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Abstract—Fast and accurate load parameter identification has1

a large impact on power systems operation and stability analysis.2

This article proposes a novel Imitation and Transfer Q-learning3

(ITQ)-based method to identify parameters of composite con-4

stant impedance-current-power (ZIP) and induction motor (IM)5

load models. Firstly, an imitation learning process is introduced6

to improve the exploitation and exploration processes. Then, a7

transfer learning method is employed to overcome the challenge8

of time-consuming optimization when dealing with new identifica-9

tion tasks. An associative memory is designed to realize dimension10

reduction, knowledge learning and transfer between different11

identification tasks. Agents can exploit the optimal knowledge12

from source tasks to accelerate the search rate in new tasks13

and improve solution accuracy. A greedy action selection rule is14

adopted for agents to balance the global and local search. The15

performance of the proposed ITQ approach has been validated16

on a 68-bus test system. Simulation results in multi-test cases17

verify that the proposed method is robust and can estimate load18

parameters accurately. Comparisons with other methods show19

that the proposed method has superior convergence rate and20

stability.21

Index Terms—Load modeling, parameter identification, trans-22

fer learning, reinforcement learning, imitation learning.23

I. INTRODUCTION24

AS AN important part of power system analysis, electrical25

load modeling has a critical impact on the stable oper-26

ation of power grids [1]–[3]. Incorrect load models may lead27

to completely biased results for system operation status and28

stability evaluation [4]–[7]. Due to time-variability, complex29

composition and non-linearity, fast and accurate load modeling30

still remains a challenging problem. Therefore, it is imperative31

to identify load model parameters accurately and rapidly to32

help provide more reliable results for real-time power system33

operation.34
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Based on load models’ characteristics, conventional load 35

models can be categorized into three types: static load mod- 36

els, dynamic load models and composite load models. In static 37

load models, active and reactive power can be expressed as 38

functions of bus voltage and frequency. Common static load 39

models include static load model which comprised of con- 40

stant impedance Z, constant current I and constant power P 41

loads (ZIP) model [8] and exponential model [9]. Dynamic 42

load models can represent the relationship between load 43

active/reactive power and bus voltage. Representative dynamic 44

loads are induction motor (IM) load and exponential recovery 45

load model (ERL) [10]. IM load model is considered to be a 46

physical model since it is derived from the equivalent circuit of 47

an IM [11]. Numerous studies have shown that a single static 48

or dynamic model cannot sufficiently replicate the dynamic 49

behavior of the actual load. Therefore, composite load mod- 50

els, combining ZIP and IM have been adopted by most of the 51

utilities to represent the actual load, which can provide more 52

accurate characteristics [12]. 53

Previous works have focused on measurement-based load 54

identification and parameter estimation. Measurement-based 55

methods can be classified into two categories: artificial neural 56

network (ANN)-based methods and optimization-based meth- 57

ods. The ANN-based methods do not require any pre-defined 58

physical load models and can update load outputs (i.e., active 59

and reactive powers of loads) using the measurements in real- 60

time. A deep learning-based technique was proposed in [13] 61

to identify time-varying load parameters. 62

Optimization-based parameter estimation algorithms usu- 63

ally pre-define a load structure and then try to search for the 64

optimal parameters to minimize the error between the actual 65

power measurements and the estimated power responses. 66

These methods can be divided into statistical techniques and 67

heuristic techniques. Common statistical search techniques 68

include least square (LS) method, maximum likelihood method 69

and gradient-based method. In [14], a weighted LS method 70

was utilized to estimate the parameters of a first order IM. 71

However, LS methods are sensitive to outliers. Also, it can 72

be difficult to determine the exact load parameters when the 73

estimation process is performed over only a small number of 74

replicated observations. A maximum likelihood approach was 75

adopted in [15] to estimate load parameters. The two disadvan- 76

tages of this method are that it is based on strong assumptions 77

on the data structure and is sensitive to the choice of initial val- 78

ues. In [16], a gradient-based method was proposed to estimate 79
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Fig. 1. Equivalent circuit of composite ZIP and IM load model [3].

parameters of a fifth-order IM load. However, gradient-based80

methods are sensitive to the learning rate and depend on proper81

initialization.82

As for heuristic techniques, genetic algorithm (GA) [2]83

has been widely adopted to estimate the parameters of load84

models. GA-based methods are sensitive to the distribu-85

tion of initial population of candidate solvers. In addition,86

premature convergence is another issue that should be con-87

sidered when solutions are generated. An improved particle88

swarm optimization (IPSO) method has been applied in [17]89

to identify the unknown composite load model parameters.90

Unfortunately, most of the above methods are unable to exploit91

the prior optimization knowledge when dealing with new92

optimization tasks, which will result in an inefficient search93

when dealing with new load parameter identification tasks.94

In this article, we cast the optimization problem of param-95

eter identification for composite load model as a learning96

task. In applications involving non-linear optimization prob-97

lems, reinforcement learning (RL) methods have been adopted98

to efficiently obtain optimal solutions [18]. During the RL99

process, agents execute actions and update their states based100

on designed exploration and exploitation rules. When apply-101

ing RL method in power system, agents can be viewed as102

the candidate solutions, such as estimated load parameters;103

actions are used to tune the position of agents, i.e., tune the104

value of estimated load parameters. As an efficient RL method,105

Q-learning has been widely used for online optimization and106

control [19], [20]. However, similar to heuristic approaches,107

RL methods can suffer from inability to store prior agent108

knowledge since the initial state and action values are usually109

set to zero when dealing with a new optimization task, which110

results in time-consuming performance when identifying a111

large number of load parameters.112

Recently, transfer learning has emerged as a more suitable113

alternative due to its ability to compensate the shortcom-114

ing of conventional RL by exploiting the prior knowledge115

obtained in previous time periods (i.e., source optimization116

tasks) [21]. This can significantly reduce the computational117

time for load parameter identification. In addition, imitation118

learning can guide a RL agent to take a more effective explo-119

ration at the initial period of RL search process and improve120

the exploration efficiency. Motivated by the advantages of imi-121

tation learning, a novel Imitation and Transfer Learning based122

Q-learning (ITQ) approach is proposed in this article, which123

aggregates Q-learning, transfer learning and imitation learn-124

ing. The proposed method mitigates the computational burden125

and improves the accuracy of load parameter identification.126

The main contributions of this article can be summarized as 127

follows: 128

• In the pre-learning stage of dealing with source 129

optimization tasks, imitation learning is introduced to 130

guide the RL agent to execute a more informative explo- 131

ration instead of a random one. 132

• When dealing with a new identification task, knowledge 133

transfer process is conducted based on the similarity 134

between new tasks and source tasks to help a RL agent to 135

effectively perform generalizations based on its previous 136

experiences that are encoded within a pre-learned knowl- 137

edge matrix. 138

• A swarm of agents are employed in the learning pro- 139

cess to further accelerate learning rate. These interactive 140

agents update their knowledge matrices simultaneously 141

and share their optimal solutions during learning process. 142

• A greedy random search rule is developed in RL pro- 143

cess to ensure that the proposed method can obtain high 144

quality solutions over time. 145

The rest of this article is structured as follows: Section II 146

describes the composite load model structure. Section III 147

presents the basic principles of ITQ. The framework of 148

ITQ based load model parameters identification is given in 149

Section IV. Simulation results are presented in Section V, and 150

Section VI concludes this article. 151

II. COMPOSITE LOAD MODEL STRUCTURE 152

An equivalent circuit of composite load model, consists of 153

static ZIP and dynamic IM components connected in parallel is 154

shown in Fig. 1. The mathematical descriptions of the active 155

and reactive power of the ZIP component are expressed as 156

follows: 157

PZIP = PZIP,0

(
ap

(
V

V0

)2

+ bp

(
V

V0

)
+ cp

)
(1) 158

QZIP = QZIP,0

(
aq

(
V

V0

)2

+ bq

(
V

V0

)
+ cq

)
(2) 159

where PZIP,0, QZIP,0, V0 are active, reactive power and root- 160

mean-square (RMS) value of voltage in the steady state 161

before disturbance and V is the bus voltage magnitude at a 162

given time. In addition, ZIP parameters ap, bp and cp satisfy 163

ap + bp + cp = 1, and aq, bq and cq satisfy aq + bq + cq = 1. 164

The parameters of the IM component include: stator resis- 165

tance Rs, rotor resistance Rr, stator reactance Xs, and rotor 166

reactance Xr, magnetizing reactance Xm, and the slip s. 167

The IM component dynamics can be expressed as follows: 168

dE′
d

dt
= − Rr

Xr + Xm

(
E′

d + X2
m

Xr + Xm
Iq

)
− (ω − 1)E′

q (3) 169

dE′
q

dt
= − Rr

Xr + Xm

(
E′

q − X2
m

Xr + Xm
Id

)
+ (ω − 1)E′

d (4) 170

dω

dt
= − 1

2H

[
T0

(
Aω2 + Bω + C

)
−
(

E′
dId + E′

qIq

)]
(5) 171

where H is the rotor inertia constant; A, B and C denote the 172

torque coefficients and satisfy Aω2 + Bω + C = 1; ω = 1 − s 173

represents the rotation speed of the induction motor; E′
d and E′

q 174
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refer to the d-axis and q-axis transient electromagnetic fields175

(EMF) of the IM. Id and Iq are the d and q axes currents, with176

detailed expressions given in [3].177

Given the dynamic states, parameters and bus voltage, the178

active and reactive power of the IM model are determined as179

follows:180

PIM = UdId + UqIq (6)181

QIM = UqId − UdIq (7)182

where the d-axis bus voltage Ud and the q-axis bus voltage183

Uq satisfy the following equation:184

V =
√

U2
d + U2

q (8)185

By aggregating the ZIP and IM active (reactive) powers, we186

can obtain the total active and reactive power of the composite187

load model [3]. In addition, another important parameter of the188

composite load model, is the ratio of the initial active power189

of the IM to the total load, which is defined as:190

Kpm = PIm,0

P0
(9)191

where P0 denotes the initial active power of the composite192

load before disturbance and PIm,0 is the initial active power193

of the equivalent IM.194

Traditionally, the 13 parameters in equations (1)-(9) which195

have to be identified to fully capture the composite model, are196

as follows:197

θ = [
Rs, Xs, Xm, Xr, Rr, H, A, B, ap, bp, aq, bq, Kpm

]
198

The parameter identification process can be written as an199

optimization problem with the objective function of min-200

imizing the sum of squared difference between the esti-201

mated active/reactive power and the measured active/reactive202

power, as:203

min
θ

h(θ) =
∑L

k=1

[
(Pθ (k) − P(k))2 + (Qθ (k) − Q(k))2]

L
(10)204

where L is the number of measurement samples; Pθ (k) and205

P(k) are the estimated and measured active power; Qθ (k) and206

Q(k) are estimated and measured reactive power; h is the207

objective function representing the load model output error.208

III. BASIC PRINCIPLES OF ITQ209

The overall process of implementing the ITQ is shown210

in Fig. 2, which includes 4 main steps: 1) RL agents learn211

the optimal solution for source identification tasks based on212

Q-learning method and store the optimal knowledge (solu-213

tion) in knowledge matrix (Q-table); 2) Other agents adopt214

Levenberg-Marquardt algorithm (L-M) [2] to deal with the215

source tasks and RL agents learn from them for a more effi-216

cient search during the initial phase via imitation learning;217

3) When dealing with a new load parameter identification task,218

defining and computing the similarities between source tasks219

and new task; 4) estimating the optimal knowledge matrix for220

the new task by exploiting the previous optimal knowledge221

via transfer learning.222

Fig. 2. Basic principle of ITQ method.

Fig. 3. Basic principle of associate memory.

A. Q-Learning 223

Similar to other classical RL methods, Q-learning aims to 224

obtain an optimal policy such that a reward, R, is maximized. 225

In the Q-learning algorithm, an agent observes the current state 226

s and executes an action a. The system observes the corre- 227

sponding results and samples a reward to the agent. The agent 228

receives the reward and updates the Q-value corresponding 229

to the action-state, which represents the expected estimated 230

accumulated reward for the action-state pair. After each state 231

transition, a new action is selected, resulting in a new state 232

and a new reward. By continuous exploitation and explo- 233

ration, the agent will eventually obtain the optimal Q-table 234

which determines the action selection policy. In load parame- 235

ter identification task, each agent can be viewed as a particle 236

which contains estimated load parameters; actions are used 237

to tune the value of estimated load parameter. However, there 238

are two disadvantages for traditional Q-learning method: 1) the 239

dimension of Q-table will increase dramatically if the number 240

of controllable variables or the alternative actions increase; 241

2) using a single RL agent leads to a low knowledge learning 242

efficiency. 243

However, the curse of dimensionality will emerge if the 244

number of controllable variables grows too large in conven- 245

tional Q-learning. Assuming that the number of alternative 246

actions for a controllable variable xi to be mi , then the dimen- 247

sion of action set |A| = m1m2 · · · mn , where n is the number 248

of controllable variables. If n increases significantly, the space 249
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and time complexity will increase hugely and the problem250

becomes intractable.251

In order to avoid the curse of dimensionality, an asso-252

ciative memory is adopted to reduce the state-action space253

by decomposing the large-scale knowledge matrix (Q-table)254

into multiple lower-dimensional spaces [19]. As illustrated in255

Fig. 3, instead of adopting an extremely large-scale action set256

|A| to denote the optimization space of all the controllable257

variables, the multiple small-scale action sets (A1, A2, . . . , An)258

are adopted to represent the action space of each controllable259

variable. Consequently, each controllable variable has a cor-260

responding memory matrix Qi. Under such framework, the261

dimension of memory matrix can be greatly decreased.262

Hence, each variable has a corresponding knowledge matrix.263

Once the action of the previous variable is determined, this264

action is taken as the state of the next variable, thereby form-265

ing a chain connection. By adopting the associative memory,266

the physical meaning of state is the same as action for267

load parameter identification task. A swarm of agents are268

adopted to improve the knowledge learning rate as there are269

multiple agents executing actions at the same time, which leads270

to simultaneous updates in Q-values of multiple state-action271

pairs. After introducing the swarm of agents, the ith memory272

matrix can be updated as:273

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qi
k+1

(
sij

k , aij
k

)
= Qi

k+1

(
sij

k , aij
k

)
+ α�Qi

k

�Qi
k = Rij

(
sij

k+1, sij
k , aij

k

)
+ γ maxai∈Ai

Qi
k

(
sij

k , aij
k

)
− Qi

k

(
sij

k , aij
k

) (11)274

where α is the learning rate; i (i = 1, 2, . . . , n) denotes the ith275

variable and j (j = 1, 2, . . . , L) represents the jth agent; n and276

L are the number of variables and agents, respectively; γ is277

the discount factor; subscript k denotes the iteration number;278

Ai denotes to the action space of agent i. �Q is the knowl-279

edge increment; (sk, ak) denotes the state-action pair at the kth280

iteration; R(sk+1, sk, ak) is the feedback reward of transition281

from state sk to sk+1 after executing action ak.282

RL methods often adopt a pure strategy of greedy actions or283

a random global search strategy. In general, local search based284

on greedy strategy tends to cause the algorithm to fall into285

a local optimum, while random global search strategy tends286

to result in a long optimization time. Therefore, this article287

uses the ε-greedy strategy [18] to effectively balance the local288

search and the global search, as follows:289

aij
k+1 =

{
arg maxai∈Ai

Qi
k

(
sij

k+1, ai
)
, if ε ≤ ε0

as Otherwise
(12)290

where ε0 is a random number with a probability uniformly291

distributed in [0, 1]; ε is the exploitation rate representing292

the probability of a greedy action (exploitation); as denotes a293

random action (global search).294

After agents execute their actions, a reward is received to295

evaluate corresponding state-action pair by each agent. In gen-296

eral, an agent will receive a larger reward if the executed297

action results in a better solution (i.e., smaller objective value).298

Hence, the reward rule is designed as follows: 299

Rij
(

sij
k+1, sij

k , aij
k

)
=
{

1
hk+1

j
, if hk+1

j ≤ hk
j

0, otherwise
(13) 300

where hk
j is the objective function of the jth agent after the 301

kth iteration. 302

B. Learning Efficiency Improvement via Imitation Learning 303

For a new identification task, RL agents need to execute 304

a series of random exploitation and exploration processes to 305

obtain the optimal policy, which consumes quite a long time 306

without any prior knowledge and cannot meet the requirement 307

for online load identification. 308

Thus, imitation learning is adopted in this section to accel- 309

erate the random search process during the initial phase of 310

search. In the imitation process, RL agents can be regarded 311

as students, which can learn and imitate other Âăteachers 312

with more knowledge. In order to better guide the RL agents 313

to update the knowledge matrix during the initial phase, a 314

highly efficient L-M method is adopted as the teacher. The 315

L-M algorithm is a gradient descent method. The parameter 316

set θ updating process for L-M method is as follows: 317

θi+1 = θi + (
JTJ + λI

)−1
JTh(θi) (14) 318

where θi denotes the estimated parameter set in the ith iteration 319

step; J is the Jacobian matrix which can be obtained by calcu- 320

lating the first-order partial derivatives of estimated outputs to 321

each parameter; λ represents the step size and I is the identity 322

matrix. 323

In addition, L-M is sensitive to initial conditions and may 324

diverge outside of the defined ranges or be trapped in a local 325

optimal solution. In order to address these issues, some agents 326

learn knowledge from L-M to select the state-action pair and 327

update the knowledge matrix, the other agents update knowl- 328

edge based on Q-learning and ε-greedy rule shown in (12). 329

After each iteration, the rewards of all agents are calcu- 330

lated, shared and sorted. The corresponding state-action pair 331

with the largest reward is transmitted to all imitative teach- 332

ers (L-M agents). In a new iteration, the agents with larger 333

rewards execute actions based on Q-learning principle with 334

ε-greedy policy, while other agents with smaller reward learn 335

from L-M to select state-action pair. 336

C. Knowledge Transfer via Transfer Learning 337

Transfer learning can be applied to discover domain- 338

invariant intrinsic features and structures underlying two 339

different but related domains, which establishes successful 340

transfer and re-utilization of data information across domains. 341

ITQ agents obtain optimal knowledge matrices (Q-tables) 342

for source parameter identification tasks (source tasks) dur- 343

ing the pre-learning process, the prior knowledge are then 344

exploited as the initial knowledge matrices of a new parameter 345

identification task (new task), thereby avoiding agents’ blind 346

explorations and improving search efficiency. This transfer 347
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TABLE I
NUMERICAL INTERVAL OF LOAD PARAMETERS

process is designed as:348

Q0
ni

=
E∑

e=1

reQ∗
ei, i = 1, 2, . . . , N (15)349

where Q0
ni

denotes the initial knowledge matrix of the ith vari-350

able in the new task; Q∗
ei represents the optimal knowledge351

matrix of the ith parameter in the eth source task; re repre-352

sents the similarity between the new task and the eth source353

task and the detailed definition of similarity between two load354

parameter identification tasks are described in Section IV; E355

denotes the number of the source task.356

IV. DESIGN OF ITQ FOR LOAD PARAMETER357

IDENTIFICATION358

In this section, the detailed steps and overall procedure to359

apply ITQ for load parameter identification are introduced360

according to the principle of ITQ.361

A. Action-State Design362

Although load parameters of the power system vary at363

different times, they always change around typical values.364

A larger range will affect the speed and accuracy of the365

algorithm, while a smaller range may exclude actual values.366

Therefore, in addition to algorithm performance, the range of367

each load parameter should be pre-designed based on its typ-368

ical value in real power systems. In this article, the range of369

the parameter to be identified is proposed based on the typical370

value in actual power systems and the former related research371

in [12], [17], [22], as shown in Table I.372

In general, the standard Q-learning algorithm is based on373

discrete Markov processes, which cannot be directly applied374

to the solution of continuous variables optimization prob-375

lems. The discretization method is the most direct means376

to solve this problem at present. Hence, the continuous377

variables are divided into discrete intervals to approximate378

the optimal solution of the original problem with sufficient379

accuracy. In this article, the searching space of each contin-380

uous parameter is divided into 50 parts. For example, the381

search space for mi which denotes the ith parameter in θ382

is [ mi1 mi2 · · · mi50 ],which is sorted in an increasing383

order. To associate ITQ method with load parameters identi-384

fication, we can define Idi ∈ [1, 50] as an index for the ith385

load parameter. Then, state si can be viewed as the current386

index of the ith estimated load parameter, that is si = Idi. For387

instance, si = 3 means current estimation of the ith parameter 388

is the 3rd number within the 50 parts. 389

Then, the action of each variable (load model parameter) is 390

defined by: 391

Ai = {
ai,1 ai,2 · · · ai,50

}
(16) 392

where Ai denotes the ith variable’s action set; ai,k 393

(k = 1, 2, . . . , 50) denotes the kth action of the ith load param- 394

eter. For instance, ai = 5 means the agent selects the 5th 395

number within the 50 parts for current iteration episode. As 396

stated in Section III, the action set of each variable is the state 397

set of the next variable, i.e., Ai = Si+1. For the first variable, 398

the state set is equivalent to the action set. 399

B. Reward Function Design 400

According to the description in Section III, the reward of 401

each agent can be obtained by (13) after each iteration and a 402

smaller objective lead to a larger reward. 403

C. Knowledge Transfer Design 404

The key to determine the transfer quality is the definition 405

of the similarity between source task and new task. From (10) 406

we can see that the optimization task of load parameters iden- 407

tification is determined by the bus voltage, active and reactive 408

power. Hence, Fréchet distance [23] is adopted to measure 409

the similarity between bus voltage curves, active and reactive 410

power curves in the source tasks and new task. The Fréchet 411

distance between the two curves is the length of the shortest 412

leash sufficient for both to traverse their separate paths, which 413

takes into account the location and ordering of the points along 414

the curves. This method is widely used in curve similarity anal- 415

ysis. Let F and G be the bus voltage curves in the source task 416

and new task, and the length for each curve are T and W. The 417

bus voltage in the source task is given as a function of time by 418

F(α(t)) and G(β(t)), where α(t) and β(t) are two increasing 419

functions and α(0) = 0, α(1) = T, β(0) = 0, β(1) = W. 420

Mathematically, the Fréchet distance between the two curves 421

is defined as: 422

δF(F, G) = inf
α,β

max
t∈[0,1]

{d(F(α(t)), G(β(t)))} (17) 423

where d is the Euclidean distance function. 424

Hence, the similarity between two bus voltage curves is 425

determined by the equation: 426

SU(F, G) = 1 − infα,β maxt∈[0,1]{d(F(α(t)), G(β(t)))}
supα,β maxt∈[0,1]{d(F(α(t)), G(β(t)))} (18) 427

where SU(F, G) ∈ [0, 1], a value near 1 indicates more simi- 428

larity between the two curves, while a value near 0 indicates 429

less similarity between them. 430

Similarly, Fréchet distance between active (reactive) power 431

curves are noted as SP and SQ. Then, similarity between 432

the source load parameter identification tasks and the new 433

identification task is defined as: 434

r = 1/3(SU + SP + SQ). (19) 435
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D. ITQ Parameters Setting436

Suitable parameters can improve the performance of ITQ437

and reduce the calculation time, hence, it is crucial to choose438

appropriate parameters based on the generic guidelines [18]:439

• The learning rate α directly determines to what extent440

newly acquired information overrides old information.441

A larger α can achieve a faster convergence rate but442

with a higher probability of falling into the local optimal443

solution. Conversely, a smaller α can lead to a slower444

convergence rate but ensure a higher-quality solution.445

• The discount factor γ determines the importance of446

future rewards. Since the current optimal solution of load447

parameters is significant, a smaller γ should be chosen.448

• The exploration rate ε allows agents to explore new action449

with a certain probability. A larger ε drives agents to450

select a greedy action rather than explore a random action.451

Based on the guidelines, the four parameters of ITQ for452

load parameter identification can be chosen by a few trial-and453

error experiments and are shown in Table II. Case studies in454

Section V verify that these values can be viewed as a general455

parameters for load parameter identification task.456

E. Overall Procedure457

The overall process to implement the approach is shown458

in Fig. 4, where kmax denotes the maximum iteration steps459

and ‖Qk+1
i − Qk

i ‖2 is the Euclidean norm of Q-value differ-460

ences, and ζ is the convergence coefficient. As shown in Fig. 4,461

the pre-learning process is firstly executed to accumulate the462

optimal knowledge from the source tasks, then, agents’ action463

strategy in the new task is initialized with transfer learning,464

thereby accelerating the optimization process. In real power465

systems, dynamic measurements can be collected after dis-466

turbance which happens in chronological order. The source467

task is to identify load parameters after an earlier disturbance,468

while the new task is the identification task based on later469

disturbance.470

V. CASE STUDY471

This section evaluates the effectiveness of the proposed472

approach. The estimated results from ITQ are compared with473

that of the whale optimization algorithm (WOA) [24], Grey474

wolf optimizer (GWO) [24], IPSO [17], and classical L-M475

method [2]. These methods are newly invented and has been476

verified that they outperform GA and PSO. In order to gener-477

ate the fault data, dynamic simulations are conducted on the478

New England 68-bus test system with composite ZIP and IM479

loads [13]. All simulations are undertaken in MATLAB Power480

System Tool (PST) and the sampling rate is 100Hz. The pop-481

ulation size and the maximum iteration step are set as 30 and482

1000 for each heuristic optimization algorithm. For ITQ, the483

parameters are shown in Table II.484

A. Simulation Model485

The 68-bus test system is a reduced-order model of the New486

England/New York interconnected system [13]. It contains 16487

generators, 68 buses and 29 loads. Each load is described488

as a composite load with ZIP and IM. Load parameters489

Fig. 4. Overall Procedure of ITQ.

TABLE II
PARAMETERS USED IN ITQ

identification process is carried out for the load connected to 490

bus 27. 491

B. Pre-Learning Process 492

A pre-learning process needs to be firstly executed to accu- 493

mulate the optimal knowledge matrices from the source tasks 494

for ITQ algorithm. Therefore, 5 different tasks are simulated 495

and tasks 1 and 2 are taken as source tasks. True load param- 496

eters in each task are shown in Table III. In task 1 and 3, fault 497

occurs on the line between bus 60 and bus 61; in task 2 and 4, 498

fault occurs on the line between bus 18 and bus 49; in task 5, 499

fault occurs on the line between bus 19 and bus 68. The Fault 500

type is three phase fault in all tasks. 501

As stated in Section III, an associative memory is designed 502

to realize dimension reduction by decomposing the large-scale 503

knowledge matrix (Q-table) into multiple lower-dimensional 504

spaces. For all case studies in this article, since the search- 505

ing space of each continuous parameter is divided into 50 506

parts, the dimensions of each low dimensional Q table is set 507

to be 50 × 50. 508

In the pre-learning process, RL agents are initialized as 509

zeros and a random initialization is adopted to determine the 510
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(a)

(b)

Fig. 5. Convergence of the memory matrices and reward obtained by an
agent in two tasks.

Fig. 6. Convergence of the objective functions.

initial set of L-M agents. Fig. 5 shows the convergence curve511

and the reward obtained by an agent during the pre-learning512

process in two tasks. It is clear that each variable can converge513

to its own optimal knowledge matrix after 700 iteration steps.514

The optimal objective function during the learning process515

among all agents is shown in Fig. 6. It is clear that ITQ can516

converge to the optimal knowledge matrices for source task 1.517

Similarly, when applying the pre-learning process to task 2,518

a high quality fitness function can be obtained, as shown in519

Fig. 6. Fig. 7 presents the comparison between the estimated520

power outputs and measurements. It can be seen that the esti-521

mated outputs are very close to measurements. These results522

validate the highly convergence of the proposed ITQ method.523

C. Transfer Learning and Comparison524

With the pre-learning process completed, the optimal knowl-525

edge matrices are exploited for the online load parameters526

identification tasks using transfer learning. The online identi-527

fication is implemented for task 3. As ITQ agents has learned528

the optimal knowledge from task 1 and task 2, these tasks can529

be viewed as source when dealing with task 3. Then, based on530

the definition of similarity in (19), we can compute similari-531

ties r13 = 0.63 and r23 = 0.71. Therefore, knowledge matrix532

for task 3 can be initialized based on (19).533

Fig. 8 compares the convergence of the objective function534

for task 3 obtained by ITQ and other 4 algorithms, including535

Fig. 7. Comparison between measurements and estimated outputs.

Fig. 8. Objective function obtained by five methods.

WOA, GWO, IPSO and L-M. Reward for these optimization 536

methods are defined as 1/h and h denotes the objective func- 537

tion. Note that all the algorithms adopt a random initialization 538

except the proposed ITQ which is able to transfer optimal 539

knowledge from source tasks. From Fig. 8, it is clear that 540

ITQ can perform deep exploitation from source tasks when 541

dealing with a new task and it can obtain the optimal solu- 542

tion within 150 iteration steps, which is much faster than that 543

of the pre-learning process. The comparison verifies that the 544

convergence rate can be dramatically accelerated by transfer 545

learning. Compared with other methods, ITQ converge the 546

faster and can obtain a better reward. In addition, ITQ can 547

obtain a higher quality reward contributed to the fact that 548

random search agents can avoid the premature convergence 549

and search the globe optimal result. In order to further test 550

the performance of ITQ, all the algorithms are executed with 551

100 runs. Fig. 9 shows the Box plots of objective functions 552

obtained by the 5 algorithms, and it is clear that ITQ per- 553

forms best and the convergence stability is higher than other 554

algorithms. 555

D. Impact of Low Similarity and Limited Source Tasks 556

This section validates the effectiveness of ITQ with low sim- 557

ilarity and limited source tasks. In real power systems, limited 558

source tasks can be an obstacle for transfer learning. 559
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TABLE III
PRE-SET PARAMETERS FOR DIFFERENT TASKS

Fig. 9. Comparison of Box plot of objective function.

Fig. 10. Reward comparison under low similarity condition.

Similarity analysis shows that r14 = 0.51 and r24 = 0.33,560

and this indicates that there are few similarities between task 4561

and another 2 source tasks. ITQ are adopted for task 4 to test562

the performance of ITQ when dealing with a new task with563

low similarity. Fig. 10 shows the comparison of optimization564

results obtained by 5 methods. It indicates that each algorithm565

can obtain a satisfied results and ITQ presents the biggest566

reward which means ITQ still has high performance even when567

the similarity between new task and source task is low.568

Table IV presents identified results (average) from different569

algorithms for load parameters in task 4. For each algorithm,570

150 trials have been run to obtain the optimal load parame-571

ters. For other methods, the initial set of parameters in the first572

trial are randomly generated and will be used for initialization573

in the remaining 149 trials. For ITQ, the initial knowledge574

matrices are the same and calculated by (15) and 19 in each575

trial. From the comparison results, it is clear that ITQ-based576

TABLE IV
COMPARISON OF ESTIMATED PARAMETERS

load parameters are closest to actual values and this is consis- 577

tent with the results in Fig. 8. There are small discrepancies 578

between estimated parameters and true values, which may be 579

caused by the limited observability of some parameters. 580

E. Robustness of ITQ 581

Due to the complexity and nonlinearity of load models, it 582

has been found that different load parameter combinations may 583

lead to the same or similar dynamic response. For example, 584

given a set of measured data (U, P and Q), multiple com- 585

binations of load model parameters may result in a same 586

or similar reward using previous optimization methods. To 587

test the robustness of the proposed method in searching the 588

optimal parameters, 150 trials have been carried out for task 589

4 and the final reward and optimal parameters are recorded. 590

The reward under each trial is shown in Fig. 11 and it is 591

clear that the optimal rewards do not change much. But 592

for other heuristic methods, rewards have large variances in 593

150 trials. Based on the study in [7], the eight parameters 594

Rs, Rr, Xr, Kpm, ap, bp, aq, bq have the highest impact on load 595

dynamics and can be identified, while other five parameters 596

Xs, Xm, H, A, B do not affect load dynamics and cannot be 597

identified from voltage disturbance. Therefore, we focus on 598

the identification results of these eight parameters. 599
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Fig. 11. Optimal reward under 150 optimization trials.

Fig. 12. Identified parameters of IM under 150 optimization trials.

Fig. 13. Identified parameters of ZIP under 150 optimization trials.

Fig. 12 and Fig. 13 present the optimal results of these eight600

parameters under 150 trials. The parameters shown in these601

two figures are the optimal results (actions) obtained from602

each optimization process. It can be seen that the results of603

these eight parameters do not have large variances and are con-604

sistent with the corresponding true values, which corroborate605

the robustness of the proposed method.606

In addition, as shown in Fig. 5, for a certain optimization607

process, the reward of the proposed ITQ method converges608

rapidly. In order to verify that identified parameters converge609

with the same rate during the RL process, Fig. 14 shows the610

curve of four parameters Rs, Rr, Xr, Kpm at each iteration step.611

The result is based on the data obtained in task 4 and using612

the proposed method. It is clear that these four parameters613

converge after 300 steps, which is as fast as the convergence614

speed of reward for task 4 shown in Fig. 10. In order to615

test the parameters convergence rate under each method, the616

Fig. 14. Parameters converge rate.

Fig. 15. Comparison of parameters converge rate.

following two figures are provided to show the comparison. 617

Fig. 15 shows the curve of estimations for four parameters by 5 618

methods at each iteration step. These methods include: WOA, 619

GWO, ITQ, IPSO and L-M. The result is based on the data 620

obtained in task 4 which can be viewed as a new task. Fig. 16 621

shows statistics of the minimum step for convergence and the 622

converge criteria requires the relative error to be smaller than 623

1.5% in 50 consecutive steps. The relative error in nth step σ n
624

is defined as: 625

σ n =
∣∣∣Xn+1 − Xn

∣∣∣/Xn (20) 626

where Xn is the estimation is nth step. 627

From the comparisons we can see that our proposed method 628

achieves a higher accuracy and the parameters estimated 629

by ITQ can converge in fewer steps, which validates the 630

effectiveness of the proposed load identification technique. 631

F. Computational Efficiency 632

In order to fully evaluate the efficiency of the proposed 633

method, Table. V compares the computation time of 634

optimization process of each method for task 2 and task 3, 635

which belong to a source task and a new task, respectively. 636

All the algorithms are implemented in MATLAB R2019a by 637

a personal computer with Intel(R) i5 CPU at 2.6GHz with 638

8GB of RAM. Besides, in task 3, the proposed ITQ is able to 639

transfer optimal knowledge from source tasks. 640
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Fig. 16. Minimum iteration step to converge.

TABLE V
COMPARISON OF ESTIMATED PARAMETERS

Note that the computational time required in the641

optimization of composite load modeling also depends on the642

number of sampled data. In this study, there are 130 samples643

in each task. Besides, to offer a fair comparison, the same644

convergence criteria is used during optimization process. The645

criteria is for the objective function to reach a value below646

1.8e-3.647

From Table. V and Fig. 8, we can see that the it takes some648

time for ITQ agents to solve source task (pre-learning pro-649

cess) by greedy search and guided by teachers (L-M agents).650

When dealing with a new task, ITQ enables more accurate651

and efficient parameter identification. In power systems, power652

companies recorded most measurements during faults and ITQ653

can complete the pre-learning process by off-line learning654

based on these previous recorded measurements and identify655

load parameters in a short time when dealing with a new task.656

VI. CONCLUSION AND FUTURE WORK657

This article proposes an Imitation and transfer Q-learning658

based-based composite load parameter identification approach659

to accelerate the identification rate and improve the iden-660

tification accuracy. An imitation learning process is intro-661

duced to improve the exploitation and exploration process of662

Q-learning. A transfer learning process is employed to improve663

the load parameter identification efficiency. Owing to the bal-664

ance between greedy search and random global search rule,665

the proposed ITQ can avoid the premature convergence and666

search the global optimal result. Simulations on a 68-bus test 667

system have validated the effectiveness of the proposed ITQ 668

method, and the comparisons show that ITQ approach has 669

superior convergence properties owing to the ability to exploit 670

optimal knowledge from source tasks. 671

Considering the development of complex load models and 672

time-varying load parameters, in the future work, we will 673

extend this approach and explore up-to-date methods to iden- 674

tify the Western Electricity Coordinating Council (WECC) 675

composite load model and time-varying load parameters. 676
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