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Abstract—This paper proposes a voltage stability-constrained1

optimal power flow (VSC-OPF) model based on semidefinite2

programming (SDP) relaxation. The minimum singular value of3

the power flow Jacobian is used as a steady-state voltage stability4

index, which is incorporated into the semidefinite programming5

formulation. To model a semidefinite programming constraint6

for voltage stability, an auxiliary matrix based on the power7

flow Jacobian is constructed, and this auxiliary matrix can be8

reformulated as a function of the semidefinite variable matrix9

defined for semidefinite programming relaxation. The resulting10

SDP-based VSC-OPF model is formulated and solved via the11

solver SDPT3 and the toolbox YALMIP. Extensive simulations12

on IEEE test systems validate the effectiveness of the proposed13

model.14

Index Terms—Optimal power flow, semidefinite programming,15

voltage stability.16

I. INTRODUCTION17

POWER systems are undergoing stressed operation states18

with the increasing load demand associated with the need19

of economic operation. These stressed power systems are20

being operated ever closer to voltage stability margin [1]. In21

addition, more stochastic disturbances, caused by the higher22

penetration of renewables such as wind power and solar23

power [2], may jeopardize the robustness of a power system24

and pushing one with a low voltage stability margin to an25

unstable state. Usually, the security requirements, e.g., such26

as line flow constraints and voltage magnitude constraints in27

the conventional optimal power flow model, can guarantee a28

feasible solution in voltage stable [3]. However, a counterex-29

ample in [4] shows that the ‘nose point’ of the load PV curve30

may lie at a high voltage point, which means the margin to31

voltage instability may be small even when the system is under32
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normal voltage levels. More generally, the system may become 33

voltage unstable at high voltages as it gets more capacitive. 34

Therefore, the incorporation of voltage stability constraints in 35

OPF formulations is becoming more important. 36

The singularity of the power flow Jacobian matrix can be 37

used as an indicator for steady-state stability [5]. The mini- 38

mum singular value (MSV) can be used to show the distance 39

between the steady-state voltage stability limit and the stud- 40

ied operating point. Based on this, Tiranuchit et al. [6], [7] 41

employed the minimum singular value of the power flow 42

Jacobian matrix as a static voltage stability index, and the 43

minimum singular value of the power flow Jacobian was also 44

used for voltage collapse assessment in [8]–[10]. In addi- 45

tion to the minimum singular value, there are some other 46

indices, e.g., the heuristic-based L-index [11] and the min- 47

imum eigenvalue [12], [13] for assessing the static voltage 48

stability. Furthermore, some indices based on reduced mod- 49

els [14], [15] and branch-oriented models [16] have been 50

proposed to indicate system voltage stability conditions by 51

measurements at some critical buses. An index based on a 52

necessary condition is developed to represent the distance 53

between the current operating point and the power flow solv- 54

ability boundary [17], [18]. The developed index only requires 55

the present snapshots of voltage phasors to monitor the power 56

flow insolvability and voltage stability. The above work mainly 57

focuses on the monitoring of voltage stability. To develop 58

ways for controlling and enhancing voltage stability, critical 59

modes based on system modal analysis are used to identify the 60

causes for voltage instability [19] and some remedial mea- 61

sures [20]–[22] are conducted to enhance voltage stability. 62

Moreover, voltage stability has been considered in various 63

optimization problems for either enhancing or constraining 64

system stability levels. A voltage stability index quantifying 65

the distance to the point of collapse is introduced for reactive 66

power planning against voltage collapse in [23]. In [24], the 67

problem of voltage stability enhancement by means of reac- 68

tive power planning is formulated as an optimization problem, 69

which maximizes the voltage stability margin. Reference [25] 70

presents a voltage stability constrained optimal power flow 71

approach based on a voltage collapse proximity indicator 72

(VCPI), which provides important information about the prox- 73

imity of the system to voltage instability. An approximation 74

of the Hessian matrix of the Lagrangian function is calcu- 75

lated at each iteration and the optimization problem is solved 76

by using a line search procedure. Reference [26] proposes a 77

voltage stability-constrained optimal power flow (VSC-OPF) 78

1949-3053 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2076-9610
https://orcid.org/0000-0002-3137-0114
https://orcid.org/0000-0003-0656-0562
https://orcid.org/0000-0002-3306-767X


IEE
E P

ro
of

2 IEEE TRANSACTIONS ON SMART GRID

model based on a recently proposed sufficient condition on79

power flow Jacobian nonsingularity. The used condition is80

second-order conic representable with given load consumption.81

The entire model is relaxed to a second-order cone program.82

To apply the model to large systems, a sparse approximate83

approach is used. Since the minimum singular value of the84

power flow Jacobian is one of important static voltage stabil-85

ity indices, [27]–[29] incorporate the minimum singular value86

of the power flow Jacobian into the optimal power flow (OPF)87

model as a voltage stability constraint to ensure a minimum88

distance to the steady-state voltage stability limit. Based on the89

minimum singular value of the power flow Jacobian matrix and90

the corresponding singular vectors, [30] proposes an iteration-91

based method to enforce a voltage stability constraint in the92

optimal power flow model. Though the above papers have con-93

tributed to VSC-OPF models and solutions, however, some94

improvements on the model formulation and solution can be95

made to avoid the approximation of the Hessian matrix, the96

sparse approximation, and the iteration-based method.97

SDP has been applied in various engineering problems98

since it is polynomially solvable and the solution is glob-99

ally optimal [31], [32]. SDP relaxation of OPF problems100

have gained considerable attention in recent years. When101

one rank condition is satisfied for the relaxed model, the102

globally optimal solution of the original optimal power flow103

can be recovered [33]. Since the rank condition is not104

always satisfied, many research studies have been conducted105

to investigate scenarios under which the rank condition is106

satisfied. Reference [34] shows that there is no gap for107

the SDP relaxation when load over-satisfaction is allowed108

and enough virtual phase shifters are installed. In [35],109

it is proven that the SDP relaxation is tight when there110

are no lower bounds on active and reactive power for111

radial networks with line flow constraints, line loss con-112

straints and voltage magnitude constraints. Similar results113

are obtained in [36] and [37]. Reference [38] shows that114

the SDP relaxation is tight when there are practical angle115

constraints and real power lower bounds for radial systems.116

Some papers have investigated voltage stability constrained117

optimal power flow by means of convex semi-definite pro-118

gramming. Reference [39] develops an optimal power flow119

model, in which a variable representing maximum loading120

factor is included. The objective is to find a set of feasible121

operating points that ensure the maximum loading factor while122

minimizing the cost of increasing stability margins. For these123

two objectives, the weight coefficients are employed. In prac-124

tice, it is difficult to set the weight coefficients. Reference [40]125

introduces a maximum L-index into the optimal power flow126

model, and the objective is to minimize the maximum L-127

index. To obtain the L-index, the voltages at generator buses128

are assumed to be constant, but this may result in inaccurate129

results. The minimum singular value is an important index rep-130

resenting the distance between the steady-state voltage stability131

limit and the studied operating point, however, few studies132

include the constraint of the minimum singular value in the133

optimal power flow model due to the non-explicit and non-134

convex function of the minimum singular value with regard to135

variables in the optimization model.136

To use the minimum singular value as the voltage stabil- 137

ity and address the issue of the non-explicit and non-convex 138

function of the minimum singular value with regard to vari- 139

ables, we propose an efficient way to incorporate the constraint 140

with regard to the minimum singular value in the OPF model 141

by formulating it as an SDP constraint. The main contribu- 142

tions of this paper are three-fold: 1) To achieve the explicit 143

and convex formulation for the constraint of the voltage sta- 144

bility, an auxiliary matrix based on the power flow Jacobian 145

is introduced. We then establish the equivalence between the 146

minimum eigenvalue of the auxiliary matrix and the minimum 147

singular value of the original power flow Jacobian. 2) The 148

SDP relaxation of the OPF problem is used to relax the OPF 149

problem as a convex one. The equivalent constraint on the 150

minimum eigenvalue of the auxiliary matrix is then integrated 151

into the convexified OPF formulation to arrive at the convex 152

VSC-OPF formulation. 3) The proposed model is tested by 153

using the toolbox YALMIP associate with SDPT3, and IEEE 154

14-bus, 30-bus, 57-bus and 118-bus systems. 155

The rest of the paper is organized as follows. Section II 156

describes the conventional OPF model and its SDP relaxation. 157

Section III presents the voltage stability constraint and its 158

SDP reformulation, and the SDP relaxation of the VSC-OPF 159

model. Section IV presents extensive case studies to validate 160

the proposed model. Concluding remarks and outline for future 161

works are given in Section V. 162

II. CONVENTIONAL OPTIMAL POWER FLOW AND ITS 163

SEMIDEFINITE PROGRAMMING RELAXATION 164

This section first shows the conventional OPF model, and 165

then presents the definition of symmetric matrices and the SDP 166

relaxation of the conventional OPF model. 167

A. Formulation of AC-OPF 168

We consider a system represented by a graph (�b,�l), 169

where �b = {1, 2, . . . , n} is the set of all buses and �l is 170

the set of lines and transformers. For each line (transformer) 171

k ∈ �l has two terminal buses kf and kt. Define �g as the set 172

of all generators, and the �g,i ⊂ �g as the set of generators 173

connected to bus i. The general OPF formulation is shown as 174

follows. 175

min
∑

g∈�g

(
c2,gP2

G,g + c1,gPG,g + c0,g

)
(1a) 176

s.t. 177∑

g∈�g,i

PG,g − PL,i =
∑

j∈�b

[
Ve,i(Ve,jGij − Vf ,jBij)

]
178

+
∑

j∈�b

[
Vf ,i(Vf ,jGij + Ve,jBij)

]
i ∈ �b (1b) 179

∑

g∈�g,i

QG,g − QL,i =
∑

j∈�b

[
Vf ,i(Ve,jGij − Vf ,jBij)

]
180

−
∑

j∈�b

[
Ve,i(Vf ,jGij + Ve,jBij)

]
i ∈ �b (1c) 181

Pmin
G,g ≤ PG,g ≤ Pmax

G,g g ∈ �g (1d) 182

Qmin
G,g ≤ QG,g ≤ Qmax

G,g g ∈ �g (1e) 183
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Fig. 1. Branch model.

(
Vmin

i

)2 ≤ |Vi|2 ≤ (
Vmax

i

)2
i ∈ �b (1f)184

|Sk| ≤ Smax
k k ∈ �l (1g)185

where (1a) is the objective in which c0,g, c1,g and c2,g are186

coefficients of the generator g. (1b)-(1g) are the operational187

constraints. PG,g and QG,g are active and reactive power188

generation of generator g. Vi = Ve,i + jVf ,i is the voltage189

phasor at bus i ∈ �b. Pmin
G,g (Qmin

G,g) and Pmax
G,g (Qmax

G,g ) are lower190

and upper limits of real power (reactive power) of generator191

g, respectively. Vmin
i and Vmax

i are the lower and upper limits192

of |Vi|. Sk is the apparent power through line k, and Smax
k is193

the upper limit of |Sk|. PL,i and QL,i are active and reactive194

load of bus i. Gij and Bij are conductance and susceptance of195

line (i, j).196

B. SDP Relaxation of AC-OPF197

In this section, we first introduce some symmetric matrices198

used for the SDP-based AC-OPF model, and then the SDP-199

based AC-OPF model is presented.200

1) Symmetric Matrices: We first define three matrices Yi,201

Ȳi and Mi as follows.202

Yi = 1

2

[
Re
(
yi + yT

i

)
Im
(
yT

i − yi
)

Im
(
yi − yT

i

)
Re
(
yi + yT

i

)
]

(2a)203

Ȳi = −1

2

[
Im
(
yi + yT

i

)
Re
(
yi − yT

i

)

Re
(
yT

i − yi
)

Im
(
yi + yT

i

)
]

(2b)204

Mi =
[

eieT
i 0

0 eieT
i

]
(2c)205

where ei is an ith standard basis in R
n, the matrix yi =206

eieT
i Y, yi ∈ C

n×n is a matrix with all zeros except that the207

elements in the ith are equal to those in the ith row of Y, and208

Y ∈ C
n×n is the system admittance matrix, the superscript T209

denotes the transpose operator, Re(A) and Im(A) denote the210

real and imaginary parts of a matrix A.211

For a transformer k with series admittance Gk + jBk and212

shunt capacitance bk, it can be equivalently represented by a213

� circuit of a line in series with an ideal transformer which214

has a turns ratio 1 : ηkejαk . Fig. 1 shows the � circuit model215

with an ideal transformer. A line has the similar model with216

ηk = 1 and αk = 0. To calculate active/reactive power through217

lines and transformers, the following matrices are established.218

Hkf = Gk

ηk

(
hkf hT

kf
+ hkf +nhT

kf +n

)
219

− akf

(
hkf hT

kt
+ hkt h

T
kf

+ hkf+nhT
kt+n + hkt+nhT

kf +n

)
220

+ bkf

(
hkf hT

kt+n + hkt+nhT
kf

− hkf +nhT
kt

− hkt h
T
kf +n

)
(3a)221

Hkt = Gk
(
hkt h

T
kt

+ hkt+nhT
kt+n

)
222

− akt

(
hkf h

T
kt

+ hkt h
T
kf

+ hkf+nhT
kt+n + hkt+nhT

kf +n

)
223

+ bkt

(
hkf +nhT

kt
+ hkt h

T
kf +n − hkf hT

kt+n − hkt+nhT
kf

)
(3b) 224

H̄kf = −
(

Bk + bk

η2
k

)(
hkf hT

kf
+ hkf +nhT

kf +n

)
225

+ akf

(
hkf hT

kt+n + hkt+nhT
kf

− hkf +nhT
kt

− hkt h
T
kf +n

)
226

+ bkf

(
hkf hT

kt
+ hkt h

T
kf

+ hkf +nhT
kt+n + hkt+nhT

kf +n

)
(3c) 227

H̄kt = −(Bk + bk)
(
hkt h

T
kt

+ hkt+nhT
kt+n

)
228

+ akt

(
hkf +nhT

kt
+ hkt h

T
kf +n − hkf hT

kt+n − hkt+nhT
kf

)
229

+ bkt

(
hkf hT

kt
+ hkt h

T
kf

+ hkf +nhT
kt+n + hkt+nhT

kf +n

)
(3d) 230

where kf and kt denote the two buses of the line k, hi is 231

a ith standard basis vector in R
2n. akf , bkf , akt and bkt are 232

expressed as 233

akf = (Gk cos(αk) + Bk cos(αk + π/2))/(2ηk) (4a) 234

bkf = (Gk sin(αk) + Bk sin(αk + π/2))/(2ηk) (4b) 235

akt = (Gk cos(αk) + Bk cos(−αk + π/2))/(2ηk) (4c) 236

bkt = (−Gk sin(αk) + Bk sin(−αk + π/2))/(2ηk) (4d) 237

We collect bus voltage phasors with their real and imaginary 238

parts as a matrix X and define a new symmetric matrix W. 239

X = [
Re
(
VT), Im

(
VT)]T (5a) 240

W = XXT (5b) 241

where V ∈ C
n is the bus voltage vector, and X is a variable 242

vector in R
2n. 243

With the above definition, the active/reactive power at each 244

bus, bus voltage at each bus, and the active/reactive power 245

flow through each line can be expressed as 246

Pi = Tr{YiW}, i ∈ �b (6a) 247

Qi = Tr
{
ȲiW

}
, i ∈ �b (6b) 248

|Vi|2 = Tr{MiW}, i ∈ �b (6c) 249

P(ft)
k = Tr

{
Hkf W

}
, k ∈ �l (6d) 250

Q(ft)
k = Tr

{
H̄kf W

}
, k ∈ �l (6e) 251

P(tf )
k = Tr

{
Hkt W

}
, k ∈ �l (6f) 252

Q(tf )
k = Tr

{
H̄kt W

}
, k ∈ �l (6g) 253

where Pi, Qi and Vi are active power injection, reactive power 254

injection and bus voltage magnitude at bus i, P(ft)
k and Q(ft)

k are 255

the active and reactive power of line k from the ‘from bus’ to 256

the ‘to bus’, P(tf )
k and Q(tf )

k are the active and reactive power 257

of line k from the ‘to bus’ to the ‘from bus.’ 258

2) SDP Relaxation of AC-OPF: With the preceding pre- 259

liminaries and formulations, the SDP relaxation of the con- 260

ventional AC-OPF model can be expressed as 261

min
∑

g∈�g

γg (7a) 262

s.t. 263[
c1,gPG,g + c0,g − γg

√
c2,gPG,g√

c2,gPG,g −1

]
� 0 g ∈ �g (7b) 264
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∑

g∈�g,i

PG,g − PL,i = Tr{YiW} i ∈ �b (7c)265

∑

g∈�g,i

QG,g − QL,i = Tr
{
ȲiW

}
i ∈ �b (7d)266

Pmin
G,g ≤ PG,g ≤ Pmax

G,g g ∈ �g (7e)267

Qmin
G,g ≤ QG,g ≤ Qmax

G,g g ∈ �g (7f)268

(
Vmin

i

)2 ≤ Tr{MiW} ≤ (
Vmax

i

)2
i ∈ �b (7g)269

⎡

⎢⎣
−(Smax

k

)2 Tr
{
Hkf W

}
Tr
{
H̄kf W

}

Tr
{
Hkf W

} −1 0
Tr
{
H̄kf W

}
0 −1

⎤

⎥⎦ � 0

k ∈ �l

(7h)270

⎡

⎣
−(Smax

k

)2 Tr
{
Hkt W

}
Tr
{
H̄kt W

}

Tr
{
Hkt W

} −1 0
Tr
{
H̄kt W

}
0 −1

⎤

⎦ � 0

k ∈ �l

(7i)271

W � 0 (7j)272

where the objective in the conventional OPF model is con-273

verted to the objective (7a) and the SDP constraint (7b).274

Equations (7c) and (7d) are the real and reactive power275

balance constraints. Equation (7e) is the lower and upper lim-276

its of active power for each generator. Equation (7f) is the277

lower and upper limits of reactive power for each genera-278

tor. Equation (7g) is the voltage limit constraint. Considering279

different apparent power flow at the two buses of line k,280

the apparent power flow limits are equivalent to two SDP281

constraints (7h) and (7i). Equation (7j) is the semidefinite282

relaxation constraint of the constraint (5b), and � 0 denotes283

the corresponding matrix is positive semidefinite.284

III. SDP-BASED VSC-OPF MODEL285

SDP reformulation of the constraint on the minimum sin-286

gular value of the power flow Jacobian is first given in this287

section, which is then incorporated in the SDP relaxation of the288

OPF model introduced in the last section to form the convex289

VSC-OPF model.290

A. Convex Reformulation of Voltage Stability Constraint291

The minimum singular value of the power flow Jacobian can292

be considered as a voltage stability index [29], representing the293

distance between the steady-state voltage stability limit and294

the studied operation point. In practice, the system operators295

may wish to ensure certain margin to voltage instability while296

maintaining a low generation cost. To this end, the problem297

can be represented as optimal power flow with the objective298

of minimizing the generation cost subject to the conventional299

operation constraints and the voltage stability constraint. The300

voltage stability constraint can be expressed as follows.301

σmin ≥ σc (8)302

where σc is the voltage stability critical index, and σmin is the303

minimum singular value of Jacobian. When the constraint (8)304

is not included in the optimal power flow model, we can obtain305

an operating point associated with a threshold value σ1 for the306

minimum singular value representing the distance between the 307

steady-state voltage stability limit and the studied operation 308

point. When σ1 is close to 0, it indicates that the system has a 309

operating condition with low voltage stability. In this case, the 310

voltage stability can be included to improve voltage stability. 311

We define an index λ = 100%(σc − σ1)/σ1 that represents 312

the percentage of increase in the value of the voltage stability 313

critical index σc with respective to σ1. The system operators 314

could set this percentage, and a higher percentage will result in 315

a more stable operating condition. This value can be obtained 316

from historical data or offline simulations of plausible contin- 317

gency scenarios. The specific value of the percentage depends 318

on the requirements of the system operators. 319

The minimum singular value used in the paper is associated 320

with the static power flow Jacobian which does not take system 321

dynamics into account. Augmented models and their associ- 322

ated Jacobians which reflect system dynamical behaviors can 323

be considered. It is true that the static model we use seems to 324

be an oversimplification since voltage stability is a dynamic 325

phenomenon that involve electromechanical transients at both 326

generator and load side, to say the least. However, we believe 327

the adoption of static models for voltage stability analysis can 328

be well justified since: 329

1 The determination of bifurcation point is irrelevant of the 330

system dynamics [41]. 331

2 The stability boundary of the differential-algebraic equa- 332

tion (DAE) system containing generator dynamics can be 333

identified through the static power flow equations [42]. 334

3 The time scale of the voltage stability phenomenon 335

we are dealing with in the paper is long enough such 336

that it is essentially a system loadability problem, for 337

which a static model serves as a good approximation 338

[43, Ch. 7]. 339

Since (8) is a non-explicit and non-convex constraint with 340

regard to variables, it is necessary to address the issue caused 341

by the non-explicit and non-convex function of the minimum 342

singular value so that the optimization model can be solved. 343

To this end, we first construct an explicit expression of the 344

power flow Jacobian using matrices defined in Section II-B1. 345

In transmission systems, generator buses except the slack bus 346

are usually considered as PV buses, so not only PQ buses but 347

also PV buses are included in the power flow Jacobian. The 348

power flow Jacobian is composed of ∂Pi
/
∂X and ∂Qi

/
∂X 349

for PQ buses, and ∂Pi
/
∂X and ∂|Vi|2/∂X for PV buses 350

where 351

∂Pi

∂X
= ∂Tr{YiW}

∂X
= XT(Yi + YT

i ) i ∈ �bpq ∪ �bpv (9) 352

∂Qi

∂X
= ∂Tr{ȲiW}

∂X
= XT(Ȳi + ȲT

i ) i ∈ �bpq (10) 353

∂|Vi|2
∂X

= ∂Tr{MiW}
∂X

= XT(Mi + MT
i ) i ∈ �bpv (11) 354

where �bpq is the set of PQ buses, and �bpv is the set of 355

PV buses. ∂Pi
/
∂X, ∂Qi

/
∂X and ∂|Vi|2/∂X are 1 × 2n vec- 356

tors representing the partial derivative of Pi, Qi and |Vi|2 with 357

regard to the real/imaginary parts of bus voltages, respectively. 358

Based on (9), (10) and (11), the power flow Jacobian can be 359

ericchar
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ericchar
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ericchar
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established as follows360

J =
n∑

i=1

HThiXT(Yi + YT
i

)
H361

+
2n∑

i=n+1

HT(I − Hpv
)
hiXT(Ȳi−n + ȲT

i−n

)
H362

+
2n∑

i=n+1

HTHpvhiXT(Mi−n + MT
i−n

)
H (12)363

where the first term on the right side of (12) constructs the par-364

tial derivative of real power with regard to the real/imaginary365

parts of PQ bus voltages in the Jacobian matrix, the second366

term represents the partial derivative of reactive power with367

regard to the real/imaginary parts of PQ bus voltages in the368

Jacobian matrix, and the third term is the partial derivative369

of voltage square with regard to the real/imaginary parts of370

PV bus voltages. I is an identity matrix with the appropriate371

dimension, H ∈ R
2n×(2n−2) is defined as372

H = [
h1, . . . , hi−1, hi+1, . . . , hn+i−1, hn+i+1, . . . , hn

]
, i ∈ �bS373

(13)374

where the �bS is the set of the slack bus. In the matrix H,375

the standard basis vectors hi and hn+i, i ∈ �bS corresponding376

to the slack bus are not included. By multiplying HT and H,377

the row and the column corresponding to the reference bus378

are removed from the Jacobian matrix. In addition, the matrix379

Hpv ∈ R
2n×2n is defined as380

Hpv = [
0, 0, . . . , hi+n, . . . , 0

]
i ∈ �bpv (14)381

where the standard basis hi+n, i ∈ �bpv corresponding to a382

PV bus is the (i + n)th column in Hpv. In (12), multiplying383

the matrix I − Hpv in the second term of the right hand of the384

equation ensures that the partial derivatives of active and reac-385

tive power for PQ buses are included in the Jacobian matrix,386

and multiplying the matrix Hpv in the third term of the right387

hand of the equation ensures that the partial derivatives of388

active power and the voltage magnitude square for PV buses389

are included in the matrix.390

Based on the Jacobian matrix, we introduce an auxiliary391

matrix that is constructed as follows.392

U = JJT (15)393

where U is a (2n-2) × (2n-2) symmetric positive semidefinite394

matrix because it satisfies395

xTUx = xTJJTx = xTJ
(
xTJ

)T ≥ 0,∀x ∈ R
2n−2 (16)396

UT = (
JJT)T = JJT = U (17)397

Since U is a symmetric positive semidefinite matrix, we398

have U = K�KT where KKT = I and � is the diagonal matrix399

with eigenvalues as entries. For the Jacobian matrix J, we have400

J = L�RT based on singular decomposition where L, R are401

unitary matrices (i.e., LLT = I and RRT = I) and � is a402

diagonal matrix with singular values as entries, and in conse-403

quence we have JJT = L�RT(L�RT)T = L�RTR�TLT =404

L��TLT . Because U = JJT holds, we have L = K and405

� = ��T . With the relation � = ��T , we have λmin = σ 2
min. 406

Therefore, the voltage stability constraint σmin ≥ σc can be 407

expressed as λmin ≥ σc
2 considering the positive values of σc 408

and σmin. 409

Assume that the eigenvalues of the symmetric positive 410

semidefinite matrix U are λ1, . . . , λ2n−3, λmin, and λ1 ≥ · · · ≥ 411

λ2n−3 ≥ λmin. We construct a matrix as listed in (18). 412

� − σ 2
c I =

⎡

⎢⎢⎢⎣

λ1 − σ 2
c

. . .

λ2n−3 − σ 2
c

λmin − σ 2
c

⎤

⎥⎥⎥⎦ (18) 413

where λmin ≥ σc
2 is a necessary and sufficient condition for 414

�−σ 2
c I � 0. Multiplying �−σ 2

c I � 0 from the left by K and 415

the right by KT results in K�KT −K(σ 2
c I)KT = U−σ 2

c I � 0. 416

Therefore, the minimum singular value constraint of the 417

power flow Jacobian can be equivalently rewritten as a linear 418

matrix inequality (LMI) constraint (19). 419

U − σ 2
c I � 0 (19) 420

To obtain an explicit function of U with regard to variables, 421

we rewrite J in (12) as follows. 422

J =
2n∑

j=1

xjAj, Aj ∈ R
(2n−2)×(2n−2) (20) 423

where 424

Aj =
n∑

i=1

HThihT
j

(
Yi + YT

i

)
H 425

+
2n∑

i=n+1

HT(I − Hpv
)
hihT

j

(
Ȳi−n + ȲT

i−n

)
H 426

+
2n∑

i=n+1

HTHpvhihT
j

(
Mi−n + MT

i−n

)
H (21) 427

and xj is the jth element in the vector X. For a given system, 428

the matrices Aj, j ∈ {1, 2, . . . , 2n} are fixed and only deter- 429

mined by the system topology. They can be calculated offline 430

provided that the system topology stays the same. 431

With the reformulation of J, the matrix U can be rewritten as 432

U = JJT
433

=
(

2n∑

l=1

xlAl

)⎛

⎝
2n∑

j=1

xjAj

⎞

⎠ 434

=
2n∑

l=1

2n∑

j=1

xlxjAlAj =
2n∑

l=1

2n∑

j=1

WljAlAj (22) 435

where Wlj is the element corresponding to the lth row and the 436

jth column in the symmetric matrix W. Therefore, the convex 437

voltage stability constraint can be rewritten as 438

2n∑

l=1

2n∑

j=1

WljAlAj − σ 2
c I � 0. (23) 439
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B. SDP-Based VSC-OPF Model440

With the LMI constraint on voltage stability and SDP441

relaxation of the conventional AC-OPF model, the VSC-OPF442

problem can be formulated as a SDP problem as follows.443

Objective (7a)
Constraints (7b)−(7j)

(23)
444

where the matrices Yi, Ȳi, Mi, Hkf , H̄kf , Hkt, H̄kt, H̄pv, Aj, and445

Al in (7b)-(7j) and (23) are calculated based on (2a)-(5b), (13)446

and (14), respectively.447

IV. CASE STUDIES448

Extensive case studies on standard IEEE instances from [44]449

are performed and the results are presented in this section. First450

of all, the proposed SDP formulation is validated, and then the451

effects of the voltage stability constraints on OPF problems are452

analyzed. The proposed algorithm has been implemented by453

using the toolbox YALMIP [45] and the solver SDPT3 [46].454

The program is written in MATLAB. All simulations are455

performed on a 64-bit computer with 3.5 GHz Intel Xeon456

processor and 16 GB RAM.457

A. Validation of the Proposed Model458

This section first validates the proposed model based on459

SDP by testing IEEE 14-bus, 30-bus, 57-bus and 118-bus460

systems. We compare the results based on the proposed model461

with those from the iterative VSC-OPF model in [30]. The462

iterative VSC-OPF model is solved by the nonlinear interior463

point solver IPOPT in the software GAMS. Since the iterative464

VSC-OPF model requires that σc be around σ1, we have the465

benchmark test with a small increase in the stability index.466

Because the iterative VSC-OPF method is based on AC-OPF467

and no relaxation is used, the results based on this method can468

be considered as the benchmark results with high accuracy. If469

the results based on the proposed method are close to the470

benchmark results, we can say that the proposed method has471

a good performance. For the sake of exposition, we assume472

that the lower and upper limits of voltage at each bus are473

0.9 and 1.1. The coefficients c2,g, c1,g, c0,g for each generator474

are 0.01, 10, and 0, respectively. The system data can be found475

in [47].476

Table I, Table II, and Table III show the comparison477

results from the proposed SDP-based VSC-OPF model and478

the iterative VSC-OPF model for the IEEE 14-bus system, the479

IEEE 30-bus system, and the IEEE 57-bus system. Table IV480

shows the corresponding objective values, i.e., the generation481

costs. It is observed that the results based on the proposed482

VSC-OPF model are close to the benchmark results based on483

the iterative VSC-OPF method.484

For the SDP-based model, the solution is exact when the485

rank-one condition of the matrix W is satisfied. However, the486

rank condition is usually not satisfied due to the relaxation.487

Since the matrix’s rank, which is the number of the nonzero488

singular values, provides the information about the accuracy of489

the solution, Fig. 2 (a) shows the singular values of the matrix490

W for the IEEE 14-bus system with different thresholds of the491

TABLE I
COMPARISON RESULTS OF IEEE 14-BUS SYSTEM

WITH λ = 0.48%

TABLE II
COMPARISON RESULTS OF IEEE 30-BUS SYSTEM

WITH λ = 0.85%

TABLE III
COMPARISON RESULTS OF IEEE 57-BUS SYSTEM

WITH λ = 1.07%

TABLE IV
OBJECTIVE RESULT COMPARISON

voltage stability. Fig. 2 (b) shows the ratios between the largest 492

and second-largest singular values of the matrix W for the 493

IEEE 14-bus system with different thresholds of the voltage 494

stability. The results show that there is one large singular value 495

and the other singular values are so small that they can be 496

ignored compared to the largest singular value. This indicates 497

that the rank of the matrix W can be approximately considered 498

to be 1. Fig. 3 (a) shows the singular values of the matrix W 499

for the IEEE 30-bus system with different thresholds of the 500

voltage stability, and Fig. 3 (b) shows the ratios between the 501

largest and second-largest singular values of the matrix W 502

for the IEEE 30-bus system with different thresholds of the 503
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Fig. 2. (a) Singular values of the matrix W for IEEE 14-bus system. (b) Ratio
between the largest and second-largest singular values of the W matrix for
IEEE 14-bus system.

Fig. 3. (a) Singular values of the matrix W for IEEE 30-bus system. (b)
Ratio between the largest and second-largest singular values of the W matrix
for IEEE 30-bus system.

voltage stability. The results have the similar patterns as those504

for the IEEE 14-bus system. For the IEEE 57-bus system and505

the IEEE 118-bus system, the ratios between the largest and506

second-largest singular values of the matrix W are 7.23 × 105
507

and 5.46 × 105, respectively.508

B. Influences of Voltage Stability on OPF509

1) Influences on Generation: Fig. 4(a), (b), and (c) show510

the generation costs with different voltage stability critical511

indices for IEEE 14-bus system, IEEE 30-bus system, and512

IEEE 57-bus system, respectively. The x-axis denotes λ repre-513

senting the percentage of increase in the value of the voltage514

stability critical index σc with respective to σ1, and σ1 is515

obtained based on the scenario without the voltage stability516

constraint. The values of σ1 for IEEE 14-bus system, IEEE 30-517

bus system, and IEEE 57-bus system are 0.4986, 0.2349, and518

0.1863, respectively. The y-axis denotes the generation costs.519

From the results, it is observed that a larger voltage stabil-520

ity critical index results in a higher generation cost. However,521

Fig. 4. Generation cost with different voltage stability critical indices for
IEEE 30-bus system (a) and IEEE 57-bus system, respectively.

the differences of the generation costs under different voltage 522

stability critical indices are not large. This indicates that the 523

voltage stability constraint has a small impact on real power 524

of generators. Fig. 5 (a) and (b) show reactive power differ- 525

ences between the scenario with the voltage stability constraint 526

and the scenario without the voltage stability constraint under 527

different values of σc. The colorbar on the right side of the 528

figure represents λ. The x-axis denotes the generators, and 529

the y-axis represents the power differences. For IEEE 30-bus 530

system, when the percentage of increase in the values of SMV 531

is 30.6%, the reactive power of G2 decreases by 12.593 com- 532

pared to the case without the voltage stability constraint. When 533

the percentage of increase in the values of SMV is 8.6%, the 534

reactive power of G2 decreases by 2.714 compared to the case 535

without the voltage stability constraint. We tested the cases 536

with a large increase in the voltage stability critical index 537

since this test is to show the influences of increasing volt- 538

age stability critical indices on real/reactive power generation. 539

Because the rank-one constraint of the matrix W is relaxed 540

in the proposed model, it is possible that the accuracy of the 541

results of some cases may decrease. However, the overall trend 542

of the influences of increasing voltage stability critical indices 543

on real/reactive power generation can be obtained. From the 544

results, it is observed that a large reactive power output dif- 545

ference will be caused by a change of the voltage stability 546

critical index. 547

We also have performed tests for systems under heavy load 548

conditions. Fig. 6 (a) shows the singular values of the matrix 549

W for the IEEE 30-bus system with 1.8 times load under dif- 550

ferent thresholds of the voltage stability, and Fig. 6 (b) shows 551

the ratios between the largest and second-largest singular val- 552

ues of the matrix W. Fig. 7 (a) shows the singular values of 553

the matrix W for the IEEE 57-bus system with 1.7 times load 554

under different thresholds of the voltage stability, and Fig. 7 (b) 555

shows the ratios between the largest and second-largest singu- 556

lar values of the matrix W. From the results, we can find that 557

the largest singular value of W is much larger than the other 558
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Fig. 5. (a) Reactive power difference with different voltage stability critical
indices for IEEE 30-bus system (a) and IEEE 57-bus system (b), respectively.

Fig. 6. (a) Singular values of the matrix W for IEEE 30-bus system with 1.8
times load. (b) Ratio between the largest and second-largest singular values
of the W matrix for IEEE 30-bus system.

Fig. 7. (a) Singular values of the matrix W for IEEE 57-bus system with 1.7
times load. (b) Ratio between the largest and second-largest singular values
of the W matrix for IEEE 57-bus system.

singular values of W. This indicates that the rank of W can559

be approximately considered to be 1.560

2) PV Bus Influences: In practical systems, the voltage561

magnitudes of generator buses are often regulated at certain562

values. Table V shows the minimum singular value of Jacobian563

TABLE V
MIMIMUM SINGULAR VALUE OF JACOBIAN WITH

DIFFERENT PV BUSES

TABLE VI
REAL AND REACTIVE POWER WITH PV BUS SCENARIOS

with different PV bus scenarios. For a system with more PV 564

buses, the minimum singular value of the power flow Jacobian 565

is much larger. Take the IEEE 14-bus system as an example, 566

the minimum singular value with the bus 2 as a PV bus is 567

0.5922, the minimum singular value with the buses 2 and 3 as 568

PV buses is 0.6099, and the minimum singular value with the 569

buses 2, 3 and 6 as PV buses is 0.7033. When there are no PV 570

buses in the system, the minimum singular value is 0.4986. In 571

this simulation, the voltage magnitudes of PV buses are set to 572

be 1.1. Table VI shows the real and reactive power of PV buses 573

with different PV buses scenarios. When a bus connected to 574

a generator works as a PV bus, the corresponding generator’s 575

reactive power has a large difference. The main reason for this 576

is that much reactive power is needed to support the voltage 577

magnitude at the PV buses. 578

Fig. 8 shows generation costs with different σc for the IEEE 579

14-bus system under different PV buses scenarios. For each 580

scenario, when the voltage stability constraint works and the 581

σc increases gradually, the generation cost has a higher value. 582

Take the scenario 7 as an example, when σc > 0.7033, the 583

generation cost increases gradually, and when σc ≤ 0.7033, 584

the generation cost remains the same as that for OPF without 585

the voltage stability constraint. 586

3) Computational Efficiency: Table VII shows the average 587

CPU time and iterations with the proposed voltage stability- 588

constrained optimal power flow for different test systems. With 589

a larger scale system, it takes a long CPU time to converge. 590

However, we wish to emphasize that the scalability of the SDP 591
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Fig. 8. Generation costs with different voltage critical indices under different
PV bus scenarios, S1 - S7 denote the scenario 1 - the scenario 7 in Table V.

TABLE VII
CPU TIME AND ITERATIONS

Fig. 9. Duality gaps with iterations for IEEE 14-bus, 30-bus, 57-bus, 118-bus
systems.

formulation proposed in the paper can be greatly improved by592

exploiting sparsity of the underlying power networks. Recent593

advances along the direction [48]–[51] can be easily tuned594

for the current formulation and is a subject of ongoing work.595

The main purpose of the current paper is to propose a convex596

optimization framework incorporating minimum singular value597

constraints in OPF problems, and the sparsity-exploitation is598

not included. Fig. 9 shows the duality gap with iterations for599

IEEE 14-bus, 30-bus, 57-bus and 118-bus systems. The algo-600

rithm converges between 35 and 40 iterations. The duality gaps601

are between 10−5 and 10−3 when the algorithm converges.602

C. Discussion603

The SDP-based VSC-OPF model should have the rank-one604

condition. Since the proposed model is relaxed by replacing605

the rank condition by the constraint W � 0, the result-606

ing problem may have gaps. The future work can focus607

on the tightness of the relaxation [33], [34] and the rank608

constraint of the matrix W by introducing the rank penalty609

functions [52]–[54] and some new hybrid constraints [55].610

With the increasing integration of resources with uncer-611

tainty, e.g., renewables and electric vehicles, these random612

variations have great impacts on system operations when con-613

sidering voltage stability. The influences of renewable/load614

fluctuations can be represented as stochastic variables that are615

integrated to the proposed model in this paper, and the model 616

will be extended to a stochastic programming model, with 617

an expected function as the objective. The sample average 618

approximation (SAA) method [56] can be used to approx- 619

imate the expected objective of the stochastic problem by 620

means of a sample average estimate derived from random 621

samples. The resulting sample average approximating model 622

is a deterministic model, which can be solved by the SDP 623

technique. 624

V. CONCLUSION 625

To ensure reliable and secure operation in power system 626

economic dispatch problems, we have proposed a VSC-OPF 627

formulation using SDP relaxation of the conventional AC-OPF 628

and LMI reformulation of the voltage stability constraint. To 629

quantify the voltage stability margin, the minimum singular 630

value of the power flow Jacobian has been used as a voltage 631

stability index, which is incorporated into the conventional 632

OPF model. To reformulate voltage stability constraint as a 633

convex one, a positive semidefinite auxiliary matrix based on 634

the power flow Jacobian has been constructed. The minimum 635

singular value constraint on the power flow Jacobian is then 636

effectively transformed to a LMI constraint on the minimum 637

eigenvalue of the auxiliary matrix. We note that the reformu- 638

lation of the voltage stability constraint is exact. The resulting 639

SDP-based VSC-OPF model has been formulated and solved 640

using the toolbox YALMIP and SDPT3. IEEE 14-bus, 30-bus, 641

57-bus, and 118-bus systems have been used to validate the 642

proposed model. Simulation results show that the new VSC- 643

OPF formulation effectively constrains the voltage stability 644

margins and the effects on generation costs and generator 645

outputs by imposing different margin constraints are presented. 646
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