
IEE
E P

ro
of

IEEE TRANSACTIONS ON SMART GRID 1

Distributed CVR in Unbalanced Distribution
Systems With PV Penetration

Qianzhi Zhang , Student Member, IEEE, Kaveh Dehghanpour , Member, IEEE,

and Zhaoyu Wang , Member, IEEE

Abstract—In this paper, a distributed multi-objective1

optimization model is proposed to coordinate the fast-dispatch2

of photovoltaic (PV) inverters with the slow-dispatch of on-load3

tap changer and capacitor banks for implementing conservation4

voltage reduction in unbalanced three-phase distribution systems.5

In existing studies, PV inverters and voltage regulation devices6

are generally dispatched by fully centralized control frameworks.7

However, centralized optimization methods are subject to single8

point of failure and suffer large computational burden. To tackle9

these challenges, a distributed dispatch method is developed10

to coordinate PV inverters and conventional voltage regulation11

devices in distribution systems. The proposed method is based on12

a modified alternating direction method of multipliers algorithm13

to handle non-convex optimization problems without relaxing14

the original formulation, which could lead to sub-optimality.15

Numerical results from simulations on modified IEEE 13-bus,16

34-bus, and 123-bus unbalanced three-phase systems have been17

used to verify the proposed method.18

Index Terms—Conservation voltage reduction, distributed dis-19

patch, multi-objective optimization, photovoltaic inverters, volt-20

age regulation.21

NOMENCLATURE22

Sets and Indices23

�N Set of buses24

�i Set of buses connected to bus i25

�T Set of dispatch period T26

�φ Set of phases a, b, c.27

Parameters28

αi Unbalanced phase factor of bus i29

θib , θic Phase angle differences at bus i relative to phase30

angle θia31

w1, w2 Weight factors in multi-objective optimization32

problem33

PPV
i,t,φ Injected active power of PV of bus i, at time t,34

for phase φ35
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Ppred
i,t,φ Predicted active power of PV of bus i, at time 36

t, for phase φ 37

εi,t,φ Prediction error of PV active power output of 38

bus i, at time t, for phase φ 39

SPV
i,t,φ PV generation capacity of bus i, at time t, for 40

phase φ 41

qCB
i CB unit reactive power output of bus i 42

zi,φ Impedance of the line connecting bus i − 1 to 43

bus i for phase φ 44

ri,φ, xi,φ Resistance and reactance of the line connecting 45

bus i − 1 to bus i for phase φ 46

q∗
i,t,φ PV inverter reactive power generation or con- 47

sumption capacity of bus i, at time t, for phase φ 48

Vmax
i,t , Vmin

i,t Maximum and minimum limits for nodal volt- 49

age of bus i 50

Zp
i , Ip

i , Pp
i Active ZIP load factors of bus i 51

Zq
i , Iq

i , Pq
i Reactive ZIP load factors of bus i 52

CBmax Maximum limit for CB switching oper- 53

ation number during a certain dispatch 54

period T 55

TAPmax Maximum limit for OLTC tap changing number 56

during a certain dispatch period T . 57

Variables 58

Vi,t,φ Voltage magnitude of bus i, at time t, for 59

phase φ 60

Pl
i,t,φ, Ql

i,t,φ Active and reactive power flow of the line con- 61

necting bus i − 1 to bus i, at timeq t, for 62

phase φ 63

QPV
i,t,φ Injected reactive power of PV inverter of bus 64

i, at time t, for phase φ 65

QCB
i,t Reactive power output of CB of bus i, at time t 66

PZIP
i,t,φ, QZIP

i,t,φ Active and reactive ZIP load of bus i 67

ICB
i,t , yCB

i,t CB switching status variable and its auxiliary 68

continuous variable of bus i, at time t 69

Itap
t , ytap

t OLTC tap position variable and its auxiliary 70

continuous variable of bus i, at time t 71

V+
i,t,φ, V−

i,t,φ Auxiliary voltage magnitude variables for 72

Vi,t,φ and Vj,t,φ 73

U+
i,t,φ, U−

i,t,φ Auxiliary variables for square of voltage mag- 74

nitude variables Vi,t,φ and Vj,t,φ 75

P+
i,t,φ, P−

i,t,φ Auxiliary active power flow variables for Pl
i,t,φ 76

and Pl
j,t,φ 77

Q+
i,t,φ, Q−

i,t,φ Auxiliary reactive power flow variables for 78

Ql
i,t,φ and Ql

j,t,φ 79
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λP+
i,t,φ, λP−

i,t,φ Lagrange multipliers of auxiliary equality con-80

straints for P+
i,t,φ and P−

i,t,φ81

λ
Q+
i,t,φ, λ

Q−
i,t,φ Lagrange multipliers of auxiliary equality82

constraints for Q+
i,t,φ and Q−

i,t,φ83

λU+
i,t,φ, λU−

i,t,φ Lagrange multipliers of auxiliary84

equality constraints for U+
i,t,φ and U−

i,t,φ85

λ
yCB

i,t , λ
ytap

t Lagrange multipliers of auxiliary equality86

constraints for yCB
i,t and ytap

t87

λz1
i , λz2

i Lagrange multipliers of auxiliary equality88

constraints gz1,i(.) and gz2,i(.).89

I. INTRODUCTION90

CONSERVATION voltage reduction (CVR) is a viable91

technique used by utilities for peak shaving and long-92

term energy savings. CVR is achieved by controlled voltage93

level decrease of voltage-sensitive customers [1]. A conven-94

tional approach for implementing CVR is by adjusting tap95

positions of On-Load Tap Changer (OLTC) at the substa-96

tion transformers, which ensures that the nodal voltages are97

reduced in a manner that neither violates the acceptable volt-98

age ranges nor affects the performance of devices [2]. A more99

advanced way of implementation is to integrate CVR into100

Volt/VAr optimization (VVO) models as an objective function,101

which provide a framework for optimal control of voltage reg-102

ulation and VAr control devices to achieve specific operational103

goals without violating any of the operational constraints.104

VVO has been used for optimal control of conventional105

Volt/VAr regulation devices, such as capacitor banks (CBs)106

and OLTC [3], [4]. However, these conventional Volt/VAr reg-107

ulation devices have slow reaction speed and limited number108

of switching operations, which cannot handle the fast changes109

in system states caused by increasing penetration of renew-110

able energy resources (RES) in modern distribution systems.111

While the implementation of CVR requires a relatively flat112

voltage profile along the feeders in distribution systems, higher113

penetration levels of RES will cause fast and uncertain volt-114

age fluctuations and deviations. On the other hand, PV smart115

inverters have much higher response speed and more flexi-116

ble reactive power generation and absorption capabilities to117

handle fast voltage deviations caused by uncertain RES out-118

put and load fluctuations. Therefore, to improve the efficiency119

of voltage regulation and get a better performance for CVR120

implementation, modern VVO models are not only designed121

to include optimal control of conventional Volt/VAr regulation122

devices, but also control of PV smart inverters to facilitate123

voltage reduction [5]–[8].124

In previous VVO studies, a multi-timescale voltage regu-125

lation framework has been frequently applied as shown in126

Fig. 1. This framework separates dispatching of conventional127

Volt/VAr regulation devices and PV inverters, as they take128

place on different timescales. Following this multi-timescale129

voltage regulation framework, hourly dispatch of OLTC, CBs130

and 15-min dispatch of PV inverters are coordinated in our131

research.132

In general, three different optimization methods are applied133

in the multi-timescale VVO framework: 1) fully centralized134

Fig. 1. Multi-timescale voltage regulation framework in VVO.

optimization methods, 2) hierarchical optimization methods, 135

and 3) fully distributed optimization methods. In [5]–[7], the 136

slow-dispatch of conventional voltage regulation devices and 137

the fast-dispatch of PV inverters are both solved by central- 138

ized optimization methods. Centralized optimization requires 139

the system-wide collection of data, and a costly communi- 140

cation infrastructure to enable information passing between a 141

control center and regulation devices [9], [10]. Moreover, these 142

methods are susceptible to single point of failure. Therefore, 143

fully centralized optimization models are disadvantageous due 144

to the increasing burden of computation in modern distribu- 145

tion systems with increasing size of decision models. A partial 146

solution to this problem is to adopt a hierarchical optimization 147

approach for VVO, as presented in [8], where the slow- 148

dispatch of conventional voltage regulation devices is solved 149

by a centralized optimization method, while a distributed 150

optimization technique is used to solve the fast-dispatch of PV 151

inverters. However, this VVO model divides the dispatching 152

model into two optimization problems, which cannot guarantee 153

the global optimality of the original optimization problem. 154

As discussed previously, fully centralized and hierarchical 155

methods are both impractical in large interconnected and com- 156

plex distribution systems. On the other hand, fully distributed 157

optimization methods represent an economically viable and 158

computationally simpler alternative to address the above- 159

mentioned challenges [11]. Distributed methods are applied 160

based on distributed optimization algorithms, which only 161

rely on local data collection and local information exchange 162

between neighboring control agents. Also, in contrast with 163

centralized methods that have a single point of failure, dis- 164

tributed optimization techniques are resilient against agent 165

communication failure and communication limits [12], [13]. 166

Besides, in distributed approaches, the data privacy and owner- 167

ship of customers are maintained, including local consumption 168

measurement data and cost functions [14]. Thus, a large-scale 169

optimization problem can be divided into a number of small- 170

scale optimization problems, which are efficiently coordinated 171

and solved by local agents to obtain a final solution for the 172

original problem. In recent studies, distributed optimization 173

methods have been largely applied to different power engineer- 174

ing applications, including distributed DC optimal power flow 175

in power transmission systems [13], [15], as well as distributed 176

optimal AC power flow in distribution networks [16], [17]. 177

Distributed optimization methods are also applied to voltage 178

regulation problems. For example, [18] introduces a VVO 179

model which only controls the optimal set-points of OLTC 180

devices, while [19] and [20] propose VVO models to optimally 181
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dispatch PV inverters. Even though distributed optimization182

methods are applied in previous studies, the problem of183

PV inverter coordination with conventional voltage regulation184

devices using distributed optimization has remained largely185

unstudied, which leads to poor voltage regulation performance186

in the system.187

To tackle this problem, in this paper a fully distributed188

method is proposed to optimally coordinate the slow-dispatch189

of conventional voltage regulation devices and the fast-190

dispatch of PV inverters in a unified optimization framework.191

The proposed distributed method in this research is developed192

based on alternating direction method of multipliers (ADMM).193

ADMM was originally applied to solve convex problems by194

minimizing the decomposed augmented Lagrangian function195

associated with each control area in an iterative way [21].196

However, control actions in VVO problems, such as the oper-197

ation statues of CVs and tap position of OLTCs, can only198

be accurately modeled as discrete variables. Even though the199

existence of a theoretical convergence guarantees for ADMM200

in non-convex cases is still an open problem [22], some201

modifications to ADMM can be made to find local mini-202

mums for non-convex problem. A simple solution to address203

problem non-convexity is to perform optimization relaxation204

by replacing discrete variables with continuous variables in the205

distributed algorithm [23]. However, this approach may not be206

able to ensure a high quality solution. A more reasonable mod-207

ification method is proposed in [24] and used in this paper,208

where the discrete variables are not only replaced and relaxed209

by continuous variables, but also integrated into the ADMM210

objective function. This modified ADMM solver is able to211

avoid changing the structure of the original non-convex deci-212

sion model, which reduces the risk of solution sub-optimality.213

When implementing CVR using VVO, the objective is214

usually set to minimize the bus voltage magnitudes with-215

out violating bus voltage limits to reduce power consump-216

tion. However, due to lower bus voltages, the system power217

losses will increase [25], which is in conflict with the gen-218

eral objective of VVO, i.e., minimization of system power219

losses. Therefore, VVO-based CVR implementation requires220

a trade-off between voltage reduction and real power loss221

reduction, which needs to be quantified. In this research,222

a multi-objective optimization formulation is developed to223

quantify this trade-off relationship. By changing the user-224

defined weight factors in the multi-objective function, the225

importance levels of bus voltage minimization for CVR and226

network power loss minimization will be controlled. The227

proposed method is tested on three test systems with dif-228

ferent number of nodes (IEEE 13-bus, 34-bus, and 123-bus229

systems). Numerical results show the superior performance230

of the proposed distributed optimization model compared to231

conventional centralized approaches in terms of computational232

speed and solution quality.233

The main contributions of this research can be summarized234

as follows:235

• An optimization model is developed to coordinate the236

fast-dispatch of PV inverters with the slow-dispatch of237

OLTC and CBs, in order to facilitate voltage reduction in238

unbalanced three-phase distribution systems.239

Fig. 2. Schematic diagram of a radial distribution system.

• In order to ensure the solution optimality and main- 240

tain customer data privacy and ownership, a distributed 241

solution methodology is proposed to dispatch all the 242

above-mentioned devices in a unified optimization frame- 243

work. The solution methodology is based on a modified 244

ADMM technique to handle the non-convex optimization 245

problem with discrete switching and tap changing 246

variables. 247

• The trade-off between voltage reduction and real power 248

loss reduction is quantified numerically using the devel- 249

oped multi-objective VVO formulation. 250

The organization of this paper is as follows: Section III 251

introduces the unbalanced three-phase distribution system 252

model and formulates the optimal coordination of PV invert- 253

ers with OLTC and CBs. Section IV discusses the modified 254

ADMM to handle non-convex discrete variables, and shows 255

the operation of the modified ADMM. Simulation results and 256

conclusions are presented in Sections V and VI, respectively. 257

II. CENTRALIZED COORDINATION OF PVS WITH 258

CONVENTIONAL VOLTAGE REGULATION DEVICES 259

In this section, we develop a multi-objective optimization 260

model to coordinate the fast-dispatch of PV inverters with the 261

slow-dispatch of OLTC and CBs in unbalanced three-phase 262

distribution systems. The DistFlow equations and ZIP load 263

models are also introduced. The presented model in this sec- 264

tion will be then used in Section IV to design a distributed 265

solution strategy for VVO-based CVR. 266

A. Distribution System Model 267

To obtain the power flow solution in a radial distri- 268

bution network, the DistFlow equations have been widely 269

used [26], [27]. A typical radial distribution system is shown 270

in Fig. 2, where the bus indexes are denoted as i = 271

{0, 1, 2, . . . , n}. 272

The DistFlow equations can be presented as 273

equations (1)-(5). In (1)-(3) the nonlinear terms are much 274

smaller than the linear terms and can be ignored. In practice, 275

this linear form of DistFlow has been verified in many 276

previous studies such as [20], [27]. 277

Pl
i+1 = Pl

i − ri

(
Pl

i

)2 + (
Ql

i

)2

V2
i

− pi+1 (1) 278

Ql
i+1 = Ql

i − xi

(
Ql

i

)2 + (
Ql

i

)2

V2
i

− qi+1 (2) 279
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TABLE I
ZIP COEFFICIENTS FOR EACH CUSTOMER TYPE [28]

V2
i+1 = V2

i − 2
(
riPl

i + xiQl
i

)

Vs
+
(

r2
i + x2

i

)(Pl
i

)2 + (
Ql

i

)2

V2
i

(3)280

In (4) and (5), Pg
i+1 is the active power generated by PVs281

at bus i + 1. Qg
i+1 is the reactive power generated by VAR282

compensation devices at bus i+1. In the proposed model, PV283

inverters and CBs are considered as reactive power sources.284

Pd
i+1 and Qd

i+1 are active power and reactive demand load at285

bus i + 1, which will be modeled as ZIP active and reactive286

loads (refer to Section II-C).287

pi+1 = Pd
i+1 − Pg

i+1 (4)288

qi+1 = Qd
i+1 − Qg

i+1. (5)289

B. Extension to Unbalanced Systems290

To better model distribution systems, we will extend the291

power flow model to unbalanced three-phase systems using a292

simplified model [19], which can approximate phase imbal-293

ances. It is assumed that the voltage magnitudes of the three294

phases at bus i are similar, so that | Via |≈| Vib |≈| Vic |. Then295

with the voltage phase angles θia = 0, θib , and θic , the relative296

phase unbalance αi is approximated as follows:297

αi =
[
1, ejθib , ejθic

]T
(6)298

Therefore, we can apply the relative phase unbalance αi of299

bus i as follows: the equivalent unbalanced three-phase system300

line impedance zi,φ can be calculated in (7) based on αi and301

line impedance zi. The real and imaginary parts of zi,φ are302

the unbalanced three-phase system line resistance ri,φ in (8)303

and unbalanced three-phase system line reactance xi,φ in (9),304

respectively. Therefore, the DistFlow equations (1)-(3) can be305

extended to unbalanced three-phase by replacing ri,φ and xi,φ306

in (8)-(9). The load applied in this paper is also unbalanced.307

zi,φ = αiα
H
i � zi (7)308

ri,φ = real
(
zi,φ
)

(8)309

xi,φ = imag
(
zi,φ
)
. (9)310

C. ZIP Load Model311

In our VVO formulations, the loads are represented using312

ZIP load models which include constant-impedance (Z),313

constant-current (I), and constant-power components (P). Zp
i ,314

Ip
i , Pp

i and Zq
i , Iq

i , Pq
i are constant-impedance coefficients,315

constant-current coefficients and constant-power coefficients316

for active and reactive loads, respectively. In [28] and [29]317

typical ZIP coefficients for different types of customers, such318

as residential customers, commercial customers and industrial319

customers, have been provided. The ZIP coefficients in Table I320

(adopted from [28]) are used in this paper.321

D. Centralized Coordination Model 322

In this section, a centralized optimization model is presented 323

to coordinate the fast-dispatch of PV inverters and the slow- 324

dispatch of conventional voltage regulation devices (OLTC and 325

CBs) to facilitate voltage reduction in unbalanced distribu- 326

tion systems. This model will be decomposed into bus-level 327

sub optimization problems in Section IV to design a dis- 328

tributed ADMM-based solver. The status of CBs and OLTC 329

are scheduled at the beginning of every hour to manage the 330

slow voltage variations, then the on-off status of CBs and 331

tap of OLTCs are fixed for the rest of this hour within the 332

optimization solver. In other words, no intra-hour decision 333

instant is defined for CBs and OLTC. Within each hour, 334

PV inverters are dispatched every 15 minutes to handle the 335

faster voltage deviations. Hence, intra-hour decision instants 336

are defined for PV inverters. 337

min
Vi,Pi,Qi

(

w1

N∑

i=1

(
V∗

i,φ

)
+ w2

N∑

i=1

(
lossi,φ

)
)

(10) 338

s.t. 339

V∗
i,φ ≥ max

t∈T

(
Vi,t,φ

)
(11) 340

lossi,φ =
T∑

t=1

⎛

⎜
⎝ri,φ

(
Pl

i,t,φ

)2 +
(

Ql
i,t,φ

)2

V2
s

⎞

⎟
⎠ (12) 341

Pl
i,t,φ = Pl

i−1,t,φ − PZIP
i,t,φ + Ppred

i,t,φ (13) 342

PPV
i,t,φ = Ppred

i,t,φ − εi,t,φ (14) 343

Ql
i,t,φ = Ql

i−1,t,φ − QZIP
i,t,φ + QPV

i,t,φ + QCB
i,t (15) 344

−q∗
i,t,φ ≤ QPV

i,t,φ ≤ q∗
i,t,φ (16) 345

q∗
i,t,φ =

√(
SPV

i,t,φ

)2 −
(

Ppred
i,t,φ

)2
(17) 346

QCB
i,t = ICB

i,t qCB
i (18) 347

PZIP
i,t,φ = PD

i,t,φ

(
Zp

i V2
i,t,φ + Ip

i Vi,t,φ + Pp
i

)
(19) 348

QZIP
i,t,φ = QD

i,t,φ

(
Zq

i V2
i,t,φ + Iq

i Vi,t,φ + Pq
i

)
(20) 349

Vi,t,φ = Vi−1,t,φ − ri−1,φPl
i−1,t,φ + xi−1,φQl

i−1,t,φ

Vs
(21) 350

V1,t = Vs + Itap
t Vtap (22) 351

Vmin
i,t ≤ Vi,t,φ ≤ Vmax

i,t (23) 352

∑

t∈T

| ICB
i,t − ICB

i,t−1| ≤ CBmax (24) 353

∑

t∈T

| Itap
t − Itap

t−1| ≤ TAPmax (25) 354

ICB
i,t ∈ {0, 1} 355

Itap
t ∈ {−10,−9, · · · , 0, · · · , 9, 10} 356

∀i ∈ �N,∀t ∈ �T ,∀φ ∈ �φ 357

In the above formulations, Vi,t,φ , Pl
i,t,φ , Ql

i,t,φ , as well as 358

other variables and parameters are modeled in three-phase, 359

e.g., Vi,t,φ = [Via,t, Vib,t, Vic,t]
T . The same applies to network 360

parameters, e.g., ri,φ, xi,φ ∈ �3×3. 361
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In order to investigate the trade-off between the voltage362

(or load) reduction and real power loss reduction, we have363

included two components in the objective function (10): one364

component is aimed at minimization of the largest bus volt-365

age and the other is defined to minimize the active line losses366

during the dispatch period. It is assumed that the two compo-367

nents are weighted by factors w1 and w2 (0 � w1, w2 � 1,368

w1 + w2 = 1), respectively. The distribution system opera-369

tors can adjust the weighting factors w1 and w2 according to370

specific operational requirements.371

Constraint (11) aims to find the largest voltage magnitude372

at bus i at time t. Equation (12) determines the overall active373

power losses on the line connecting bus i and bus i − 1 at t.374

Equation (13) is the nodal active power balance formulation,375

which includes the active power in-flow and out-flow at bus i,376

active power output of PV inverter, as well as the ZIP active377

load of bus i. Here, the reactive power outputs of PV invert-378

ers (QPV
i,t,φ) will be dispatched considering the predicted active379

solar PV generation (Ppred
i,t,φ). The uncertainty of PV power380

is represented by Gaussian random variables for PV power381

prediction error. Accordingly, each agent predicts the available382

nodal PV power over the decision window. Due to the uncer-383

tainty of PV power in real-time, the predicted value is different384

from the actual PV power. The difference is modeled using a385

Gaussian error variable as shown in equation (14), where Ppred
i,t,φ386

and PPV
i,t,φ denote the predicted and actual active power output387

of PV, εi,t,φ ∼ N(0, σ ) denotes the Gaussian prediction error.388

The standard deviation of the error variable, ε, is chosen based389

on [30]. Note that the optimization problem is solved using the390

predicted PV power. Hence, the prediction error, which reflects391

the impact of PV power uncertainty, leads to slight deviation392

(less than 1%) from the true optimal solution. This deviation393

depends mainly on the quality of the prediction captured by394

the prediction error standard deviation. Equation (15) is the395

nodal reactive power balance formulation, which determines396

the reactive power output of PV inverter at bus i and reactive397

power output of CB at bus i. Constraint (16) and equation (17)398

limit the reactive power capacity of PV inverters based on PV399

generation capacity and the active power output. Combining400

constraints (15), (16) and (17), we can obtain (26) and (27).401

Now we can obtain QPV
i,t,φ by using the optimal results and the402

nodal reactive power balance equations.403

Ql
i,t,φ − Ql

i−1,t,φ + QZIP
i,t,φ − QCB

i,t − q∗
i,t ≤ 0 (26)404

−Ql
i,t,φ + Ql

i−1,t,φ − QZIP
i,t,φ + QCB

i,t − q∗
i,t ≤ 0 (27)405

Equation (18) obtains the CB reactive power injection at406

bus i. ICB
i,t represents the on/off status of the CB at bus i during407

the dispatch period T . For buses without CB, qCB
i is set to zero.408

Equations (19) and (20) represent the ZIP active and reactive409

load by second-order polynomial formulations. Summation of410

ZIP coefficients for both active and reactive are set to 1. PD
i,t,φ411

and QD
i,t,φ are active and reactive power demand factors during412

the dispatch period, respectively. Equation (21) determines the413

bus voltage using DistFlow equations.414

Equation (22) determines the substation transformer sec-415

ondary voltage according to primary voltage Vs and OLTC tap416

position Itap
t . Constraint (23) guarantees that the bus voltage is417

maintained within the allowable range, and the voltage limits 418

are set to be [0.95, 1.05]. Constraints (24) and (25) denote 419

the maximum allowable switching actions of CBs and OLTC 420

during the dispatch period. For example, in the following case 421

studies, the CBmax is set to be 3 and TAPmax is set to be 5. 422

In order to reduce the non-linearity of the absolute values, 423

constraints (24)-(25) are transformed into linear forms. 424

III. DISTRIBUTED OPTIMIZATION METHOD 425

In this section, the centralized coordination model of 426

PVs with OLTC and CBs is decomposed into bus-level 427

sub-problems. A modified ADMM is introduced to handle the 428

non-convex problem with discrete variables of CBs and OLTC. 429

A. Modified ADMM 430

Discrete variables ICB
i,t and Itap

t are used in the central- 431

ized VVO formulations (10)-(25). However, the conventional 432

ADMM is originally developed to solve convex problems. A 433

simple solution to address this problem is to relax the discrete 434

variables to continuous ones. However, this approach can- 435

not ensure a high-quality solution in general. Instead, in [24] 436

a modified ADMM has been proposed, which includes the 437

auxiliary equality constraints with discrete variables as of 438

the optimization objective function, and finds the best match 439

for discrete variables in the ADMM iterative update process. 440

Numerical results have shown that this modified ADMM has 441

better performance in handling discrete variables compared to 442

simple relax-and-round methods [24]. 443

Considering the optimization problem (28)-(30), first, dis- 444

crete variable I is replaced with an auxiliary continuous 445

variable y in constraint (29); then, an additional auxiliary 446

equality is introduced as constraint (30). 447

min
x,I

f (x, I) (28) 448

s.t. 449

I = y (29) 450

z = g(x, y) (30) 451

I ∈ Z, x, y ∈ R 452

After decomposition, the augmented Lagrangian for this 453

problem is shown in (31), where ρ > 0 is the penalty 454

coefficient. 455

Lρ = f (xi, yi) + λz
i (zi − g(xi, Ii)) + ρ

2
‖zi − g(xi, Ii)‖2

2 (31) 456

Therefore, the modified ADMM iterative update 457

rules (32)-(34) for optimization problem (28)-(30) can 458

be presented as follows (with the iteration number denoted 459

by k): 460

(xi(k + 1), yi(k + 1)) = argmin
x,y

Lρ

(
xi, yi, λ

z
i (k)

)
(32) 461

Ii(k + 1) = argmin
I

‖zi(k + 1) − g(xi(k + 1), Ii)‖2
2 (33) 462

λz
i (k + 1) = λz

i (k) + ρ(zi(k + 1) − g(xi(k + 1), Ii(k + 1))). 463

(34) 464
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B. Distributed Solution Algorithm465

The centralized optimization problem (10)-(25) can be466

decomposed to a set of bus-level small-size optimization467

problems. Bus-level control agents are in charge of manag-468

ing the local controllable resources and local voltage at each469

bus. This takes place through sharing estimated local solutions470

with neighboring agents using the proposed modified ADMM471

solution strategy. Each bus agent solves a local optimization472

problem, which has its own local variables Pl
i,t,φ , Ql

i,t,φ , Vi,t,φ ,473

as well as the copy variables Pl
j,t,φ , Ql

j,t,φ , Vj,t,φ exchanged474

between neighboring buses j to bus i. The buses installed with475

CBs or OLTC have discrete variables ICB
i,t and Itap

t .476

Therefore, with auxiliary variables and equality constraints,477

the original optimization problem can be decomposed into bus-478

level optimization problems. The constraints (11)-(25) can be479

reformulated as (11)∗-(25)∗ by replacing the variables by their480

corresponding auxiliary variables.481

min
Ui,Pi,Qi

f (Xi, Ii) (35)482

s.t.483

Pl
i,t,φ = P+

i,t,φ, Pl
j,t,φ = P−

i,t,φ (36)484

Ql
i,t,φ = Q+

i,t,φ, Ql
j,t,φ = Q−

i,t,φ (37)485

V2
i,t,φ = Ui,t,φ = U+

i,t,φ, V2
j,t,φ = Uj,t,φ = U−

i,t,φ (38)486

ICB
i,t = yCB

i,t , Itap
t = ytap

t (39)487

z1,i = g1

(
Xi, yCB

i,t

)
(40)488

z2,i = g2

(
Xi, ytap

t

)
(41)489

(11)∗ − (25)∗490

∀i ∈ �N,∀j ∈ �i,∀t ∈ �T ,∀φ ∈ �φ491

For convenience, four variable sets are defined at492

each bus to exchange information with agents at493

neighboring buses. Let the variable set Xi include494

P+
i,t,φ, P−

i,t,φ, Q+
i,t,φ, Q−

i,t,φ, U+
i,t,φ, U−

i,t,φ , the variable set Ii495

include ICB
i,t , Itap

i , the variable set Yi include yCB
i,t , ytap

t and496

the variable set λi include λP+
i,t,φ , λP−

i,t,φ , λ
Q+
i,t,φ , λ

Q−
i,t,φ , λU+

i,t,φ ,497

λU−
i,t,φ, λ

yCB

i,t , λ
ytap

t , λz1
i , λz2

i .498

To apply the modified ADMM to the proposed central-499

ized coordination model (35)-(41) and (11)∗ − (25)∗, the500

distributed iterative process has been presented as (42)-(57)501

in four steps. Fig. 3 shows the process of local optimization502

solution exchanges between neighboring buse agents in the503

distributed algorithm. The convergence criteria is set by a504

maximum iteration limit.505

Step 1: For each bus agent i at iteration k, local optimization506

problems, shown in (42), are solved independently and in507

parallel. Solutions to bus local variables Xi and Yi are obtained.508

(Xi(k + 1), Yi(k + 1)) = argmin
X,Y

Lρ(Xi, Yi, λi(k)). (42)509

Step 2: For each bus agent i at iteration k, local optimization510

solution exchanges take place between neighboring agents to511

update variables based on respective bus local variables and512

variables at buses connected to bus i, which are obtained from513

step 1.514

Fig. 3. Local optimization solution exchange between control agents at
different buses.

Hence, variable set Xi is updated by averaging the respective 515

local bus variables and using (43)-(45), where ni denotes the 516

number of buses connected to bus i plus 1: 517

Pl
i,t,φ(k + 1) = 1

2

(
P+

i,t,φ(k + 1) + P−
i,t,φ(k + 1)

)
(43) 518

Ql
i,t,φ(k + 1) = 1

2

(
Q+

i,t,φ(k + 1) + Q−
i,t,φ(k + 1)

)
(44) 519

Ui,t,φ(k + 1) = 1

ni

(
U+

i,t,φ(k + 1) + · · · + U−
i,t,φ(k + 1)

)
(45) 520

Variables ICB
i,t and Itap

t are updated by solving local bus 521

optimization problems using Xi(k +1) and Yi(k +1) as shown 522

in (46) and (47): 523

ICB
i,t (k + 1) = argmin

Ii,t

∥∥∥z1,i(k + 1) − g1

(
Xi(k + 1), ICB

i,t

)∥∥∥
2

2
524

(46) 525

Itap
t (k + 1) = argmin

It

∥∥
∥z1,i(k + 1) − g2

(
Xi(k + 1), Itap

t

)∥∥
∥

2

2
. 526

(47) 527

Step 3: For each bus i at iteration k, the Lagrange multipliers 528

are updated based on the ADMM iterative rules and the 529

variables obtained in previous steps. Hence, the Lagrange 530

multipliers for variable set Xi are updated using (48)-(53): 531

λP+
i,t,φ(k + 1) = λP+

i,t,φ(k) + ρ
(

P+
i,t,φ(k + 1) − Pl

i,t,φ(k + 1)
)

532

(48) 533

λP−
i,t,φ(k + 1) = λP−

i,t,φ(k) + ρ
(

P−
i,t,φ(k + 1) − Pl

j,t,φ(k + 1)
)

534

(49) 535

λ
Q+
i,t,φ(k + 1) = λ

Q+
i,t,φ(k) + ρ

(
Q+

i,t,φ(k + 1) − Ql
i,t,φ(k + 1)

)
536

(50) 537

λ
Q−
i,t,φ(k + 1) = λ

Q−
i,t,φ(k) + ρ

(
Q−

i,t,φ(k + 1) − Ql
j,t,φ(k + 1)

)
538

(51) 539
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λU+
i,t,φ(k + 1) = λU+

i,t,φ(k) + ρ
(

U+
i,t,φ(k + 1) − Ui,t,φ(k + 1)

)
540

(52)541

λU−
i,t,φ(k + 1) = λU−

i,t,φ(k) + ρ
(

U−
i,t,φ(k + 1) − Uj,t,φ(k + 1)

)
542

(53)543

Lagrange multipliers for auxiliary equality constraints cor-544

responding to Yi and Ii are updated using (54) and (55):545

λ
yCB

i,t (k + 1) = λ
yCB

i,t (k) + ρ
(

yCB
i,t (k + 1) − ICB

i,t (k + 1)
)

(54)546

λ
ytap

t (k + 1) = λ
ytap

t (k) + ρ
(

ytap
t (k + 1) − Itap

t (k + 1)
)

(55)547

Lagrange multipliers for auxiliary equality constraints g1(.)548

and g2(.) are updated using (56) and (57):549

λz1
i (k + 1) = λz1

i (k) + ρ
(

z1,i(k + 1) − g1

(
Xi(k + 1), ICB

i,t (k + 1)
))

550

(56)551

λz2
i (k + 1) = λz2

i (k) + ρ
(

z2,i(k + 1) − g2

(
Xi(k + 1), Itap

t (k + 1)
))

.552

(57)553

Step 4: Increase k by 1 till it reaches the maximum iteration554

number.555

IV. CASE STUDY556

In this section, the convergence analysis and simulation557

results of our proposed method are presented. First, we558

present the convergence analysis to show the impact of dif-559

ferent penalty parameter ρ on convergence speed. We then560

demonstrate the effectiveness of our proposed method through561

numerical evaluations on three IEEE standard benchmarks562

to study load/loss reduction through CVR implementation.563

Comparison between centralized optimization and proposed564

distributed optimization is also provided. All the case studies565

are simulated using a PC with Intel Core i7-4790 3.6 GHz566

CPU and 16 GB RAM hardware. The simulations are per-567

formed in MATLAB and GAMS to solve and update local568

variables in the iterative distributed optimization process. The569

main benefit of CVR for utilities is peak loading relief of570

distribution networks [31]–[33]. In this paper, the CVR is571

used for peak load reduction by modifying the voltages of572

the system buses through finding optimal switching and con-573

trol actions for CBs and OLTCs, as well as reactive power574

injection/absorption set points for PV inverters. Given the575

voltage-sensitivity of active power (see the ZIP coefficients)576

these control actions, if chosen correctly, lead to a drop in577

consumption at critical times, such as the peak interval. In all578

the simulations, the CVR functionality was tested over 3 hours579

of peak load period with 15-minute time steps.580

A. Case I: Convergence Analysis (IEEE 13-Bus System)581

In order to perform convergence studies, the proposed582

method is implemented on IEEE 13-bus system and the results583

are recorded at each iteration. Fig. 4 shows the convergence584

results for different values of ρ. Within certain range of ρ,585

the proposed algorithm can converge faster with larger ρ val-586

ues. However, increasing ρ to a too large value will cause587

numerical instability and divergence.588

Fig. 4. Convergence of the distributed optimization: Impact of different
penalty parameter ρ values.

Fig. 5. Convergence of the distributed optimization: Iterative updates of bus
voltage magnitudes ρ=5.

Fig. 6. Convergence of the distributed optimization: Iterative updates of PV
inverter reactive power outputs ρ=5.

The iterative updates of bus voltages with ρ = 5 are shown 589

in Fig. 5. All the optimal voltage magnitudes have converged 590

to values within [0.95 p.u., 1.05 p.u.] interval, which satisfies 591

the bus voltage limit constraints. Fig. 6 presents the iterative 592

updates of three-phase reactive power outputs of PV inverters 593

with ρ = 5. It can be seen that most of variables converge 594

after 3000 iterations, while only a few take more than 4000 595

iterations to converge. 596

B. Case II: IEEE 34-Bus Distribution System 597

The results of simulation studies on modified IEEE 34-bus 598

distribution system (Fig. 7) are presented in this section. 599

Details about this test network can be found in [34]. It is 600

assumed that the substation OLTC is within ±10% tap range. 601
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Fig. 7. Case II: Modified IEEE 34-bus test distribution system.

TABLE II
CASE II: BUS TYPE

Fig. 8. Case II: Optimal results with full implementation of CVR (a)-(c) PV
inverter three-phase reactive power outputs.

Two three-phase CBs are installed at buses 27 and 29, and602

the CB capacities are the same as the original system. The603

PV generations are aggregated at buses 24, 30 and 32. It is604

assumed that the PV at each bus can provide 60% of load at605

the bus to ensure that the PV capacities and outputs are dif-606

ferent from each other. For comparison, a base case without607

any VVO is defined, where unity-power factor control mode608

is used for PVs, the tap position of OLTC is fixed, and CB609

status is on.610

The bus types are listed in Table II and the corresponding611

ZIP load coefficients for different load types are presented612

in Table I [28]. The proposed modified ADMM method is613

applied to the test system with full implementation of CVR,614

which implies the weight factors w1 = 1, w2 = 0. Fig. 8615

TABLE III
CASE II: OPTIMAL RESULTS OF CB SWITCHING

STATES AND OLTC TAP POSITIONS

TABLE IV
CASE II: COMPARISON RESULTS BETWEEN CENTRALIZED

OPT. AND MODIFIED ADMM

shows the results of three phase PV inverter reactive power 616

outputs, which change each 15 minutes based on the latest 617

system information. Table III demonstrates that in order to 618

overcome the voltage drop problems caused by CVR effects, 619

the CB on bus 27 is only needed on the second hour of peak 620

load interval, the CB on bus 29 is always on, and the substation 621

OLTC tap position varies between tap −3 and −4. Note the 622

difference between the decision timescales of PV inverters on 623

the one hand, and CBs/OLTC on the other hand. 624

A numerical comparison is presented in Table IV between 625

a centralized solver versus the proposed modified distributed 626

ADMM for optimization (10)-(25) tested on the modified 627

34-bus test system. It can be seen that the percentage of load 628

reduction from the centralized optimization and the proposed 629

modified ADMM are very similar to each other, with ADMM 630

yielding slightly better results. More importantly, the aver- 631

age computational time per agent per iteration of our method 632

is 0.235 seconds and the average convergence iteration is 633

around 1000. Therefore, in terms of computational efficiency, 634

the distributed ADMM takes approximately one third of the 635

computational time of centralized solver to reach comparable 636

and slightly better results. This demonstrates the advantage 637

of the proposed distributed optimization technique for real- 638

time applications. Other computational benefits of ADMM are 639

discussed in detail in [35] and [36]. 640

In the next step, the proposed solution method is applied 641

to the test system model with varying weight factors for the 642

components of the objective function (load reduction versus 643

loss reduction). As discussed before, CVR implementation 644

defines a trade-off between voltage reduction and real power 645

loss reduction, which needs to be numerically quantified. Five 646

different cases, named as Opt. 1 to Opt. 5, are defined with dif- 647

ferent weight values (w1, w2), varying from (1,0), (0.75,0.25), 648

(0.5,0.5), (0.25,075) to (0,1). The cases Opt. 1 to Opt. 5 649

represent the variation of objective function from full imple- 650

mentation of bus voltage minimization to full implementation 651

of power loss minimization. 652

The total energy reduction is calculated as the summation 653

of load power reduction and power loss reduction. The total 654

energy reduction for Opt. 1 to Opt. 5 varies from 2.77% 655

to 0.91%. Fig. 9 shows voltage profiles of φa for all cases, 656

including the base case, in one snapshot. The optimal voltage 657
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Fig. 9. Case II: Voltage profiles at t=1 and for φA of base case and cases
Opt. 1 to Opt. 5.

Fig. 10. Case II: Load power consumption for the base case and cases Opt. 1
to Opt. 5.

magnitudes of Opt. 1 to Opt. 5 are generally lower than the658

base case (black solid line), which shows the voltage reduc-659

tion effects of VVO. Due to the optimization constraints and660

the impacts of reactive power injection from PV inverters and661

CBs, the optimal voltage magnitude on a number of buses are662

slightly higher than the base case voltages at some non-critical663

time points. Comparing the optimal bus voltage magnitudes in664

the defined cases, Opt. 1 shows the lowest bus voltage, which665

demonstrates the CVR impact on voltage reduction, as a higher666

weight is assigned to voltage minimization component.667

Fig. 10 and Fig. 11 present the load power consumption and668

power losses of the base case and CVR cases Opt. 1-Opt. 5,669

respectively. As can be observed for the case of Opt. 1, the670

highest load reduction at peak time is achieved since a higher671

weight is assigned to the load reduction objective in equa-672

tion (10). Among the cases Opt. 1-Opt. 5 and the base case,673

Opt. 1 has the largest load reduction and Opt. 5 has the largest674

loss reduction, which shows the effect of various w1 and w2,675

respectively. Hence, it is corroborated that by changing the676

weight factors in the optimization model the trade-off between677

CVR and loss minimization in the final decision solution can678

be controlled effectively.679

In order to further investigate the impact of CVR on power680

losses, three cases with different ZIP coefficients have been681

introduced. ZIP1 represents the general active and reactive ZIP682

loads with coefficients [0.4, 0.3, 0.3]. Two extreme cases ZIP2683

and ZIP3 represent pure constant impedance active/reactive684

loads with coefficients [1, 0, 0], and pure constant power685

active/reactive loads with coefficients [0, 0, 1], respectively.686

In Table V, loss reduction levels, load reduction levels and687

Fig. 11. Case II: Power losses for the base case and cases Opt. 1 to Opt. 5.

TABLE V
CASE II: SUMMARY OF SYSTEM LOSS, LOAD AND TOTAL

ENERGY REDUCTION WITH DIFFERENT ZIP
COEFFICIENTS AND WEIGHT FACTORS

total energy reduction have been shown for Case II and under 688

different ZIP models, ZIP1, ZIP2, ZIP3, and with different 689

optimization weight assignment scenarios, Opt. 1-Opt. 5. 690

Based on the results from Table V and Fig. 12, it can be 691

observed that for ZIP1 and ZIP2, loss reduction levels are 692

increasing from Opt. 5 to Opt. 1, however, the load reduction 693

and total energy reduction decrease at the same time. Since 694

ZIP3 represents pure constant power loads, consumption levels 695

are always the same as the base case regardless of bus volt- 696

age levels, and the loss reduction and total energy reduction 697

increase for Opt. 1 to Opt. 5. Therefore, for voltage-dependent 698

loads, ZIP1 and ZIP2, load reduction (due to voltage reduc- 699

tion) accounts for the majority of the change in total energy 700

savings. On the other hand, since CVR has no impact on the 701

constant power loads, ZIP3, for that case load reduction is 702

zero and the loss optimization is the only effective method to 703

reduce the peak demand. 704

C. Case III: IEEE 123-Bus Distribution System 705

To test our proposed distributed algorithm on a larger 706

system, simulation results for modified IEEE 123-bus distri- 707

bution system (Fig. 13) with a higher number of PV inverters, 708

CBs and OLTCs are shown in this section. Details about this 709

test network can be found in [34]. The locations of OLTCs 710
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Fig. 12. Case II: Total energy reduction with different ZIP coefficients of
base case and cases Opt.1 to Opt.5.

Fig. 13. Case III: Modified IEEE 123-bus test distribution system.

TABLE VI
CASE III: LOCATIONS AND CAPACITIES OF DEVICES

are set to be the same as [18]. The locations and capacities711

of CB are selected based on the original settings in [34]. The712

locations of PV are adopted from [37]. Table VI summarizes713

the types, locations and capacities of the devices integrated in714

the system.715

The proposed method is applied to the modified 123-bus test716

system with ZIP coefficients [0.4, 0.3, 0.3] for both active and717

reactive loads, and full implementation of CVR (w1 = 1).718

In order to show the convergence process, Fig. 14 shows719

the average iteration-wise updates in voltage magnitude, i.e.,720

V∗
i,t,φ(k) = Vi,t,φ(k + 1) − Vi,t,φ(k) with k being the iteration721

index. It can be seen that voltage residues V∗ converge to722

zero as the iteration number, k, increases. Hence, the algorithm723

Fig. 14. Convergence of the distributed optimization: bus voltage residues
at each iteration.

TABLE VII
CASE III: SUMMARY OF LOSS, LOAD AND TOTAL ENERGY REDUCTION

WITH DIFFERENT ZIP FACTORS AND WEIGHT FACTORS

converges to optimal solution within an acceptable number of 724

iterations in a reasonable time.Based on our numerical exper- 725

iments, the average computational time per agent per iteration 726

for the IEEE 123-bus system is 0.245 seconds. Hence, the 727

overall algorithm takes around 6 minutes to converge (ignor- 728

ing communication delays) for this test system. On the other 729

hand, the selected time step for the simulation is t = 15 min- 730

utes, which is well above the required algorithm convergence 731

time. Hence, the distributed algorithm is well capable of reach- 732

ing the solution within the selected decision time step. Another 733

reason that a time step of 15 minutes was selected is that this 734

time step is consistent with the frequency measurement of 735

current smart meters used in the industry. 736

In Table VII, the total network loss reduction, load reduction 737

and total energy for different categories of load, ZIP1, ZIP2, 738

and ZIP3, have been shown as a function of different weight 739

values assigned to optimization objective components. As can 740

be seen in this table, similar trends are observed as those of 741

the smaller case study (Case II) shown in Table V: for voltage- 742

dependent loads ZIP1 and ZIP2, loss reduction levels increase 743

from Opt. 1 through Opt. 5, and the load reduction and total 744

energy reduction decrease in Opt. 1 through Opt. 5; for con- 745

stant power load ZIP3, load consumption levels are always 746
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the same as the base case, and the loss reduction and total747

energy reduction increase in Opt. 1 through Opt. 5. In addi-748

tion, more load reduction is achieved for this case. Therefore,749

the conclusions drawn in Section IV-B regarding the trade-750

off between voltage magnitude optimization and network loss751

reduction under different ZIP characteristics are again verified752

for the larger IEEE 123-bus test system.753

V. CONCLUSION754

A distributed method is developed to optimally coordinate755

the fast-dispatch of PV inverters with the slow-dispatch of756

OLTC and CBs for CVR in three-phase unbalanced distribu-757

tion systems. The trade-off between voltage reduction (load758

reduction) and real power loss minimization is analyzed by759

the developed multi-objective VVO formulation. The proposed760

VVO-based CVR is solved by distributed optimization algo-761

rithm ADMM, which can maintain customer data privacy762

and alleviate computational burden in large-scale distribution763

networks. In order to better handle the non-convexity of the764

decision problem caused by discrete variables, the distributed765

algorithm ADMM is modified in a way that the discrete vari-766

ables are not only relaxed into continuous variables, but also767

implemented as a generalized part of the objective function768

in the iterations to avoid sub-optimality. According to case769

studies, our proposed method can converge within an accept-770

able number of iterations for large unbalanced distribution771

systems. It is also observed that different load types affect the772

CVR performance differently. Among different load types, the773

highest levels of the CVR-based consumption reduction are774

achieved for voltage-sensitive loads. Also it is demonstrated775

that as the penetration of voltage-sensitive customers increases,776

CVR could be a better option for energy saving at substation777

level during peak load interval, compared to mere network loss778

minimization.779
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