- 33

erable differences between the transmission and distribution 34

systems: 35

1) Observability problem: Unlike transmission systems, the 36

distribution systems are highly unobservable, meaning 37

that the number of metering instruments in a network 38

is generally small compared to the huge size of the 39

system [4]. 40

2) Low x/r value: In distribution systems, we generally 41

face low x/r levels, which render the conventional DC 42

SE techniques in transmission systems unusable at the 43

distribution level [5]. 44

3) Unbalanced operation: Distribution systems are in prac- 45

tice highly unbalanced which leads to a higher level of 46

complexity in SE problem formulation. 47

4) Communication issues: Constraints on the communica- 48

tion system, such as the network bandwidth and capacity 49

also limit the accuracy and rate of data exchange [6]. 50

5) Network configuration problem: Considering the huge 51

size of the distribution network and noting that the com- 52

plete data related to the topology of this network is not 53

commonly stored an additional degree of complexity to 54

DSSE in these networks [7]. 55

6) Renewable energy integration: The higher penetration of 56

renewable power resources introduces a higher level of 57

uncertainty in distribution system operation and DSSE. 58

7) Cyber-security issues: The issue of cyber-security is 59

a new concern in management and control of active 60

distribution systems. 61

Despite these challenges, industrial interest in implementing 62

DSSE is growing. Electrical energy firms such as Eaton [8], 63

Survalent [9], ETAP [10], OSI [11], and Nexant [12] have 64

recently devised industrial programs for promoting system 65

monitoring and management at the distribution level for util- 66

ities using DSSE. A discussion on relevant experiences on 67

DSSE for radial distribution networks is presented in [13], 68

where the connections between SE implementation and prac- 69

tical variables, such as line lengths, switch flows, voltage regu- 70

lation, and measurement areas, are elaborated. In this paper we 71

seek to present an extensive review of the proposed solutions 72

to different DSSE-related problems. While the main focus of 73

this paper is DSSE, certain works on transmission system SE 74

have also been cited and reviewed where they become relevant. 75

In summary, this paper discusses the following issues: DSSE 76

problem formulation, pseudo-measurement generation, uncer- 77

tain network topology, integration of renewable resources, 78
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Fig. 1. DSSE function in smart grid environment.

meter placement, and DSSE cyber-security. Special attention79

has been given to data-driven and machine-learning-based80

approaches that are gaining interest to address different types81

of problems [14].82

The reviewed works address critical aspects of DSSE shown83

in Fig. 1: 1) DSSE solver module: in Sections II and III, we84

summarize the fundamentals of DSSE, with respect to choice85

of algorithm and state variables. 2) Pseudo-measurement gen-86

eration module: in Section IV the challenge of observability in87

distribution systems and proposed pseudo-measurement gen-88

eration solutions in the literature are elaborated. 3) Topology89

identification module: Section V reviews the past works90

related to online configuration tracking, connectivity detec-91

tion, and topology discovery, which are pre-requisites for92

obtaining accurate DSSE solutions. 4) Feeder and instru-93

mentation module: The measurement units distributed across94

the electric power system are the main sources of the infor-95

mation for running the monitoring and control systems. In96

Section VI, the problem of optimal meter placement and97

potential PMU applications in distribution feeders is presented98

in terms of practical constraints and objective functions.99

Modern distribution feeders can have high penetration levels100

of distributed renewable resources. The impacts of penetra-101

tion of renewable energy resources in distribution feeders on102

DSSE are analyzed in Section VII. 5) Cyber-security module:103

Reliable DSSE depends on detection and prevention of cyber-104

intrusions and cyber-attacks. The challenge of cyber-security105

when performing wide-scale distribution system measurement106

and monitoring is discussed in Section VIII. Furthermore,107

conclusions and future research directions are provided in108

Sections IX and IX-A.109

II. FUNDAMENTALS OF SE110

A) Conventional Approach: Given a measurement vector zzz111

(with size m × 1), and a measurement function hhh, which112

connects the true state vector xxx (with size n × 1) to the113

measurement vector (i.e., zzz = h(x)h(x)h(x) + eee, with eee denoting the114

measurement error vector), the state estimation problem can115

be formulated as a Weighted Least Square (WLS) optimization116

problem (with bold letters denoting vectors/matrices) [1]: 117

x̂̂x̂x = arg min
xxx

(zzz − h(x)h(x)h(x))TWWW(zzz − h(x)h(x)h(x)) (1) 118

where x̂̂x̂x is the estimated state vector, T is the matrix transposi- 119

tion operation, and WWW denotes the weight matrix that represents 120

the user’s confidence in the measured data. A widely-used 121

choice for the weight matrix is WWW = diag{σ−2
1 , . . . , σ−2

m }, 122

where σ 2
j represents the variance of the measurement error 123

corresponding to the jth element of zzz. This choice of the 124

weight matrix is based on two assumptions: 1) the error vec- 125

tor (eee) has a Gaussian distribution with zero mean, and 2) the 126

measurement errors of different elements of the measurement 127

vector are statistically independent. Under these assumptions 128

the WLS problem transforms to the maximum likelihood 129

estimation. A number of papers have deviated from the con- 130

ventional approach towards selecting WWW. For instance, in [15], 131

using active/reactive power data history, non-diagonal terms 132

have been added to the weight matrix to obtain better WLS 133

accuracy, by modeling the existing correlation between the dif- 134

ferent measurement samples. This problem has been analyzed 135

in details in [16] for modeling the correlations in measure- 136

ment error distributions of different variables that are measured 137

by the same device (smart meters and PMUs.) For instance, 138

it is shown that the non-diagonal covariance terms between 139

different variables measured by the same device are as fol- 140

lows (notation: active power (P), reactive power (Q), voltage 141

magnitude (V), current magnitude (I), power factor (cos �)): 142

σV,P = σ 2
VI cos �, σV,Q = σ 2

VI sin � 143

σP,Q = 1

1

(
σ 2

VI2 sin 2� − σ 2
�I2V2 sin 2� + σ 2

I V2 sin 2�
)

(2) 144

Through another approach, in [17] and [18], the elements 145

of the diagonal WWW matrix are updated using a weight func- 146

tion during solution iterations to obtain robustness against bad 147

data. The proposed weight updating mechanism for the ith 148

measurement to obtain new weight value (w̄i) is as follows: 149

w̄i =

⎧⎪⎨
⎪⎩

σ−2
i , D′

i ≤ k0

σ−2
i ζi, k0 < D′

i ≤ k0

0, D′
i > k1

(3) 150

where, D′
i, ζi k0, and k1 are parameters defined based on the 151

residual level corresponding to the ith data sample. The idea 152

behind (3) is that as D′
i (which is a measure of low quality 153

of the measured data sample) increases beyond the introduced 154

thresholds (k0 and k1), the weight value assigned to it should 155

decrease (with factor ζi), reducing the influence of unreliable 156

or bad data samples on the outcome of the WLS. 157

Conventionally, Gauss-Newton method has been applied to 158

iteratively solve the WLS problem (1) [5]. This algorithm basi- 159

cally finds a solution to the equation ∇J = 0, where J denotes 160

the objective function of optimization problem (1). The update 161

rules of the algorithm at the kth iteration are as follows: 162

HHH(xxx(k)) = ∂J

∂xxx(k)
(4) 163

GGG(k) = HHH(xxx(k))TWWWHHH(xxx(k)) (5) 164

�xxx(k) = GGG(k)−1HHH(xxx(k))TWWW(zzz − hhh(xxx(k))) (6) 165

xxx(k + 1) = xxx(k) + �xxx(k) (7) 166
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where, HHH is the Jacobian of J with respect to the state vari-167

ables, and GGG is the system gain matrix. Other algorithms,168

such as back tracking method, trust region method, and169

quasi-Newton techniques, have also been applied instead of170

the classical Gauss-Newton method, to obtain better conver-171

gence properties [19]. Noting the non-convexity of (1) and172

the sensitivity of Newton method to initial conditions and173

gain matrix ill-conditioning, in [20] and [21], a Semi-Definite174

Programming (SDP) approach is proposed to find a good initial175

guess for the Newton method. The SDP formulation is based176

on the convex relaxation of the original WLS problem, which177

also guarantees the existence of a unique global solution.178

The computational efficiency of SDP is shown to be supe-179

rior compared to that of the original non-convex problem. To180

further improve the computational performance of SDP-based181

SE, distributed algorithms have been employed for obtaining182

a solution [22].183

Another modification in the structure of WLS (1) is the184

inclusion of virtual measurements as equality constraints185

(c(x)c(x)c(x) = 000). Virtual measurements represent operator’s per-186

fect information on certain aspects of system operation (e.g.,187

zero-power-injection at nodes without customers.) Lagrange188

multipliers (λλλ) have been proposed as penalty factors for189

enforcing these equality constraints [23]. The modified WLS190

objective function is defined as follows:191

{
x̂, λ̂x̂, λ̂x̂, λ̂

}
= arg min

xxx,λλλ
(zzz − h(x)h(x)h(x))TWWW(zzz − h(x)h(x)h(x)) + λλλTc(x)c(x)c(x) (8)192

Given the above objective function, the state update step in193

the Gauss-Newton method (6) is changed to:194

[
�xxx(k)
λλλ(k)

]
=

[
HHHTWWWHHH CCC(xxx(k))T

CCC(xxx(k)) 0

]−1[
HHHTWWW(zzz − hhh(xxx(k)))

−ccc(xxx(k))

]
195

(9)196

where, C(x)C(x)C(x) = ∂c(x)c(x)c(x)
∂xxx .197

B) Alternative DSSE Structures: While WLS represents198

the conventional SE in power systems, alternative mathe-199

matical formulations have been proposed for the purpose of200

increasing the robustness of the state estimator when fac-201

ing bad data. Noting the susceptibility of WLS to bad data,202

in [24], the use of Least Median of Squares (LMS) and Least203

Trimmed Squares (LTS) is studied, which shows improved204

behavior in handling outliers. Also, [25] investigates the use205

of Least Absolute Value (LAV) estimator, which has the206

property of automatic bad data rejection. Increasing the robust-207

ness of SE has also been promoted by using a Generalized208

Maximum-likelihood (GM) estimator instead of WLS in [26],209

where normalized residuals (rn) are used through a convex210

score functions (denoted as ρ(.)) in formulating the objective211

function. The SE formulation for these different approaches212

(including pros and cons) are shown in Table I, in terms213

of the objective function in optimization problem (1). In214

this table, the residuals rrr = [r1, . . . , rm]T are defined as215

ri = zi − hi(xxx). Also, med{} and r(i) define the set median and216

the ith order statistics, respectively. Numerical comparisons of217

these alternative DSSE formulations in terms of robustness218

against system parameter uncertainties are presented in [27].219

TABLE I
AVAILABLE ROBUST SE FORMULATIONS

Other approaches towards structuring the DSSE have been 220

presented as well. For instance, some works in the literature 221

tend to propose estimators which relax the Gaussian uncer- 222

tainty assumption inherent to WLS. This is of practical impor- 223

tance given that this assumption is shown, through field tests, 224

to be largely inaccurate [28]. Using Mean Squared Estimator 225

(MSE) an analytic SE formulation is obtained in [29] which 226

does not depend on Gaussian uncertainty assumptions and is 227

capable of bad data measurement detection. A similar esti- 228

mator is used in [30], where a Bayesian alternative to WLS 229

is proposed. It is shown that the Bayesian approach has 230

specifically better performance in presence of non-Gaussian 231

uncertainty. Unlike WLS (equation (1)), the Bayesian approach 232

tends to estimate states as a conditional averaging operation: 233

x̂̂x̂x = E{xxx|zzz} =
∫

αααfααα|zzz(ααα|zzz)dααα (10) 234

Calculating E{xxx|zzz} depends on our knowledge of the dis- 235

tribution function fxxx|zzz, which can be obtained using Bayes 236

rule, the measurement functions, and statistical properties of 237

the system. Citing availability of accurate knowledge of sec- 238

ond order statistics as a shortcoming of MSE-based methods, 239

in [31] an alternative DSSE formulation is presented as a 240

matrix completion problem which can be efficiently solved 241

for billions of entries. Using information-theoretic reasoning 242

it is shown that the optimal performance of DSSE is bounded 243

by the capacity of AMI communication channels in charge of 244

transmitting measurement samples to system operator. 245

To reduce the size of the optimization problem and speed up 246

the convergence of WLS for large-scale feeders, in [32], the 247

concept of quasi-symmetric impedance matrix is employed. 248

This is achieved by adding the following constraint to the 249

conventional WLS: 250

min
xxx

(zzz − h(x)h(x)h(x))TWWW(zzz − h(x)h(x)h(x)) 251

s.t. g0(x)g0(x)g0(x) = xxx − x0x0x0 − TRXTRXTRX · I(x)I(x)I(x) = 0 (11) 252

where, xxx and x0x0x0 represent the voltage node state vector and 253

the substation voltage, respectively. TRX denotes the reduced 254

impedance matrix and III is the set of nodal current injections. 255
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TABLE II
AVAILABLE DSSE FORMULATION STRUCTURES

III. DSSE PROBLEM FORMULATION256

Due to the basic differences between transmission and dis-257

tribution systems, the DSSE problem formulation can have258

major deviations from the conventional SE. The main point259

of difference is the modeling of measurement function (hhh) in260

DSSE, as this function reflects the power flow equations in the261

power system. Hence, based on the choice of state and mea-262

sured variables, choice of AC versus DC Power Flow (PF), and263

the representation of phases in power flow equations (for appli-264

cation in unbalanced systems), the measurement function can265

have different forms. In this section, we review the two basic266

formulations of DSSE (in terms of choice of state variables267

and measurement function) provided in the literature.268

A) Voltage-Based DSSE: Traditionally, bus voltage magni-269

tude and phase angle values have been used as state variables270

in transmission systems [1]. This conventional approach has271

also been employed in DSSE [33]–[36].272

B) Branch-Current-Based SE (BCSE): A notable group of273

works, have adopted branch current as state variables, which274

turns out to be a more natural way of DSSE formulation for275

distribution systems [37]–[42]. A summary of the properties276

of different DSSE formulations is shown in Table II.277

IV. DISTRIBUTION SYSTEM OBSERVABILITY278

“Observability” refers to the system operator’s ability to279

solve the state estimation problem. This depends on the num-280

ber and location of metering instruments in the power system.281

Also, the availability and quality of critical measurement data282

samples in real-time has a crucial impact on power system283

observability. Conventionally, numerical and topological meth- 284

ods have been used to assess the observability of transmission 285

systems with respect to the number and location of meters, 286

as demonstrated in [1]. Alternative observability assessment 287

procedures have been employed at distribution level. For 288

instance, in [43] a probabilistic approach is adopted to define 289

an Unobservability Index (UI) as follows: 290

UI =
n∑

i=1

Ki =
n∑

i=1

⎛
⎝

Bi∑
j=1

−p
(
bi,j

)
log2 p

(
bi,j

)
⎞
⎠ (12) 291

where, Ki denotes the entropy of the ith state (with p(bi,j) defin- 292

ing the probability of the jth bin for the ith state.) Basically, UI 293

represents our overall uncertainty on the distribution system 294

state variable values. As another example, a graph-theoretic 295

criterion for local observability assessment of distribution 296

networks is obtained in [4]. 297

Unlike transmission systems that enjoy a high level of 298

data redundancy, the distribution systems are generally under- 299

determined with poor observability. Thus, the accuracy of 300

DSSE can be highly affected by the quality and availabil- 301

ity of sensor data. The distribution system can easily become 302

unobservable in case of communication failure/delays. Hence, 303

bad/missing measurement data is closely connected to mea- 304

surement redundancy and preserving the reliability of the 305

DSSE problem. “Bad” data refer to data measurements that 306

have considerable deviation from the underlying actual behav- 307

ior, due to meter malfunction and communication noise. 308

Missing data can also be treated as a special case of bad data. 309

Conventionally, at the transmission level, bad data detection 310



IEE
E P

ro
of

DEHGHANPOUR et al.: SURVEY ON SE TECHNIQUES AND CHALLENGES IN SMART DISTRIBUTION SYSTEMS 5

TABLE III
AVAILABLE LITERATURE ON PSEUDO-MEASUREMENT GENERATION

has been performed by inspecting the normalized measurement311

residuals. However, this method is subject to failure and com-312

plications in case of insufficient measurement redundancy and313

multiple sources of bad data [1]. Hence, alternative approaches314

have been employed to address this problem, along with the315

sub-problem of missing data, at the distribution level (refer to316

Section II.)317

Hence, to improve the observability of distribution systems,318

the input measurement set needs to be artificially augmented319

(to compensate for missing data) or corrected (to compensate320

for bad data.) This can be done through employing “pseudo-321

measurement” samples, which are artificially-generated data-322

points (e.g., active/reactive power, voltage and current, etc.)323

based on the data history of the distribution systems [5]. A324

basic approach is to use standard load profiles for generat-325

ing pseudo-measurements [44]. Given that these data-points326

are not highly accurate, they introduce high variance levels327

in the weight matrix (WWW), which could even lead to ill-328

conditioning of the DSSE problem. Data-driven approaches329

are employed for generating pseudo-measurements and han-330

dling their uncertainty, including probabilistic and statistical331

analysis, and machine-learning-based techniques.332

A) Probabilistic and Statistical Approaches: Methods based333

on probabilistic and statistical techniques, which employ spa-334

tial/temporal correlation and historic probability distribution335

data, are widely used for generating reasonable pseudo- 336

measurements and assessing their uncertainty. This includes 337

empirical studies [45], Gaussian Mixture Models (GMMs) and 338

Expectation Maximization (EM) [46], [47], time-varying vari- 339

ance and mean modeling [44], correlation analysis (between 340

total and individual consumption) [48], nodal active-reactive 341

correlation analysis [15], internodal and intranodal correlation 342

modeling [16], intertemporal correlation analysis [6], multi- 343

variate complex Gaussian modeling [49], and constrained 344

optimization [50]. 345

B) Learning-Based Approaches: Machine learning algo- 346

rithms have also attracted scientific attention in solving DSSE 347

problems, including addressing the problem of active/reactive 348

power pseudo-measurement generation and uncertainty assess- 349

ment. Probabilistic Neural Networks (PNNs) [51], Artificial 350

Neural Network (ANN) [52], clustering algorithms [53], 351

Parallel Distributed Processing networks (PDP) [17], and 352

Nonlinear Auto-Regressive eXogenous (NARX) [18]. 353

A summary of the notable papers in these two categories are 354

shown in Table III. Pseudo-measurement generation is basi- 355

cally a special type of load estimation at distribution level. 356

While there is a considerable number of works done in this 357

area, still unanswered questions remain. For instance, most 358

of the papers, instead of using real AMI data history, rely 359

on standard load profiles to perform numerical analysis and 360
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verification. Also, the huge amount of data in practice can361

cause certain learning methods to become computationally362

expensive. Managing this “big data” challenge in distribution363

systems requires further research and studies.364

V. NETWORK TOPOLOGY AND CONFIGURATION365

The topology identification problem can be categorized into366

two separate, yet related, subproblems:367

A) System configuration identification: The basic assump-368

tion within this set of problems is that the basic topology of369

the network is known to the system operator. However, due370

to local events (such as faults, line disconnections, switching371

events, etc.) the basic topology will undergo local changes over372

time. Limited knowledge of the operator on these changes373

will affect the accuracy of SE solutions. Hence, the objec-374

tive is to use the system-wide measurements to update our375

knowledge of system configuration to avoid topology errors376

(i.e., state of switches, fuses, lines, DG/customer connec-377

tion status.) Conventionally, generalized SE models have been378

used at the transmission level (with switch-related variables379

added to the SE formulation) to detect and correct topo-380

logical errors [1], [54]. Similar classic methods have been381

applied to DSSE as well [55], [56]. Apart from the classi-382

cal approaches, other probabilistic and data-driven methods383

have been applied for topology detection and identification in384

distribution systems. These methods are usually based on a385

data-driven search process in a limited topology space (i.e.,386

topology library) defined by variations on the basic topol-387

ogy, as shown in Fig. 2. Probabilistic recursive Bayesian388

approach [7], [57], fuzzy-based pattern recognition [58], auto-389

encoders [59], PMU voltage time-series [60], voting technique390

(“vote” for the best candidate structure) [61], correlation anal-391

ysis [62], and maximum likelihood estimation [63], are a few392

of the proposed topology search methods.393

B) Topology learning: Another set of problems are based394

on the assumption that the system operator has very limited395

or no knowledge of the basic topology of the network (which396

is highly applicable to the secondary distribution networks.)397

The objective is to discover the topology of the network by398

relying on nodal and branch measurements. Graph-theoretic399

algorithms have been used widely for topology discovery and400

learning considering different assumptions on system opera-401

tor’s knowledge on topology. A sparse graph recovery model402

has been adopted in [64] to perform topology discovery, based403

on DC PF. The proposed method, which is based on nodal404

measurements, requires no a priori information on the topol-405

ogy of the network. Another data-driven graphical approach406

towards topology learning is proposed in [65]. In this work,407

an efficient graphical model is developed to represent the408

voltage magnitude dependencies (using mutual information as409

a measure of affinity) between neighboring buses (the basic410

assumption in this work is that current injections are statisti-411

cally independent.) This method only depends on statistics of412

nodal voltage magnitude measurements (smart meter data) to413

reconstruct the partially or fully unknown radial or weakly-414

meshed topology. It is shown that for a radial feeder, the415

Fig. 2. Data-driven system configuration detection.

spanning tree that maximizes measures of internodal volt- 416

age mutual information corresponds to the true topology of 417

the system. In [66], using nodal voltage measurements, the 418

authors have been able to learn the topology of a radial 419

feeder using mutual statistical properties of the measured vari- 420

ables. The proposed model is based on a linear approximation 421

of lossless AC PF, and employs a bottom-to-top approach, 422

in which the structure learning begins with the end nodes 423

and moves towards the substation by choosing the proper 424

parent nodes at each stage. The method is shown to have 425

acceptable performance under a wide variety of assumptions, 426

including no prior knowledge on the basic topology and miss- 427

ing measurement data. In [67], graph-theoretic interpretation 428

of principal component analysis and energy conservation are 429

employed in the context of graph theory to obtain radial dis- 430

tribution system topology through smart meter energy usage 431

data. A more general approach (applicable to meshed networks 432

even with missing PMU phase measurements) for estimating 433

both the topology of the network and the line parameters is 434

proposed in [68], where the line parameters and system topol- 435

ogy are updated consecutively through an EM-based approach. 436

Starting with an initial topology guess, at each step of the 437

algorithm, the topology is updated by removing edges with 438

small estimated susceptance values to improve the estimation 439

likelihood. 440

VI. DISTRIBUTION NETWORK METERING 441

SYSTEM DESIGN AND ANALYSIS 442

A. Metering Instrument Placement 443

Optimizing the location of metering instruments in distri- 444

bution systems is a significant subject for research, given 445

the size of the system and potentially limited financial 446

resources [69]. Different objectives have been proposed in 447

the literature to address this problem, including improv- 448

ing system observability, minimizing installation/maintenance 449

costs, bad data detection capability, and improving the DSSE 450
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TABLE IV
METER PLACEMENT METHODS

accuracy [41], [43], [70]–[80]. Different algorithms have been451

tried for solving the placement problem, including Genetic-452

Algorithm (GA), Mixed Integer Linear Programming (MILP),453

Mixed Integer Semi-Definite Programming (MISDP), and454

Multi-Objective Evolutionary (MOE) methods. A summary of455

the different meter placement approaches is given in Table IV.456

B. PMU Applications and Impacts on DSSE457

PMUs are able to provide synchronized voltage, power,458

and current measurements that enable accurate tracking of459

state variables and efficient control and management deci-460

sions. Also, generally the sampling frequency of PMUs (up to461

30 kHz) is much higher than that of smart meters (0.277 mHz462

- 16.7 mHz), which leads to system observability on a higher463

temporal granularity. However, compared to smart meters, the464

use of PMUs in distribution networks is still very restricted465

due to their prohibitive costs. Hence, a critical research direc-466

tion related to PMUs is optimizing the number and location467

of PMUs to enhance system observability, while limiting the468

measurement infrastructure costs [81] (also see Section VI-A).469

In terms of application in distribution systems, PMUs have470

been employed for high-resolution voltage/power profiling,471

oscillation detection, topology identification, and event detec-472

tion, as outlined in [82]. On the other hand, smart meters473

have been used mostly for low-resolution load forecasting474

and management, and connection verification [83]. In terms475

of algorithm design for DSSE and topology identification,476

one considerable difference between the methods proposed for477

systems with only smart meters and systems with PMUs is478

the “small phase angle difference assumption”. Hence, due479

to unavailability of phase angle data in absence of PMUs480

many papers have assumed that the nodal voltage phase angles481

in a system are almost equal [65], [66], [84]. While this482

assumption introduces bounded inaccuracies in the final esti-483

mation/identification outcomes, it enables system operators484

to monitor the state of distribution systems without PMUs.485

Furthermore, adding the voltage phase data or flow measure-486

ments can highly improve the estimation and identification487

routines’ performance.488

VII. PENETRATION OF RENEWABLE RESOURCES 489

A few papers have analyzed DSSE under high penetration 490

rates of renewable power. The main source of challenge in 491

performing SE in presence of renewable resources is their 492

uncertain output power [85]. Also, deep penetration of renew- 493

able power sources affect the voltage profile of distribution 494

systems. This stresses the need for more advanced voltage 495

monitoring capabilities [50]. In case of pseudo-measurement 496

generation for these resources, it is believed that the non- 497

Gaussian distribution of renewable power would adversely 498

affect conventional WLS-based DSSE methods. Moreover, as 499

shown in [14], fast changes in system state can result in the 500

WLS-based DSSE to get trapped in local minima with errors as 501

high as 105 times the underlying global solution. Also, given 502

that the performance of conventional Gauss-Newton algorithm 503

highly depends on the initial conditions, finding good initial 504

conditions for DSSE in systems with deep renewable pen- 505

etration is a difficult task [4]. To address these challenges 506

several papers have adopted different approaches for solving 507

the SE (in general) and DSSE (in particular) in presence of 508

renewable-based DGs. 509

Probabilistic methods represent the major group of tech- 510

niques for modeling the impacts of renewable uncertainty on 511

SE. A forecasting-aided SE mechanism is proposed in [86] 512

to capture the temporal and spatial correlation among DGs 513

and loads for their short-term prediction (to be used as 514

pseudo-measurements in SE), using a linear autoregressive 515

model. In [29], another forecasting-aided SE method is 516

proposed to manage the uncertainties of load and renewable 517

resources based on a GMM technique for obtaining the non- 518

Gaussian distribution of renewable power while incorporating 519

the dynamics of the system. Moreover, this estimator shows 520

good performance even with limited data, which makes it a 521

promising candidate for DSSE. As an extension to [73], the 522

effect of the uncertainty of renewable DG power profile on 523

meter placement has been modeled in [87] using GMM. A 524

probabilistic graphical modeling technique has been proposed 525

in [88] for capturing short term uncertainty of SE in systems 526

with high PV penetration. The physical governing laws of the 527

system (i.e., PF equations) have been embedded into the SE 528

model. A distributed belief propagation method is performed 529

for state inference, which yields superior results compared to 530

the conventional deterministic WLS method. Another proba- 531

bilistic approach is adopted in [44] for pseudo-measurement 532

generation in networks with high residential PV penetration 533

using Beta distribution functions. It is speculated that the 534

uncertainty of PV systems has the highest impact on the DSSE 535

at mid-day time intervals (when usually the load profile is not 536

peaking.) To model the non-Gaussian uncertainty of PV power 537

in DSSE, pseudo-measurements are generated (with 15-minute 538

time resolution) for roof-top dispersed PV systems employing 539

a weather-dependent model for constructing general PV power 540

probability density functions, considering solar radiation, tem- 541

perature, number of arrays and their physical characteristics. 542

This approach shows considerable improvements on DSSE 543

accuracy compared to using conventional standard profiles. 544

While in [44] the possible correlation between physically 545

nearby renewable DGs are not modeled, it is demonstrated 546
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TABLE V
AVAILABLE LITERATURE ON SE CYBER-SECURITY

in [16] that including the correlation between close DGs for547

pseudo-measurement generation leads to further improvements548

in DSSE accuracy.549

VIII. CYBER-SECURITY550

The vulnerability of the power system against cyber-attacks551

has been observed in practice. Different types of cyber-attack552

related to SE have been modeled and investigated in the litera-553

ture: false data injection, topology attacks, and eavesdropping.554

In a false data injection situation, an attacker, with various555

degrees of knowledge on system parameters and states, alters556

the metered data of certain metering devices [89]–[94]. In a557

topology attack, the attackers tend to maliciously modify the558

topology model data of the system [95]–[99]. Eavesdropping559

defines a situation in which an unauthorized party seeks to560

gather system data by tapping into the communication infras-561

tructure, compromising data privacy and confidentiality of562

users [15], [100]. A classification of different papers with563

respect to the issue of cyber-security can be seen in Table V.564

It can be concluded that protecting the vital automation and565

monitoring systems against cyber intrusion and cyber attacks566

requires a holistic approach to preserve the integrity, avail-567

ability, and confidentiality of DSSE at all times. Different568

components of an effective solution include: adversary iden-569

tification (in terms of knowledge and resource levels), vul-570

nerability assessment (critical meters, communication system571

integration, sensitivity of DSSE to bad data), and personnel572

training.573

IX. CONCLUSION574

In this paper, we have presented an overview of the crit-575

ical aspects of DSSE. Active research subjects, such as576

DSSE problem formulation, pseudo-measurement generation,577

network topology, data meter placement, renewable resource578

integration, and cyber-security are reviewed. Based on the579

survey, most recent works are more concentrated on using580

data-driven and machine-learning-based modifications in the581

conventional DSSE (for improving the accuracy, robustness,582

and system observability), which is a reasonable direction583

given the steep increase in the rate of installation of smart584

meters and micro-PMUs at the distribution level. Probabilistic 585

modeling (in a data-driven context) has also attracted sub- 586

stantial research works, due to its capability for capturing the 587

effects of stochastic and variable renewable resources on active 588

distribution systems in general (and on DSSE in particular.) 589

A. Future Research Directions 590

It would be of interest to study how Demand Response 591

(DR) programs [101] could impact the DSSE (in terms of 592

uncertainty and variability of customer behavior and pseudo- 593

load generation) by incorporating retail market signals into 594

the DSSE problem formulation. In general, integrating the 595

price-sensitivity of active distribution networks into the DSSE 596

becomes a valid research problem in future distribution 597

systems with deep penetration of renewable and DR resources. 598

In a related context, optimal power management and decision 599

making under limited distribution system observability appears 600

to be a largely unexplored direction for research, specially 601

in presence of emergent technologies, such as energy storage 602

systems and networked microgrids [102]–[105]. Another very 603

recent area of interest is topology learning. Future research 604

is needed to discover if and how topology discovery can be 605

performed after extreme weather events [106] as the number 606

of data meters decreases due to communication and device 607

failure, and the observability of the distribution system is 608

compromised. Employing data-driven methods under extreme 609

weather events at different stages (pre-event, during the event, 610

and post-event) for developing system monitoring and learn- 611

ing techniques is another possible research direction. Thus, 612

it would be of interest to investigate the impact of extreme 613

events on distribution system observability and design poten- 614

tial solution strategies to enable effective system restoration 615

strategies that depend on operator’s real-time knowledge of 616

system states. 617

ACKNOWLEDGMENT 618

The authors would like to thank Dr. Ravindra Singh from 619

the Argonne National Laboratory for valuable comments that 620

greatly improved the manuscript. 621

REFERENCES 622

[1] A. Monticelli, State Estimation in Electric Power Systems: A 623

Generalized Approach. New York, NY, USA: Springer, 1999. AQ3624

[2] (Dec. 2017). FERC Staff Report: Assessment of Demand Response 625

and Advanced Metering. [Online]. Available: https://www.ferc.gov/ 626

legal/staff-reports/2017/DR-AM-Report2017.pdf 627

[3] A. Primadianto and C.-N. Lu, “A review on distribution system state 628

estimation,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3875–3883, 629

Sep. 2017. 630

[4] S. Bhela, V. Kekatos, and S. Veeramachaneni, “Enhancing 631

observability in distribution grids using smart meter data,” 632

IEEE Trans. Smart Grid, to be published. [Online]. Available: 633

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914787 AQ4634

[5] F. F. Wu, “Power system state estimation: A survey,” Int. J. Elect. 635

Power Energy Syst., vol. 12, no. 2, pp. 80–87, Apr. 1990. 636

[6] A. Alimardani, F. Therrien, D. Atanackovic, J. Jatskevich, and 637

E. Vaahedi, “Distribution system state estimation based on nonsyn- 638

chronized smart meters,” IEEE Trans. Smart Grid, vol. 6, no. 6, 639

pp. 2919–2928, Nov. 2015. 640



IEE
E P

ro
of

DEHGHANPOUR et al.: SURVEY ON SE TECHNIQUES AND CHALLENGES IN SMART DISTRIBUTION SYSTEMS 9

[7] R. Singh, E. Manitsas, B. C. Pal, and G. Strbac, “A recursive Bayesian641

approach for identification of network configuration changes in dis-642

tribution system state estimation,” IEEE Trans. Power Syst., vol. 25,643

no. 3, pp. 1329–1336, Aug. 2010.644

[8] Eaton’s CYME Distribution State Estimator. [Online].645

Available: http://www.eaton.com/us/en-us/products/utility-grid-646

solutions/software-modules/distribution-state-estimator-module.htmlAQ5 647

[9] Survalent Developing Distribution State Estimation Software for648

Electric Utilities. [Online]. Available: https://www.survalent.com/649

survalent-developing-distribution-state-estimation-software-electric-650

utilities/651

[10] ETAP: Distribution State Estimation. [Online]. Available: https://652

etap.com/product/distribution-state-estimation653

[11] OSI: Advanced Distribution Management Systems. [Online]. Available:654

http://www.osii.com/solutions/products/distribution-management.asp655

[12] Nexant Launches Grid360 Distribution Manager. [Online].656

Available: http://www.nexant.com/about/news/nexant-launches-657

grid360-distribution-manager658
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