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Abstract—In this paper, we present an efficient computational1

framework with the purpose of generating weighted pseudo-2

measurements to improve the quality of distribution system3

state estimation (DSSE) and provide observability with advanced4

metering infrastructure (AMI) against unobservable customers5

and missing data. The proposed technique is based on a game-6

theoretic expansion of relevance vector machines (RVMs). This7

platform is able to estimate the nodal power consumption and8

quantify its uncertainty while reducing the prohibitive compu-9

tational burden of model training for large AMI datasets. To10

achieve this objective, the large training set is decomposed and11

distributed among multiple parallel learning entities. The result-12

ing estimations from the parallel RVMs are then combined using13

a game-theoretic model based on the idea of repeated games with14

vector payoff. It is observed that through this approach and15

by exploiting the seasonal changes in customers’ behavior the16

accuracy of pseudo-measurements can be considerably improved,17

while introducing robustness against bad training data samples.18

The proposed pseudo-measurement generation model is inte-19

grated into a DSSE using a closed-loop information system, which20

takes advantage of a branch current state estimator (BCSE)21

to further improve the performance of the designed machine22

learning framework. This method has been tested on a practical23

distribution feeder model with smart meter data for verification.24

Index Terms—Pseudo-measurements, smart meters, relevance25

vector machines, game theory, state estimation.26

I. INTRODUCTION27

ELECTRIC distribution systems have been undergoing28

radical changes in control and management. The driv-29

ing force behind these changes can be attributed to higher30

penetration of distributed renewable resources and employ-31

ment of Advanced Metering Infrastructure (AMI) in power32

distribution systems [1]. Thus, system operators’ access to res-33

idential, commercial, and industrial customer metering data34

has presented an opportunity for using data-driven techniques35
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for system monitoring and control [2]. While the AMI data his- 36

tory can be humongous in size, it does not necessarily provide 37

full observability for distribution systems due to the limited 38

number of smart meters compared to the huge size of the 39

network and the common missing data problem [3], [4]. 40

Pseudo-measurement generation techniques are used to 41

improve the observability of distribution networks by per- 42

forming data-driven power consumption estimation (in case 43

of missing data, communication delays, and unobserved 44

loads) [5]. Also, weights are assigned to these estimated val- 45

ues to define the operator’s confidence in the accuracy of 46

pseudo-measurements in the state estimation process. Since 47

the efficiency of distribution system control and management 48

can be negatively affected by the inaccuracy of the generated 49

pseudo-measurement samples, it is of critical importance to 50

design data-driven load estimation methods capable of pro- 51

viding accurate pseudo-measurement samples to improve the 52

quality of distribution system monitoring [6]. 53

Several papers have studied the problem of pseudo- 54

measurement generation for distribution system monitoring 55

and state estimation. The literature in this area can be roughly 56

categorized into two groups based on the proposed solution 57

approaches. 58

1) Statistical and probabilistic models: The previous works 59

in this category rely on statistical and probabilistic analysis 60

of the available AMI data history for constructing pseudo- 61

measurement generation methods. Empirical Gaussian dis- 62

tributions have been conventionally used for estimating the 63

Probability Density Functions (PDF) of consumer load profiles 64

and generating pseudo-measurements [7]. In [8], empirical 65

consumption PDFs are constructed employing Beta and log- 66

normal distributions, which show improved performance over 67

single Gaussian approach. These PDFs are then used for gen- 68

erating estimated power consumption data samples. Gaussian 69

Mixture Models (GMM) have also been shown to be an 70

improvement over mere fitting of a single distribution func- 71

tion to the available data [9], [10]. In a more recent work, 72

data clustering has been combined with GMM to improve 73

the pseudo-measurement generation process [11]. A weather- 74

dependent empirical PDF construction scheme for distributed 75

PV systems is proposed in [12], as pseudo-measurement gen- 76

erator, which is shown to have superior performance over 77

conventional statistical methods. Statistical load profile and 78

power loss estimation have been used in [13] and [14], 79
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respectively, to model the uncertainty of load behavior and80

improve the observability of distribution networks.81

2) Machine learning models: Another group of researchers82

have adopted machine-learning-based methods for distribu-83

tion system load estimation. In comparison with the first84

group, these methods are able to further improve the accuracy85

of pseudo-measurements by exploiting the available real-86

time data samples. A Probabilistic Neural Network (PNN) is87

proposed in [15] for assigning load profiles to loads in distri-88

bution systems. In [16], an Artificial Neural Network (ANN) is89

used for generating pseudo-measurements using the real-time90

line power flow measurements. Missing data reconstruction91

using a neural network approach has also been employed92

in [4]. Using the concept of Parallel Distributed Processing93

networks (PDP) a load estimation mechanism has been devel-94

oped in [17] to design a robust state estimator for distribution95

systems. An adaptive Nonlinear Auto-Regressive eXogenous96

(NARX) model is proposed in [18] for load estimation in97

distribution networks. While these works provide invaluable98

insights into distribution system monitoring, they have certain99

shortcomings, including: failure to capture seasonal corre-100

lations in customer behavior, not addressing the big-data101

challenge for large AMI datasets, and ignoring the possibility102

of using Distribution System State Estimation (DSSE) data for103

improving machine learning performance.104

In this paper, we propose a novel nodal load estimation105

process that can be used for pseudo-measurement generation106

for reconstructing unknown and missing power measurement107

data to improve the accuracy and precision of DSSE, while108

improving system observability. This method can in princi-109

ple be applied to both primary and secondary distribution110

systems, to estimate power consumption at secondary trans-111

former or customer levels. However, the primary target in112

this paper is to perform pseudo-measurement generation and113

load estimation for primary networks. The proposed machine-114

learning-based approach employs the concept of Relevance115

Vector Machine (RVM) to design sparse kernelized nonlin-116

ear regression models [19]. Moreover, unlike most regression117

models, RVM is capable of quantifying the uncertainty of118

pseudo-measurements by learning the variance of the esti-119

mated output. The variance learning process eliminates the120

need for relying on high-variance empirical distributions and121

is used to define weights for pseudo-measurements in the122

DSSE. Moreover, the inherent pruning mechanism of RVM123

introduces robustness against bad training data samples in the124

state estimation process. To alleviate the high cost of training,125

we propose a parallel computational framework using Multiple126

RVM (MRVM) units, each fitting a probabilistic model to a127

region of training set. The outcomes of these parallel train-128

ing units are then recombined using a game-theoretic strategy129

to obtain final pseudo-measurement power consumption sam-130

ples (along with their estimated variance). This game-theoretic131

framework is based on the concept of repeated games with132

vector payoffs [20], [21]. It is observed that by employing133

this technique the pseudo-measurement generation accuracy134

can be significantly improved by exploiting the strong sea-135

sonal changes in customer behavior. The power consumption136

estimation model is then integrated with a Branch Current137

State Estimator (BCSE) module through a closed-loop infor- 138

mation system to iteratively improve the pseudo-measurements 139

using the additional information provided by the BCSE. The 140

idea of using corrective closed-loop information system for 141

DSSE has been employed in [17] and [18], as well. It will be 142

shown that using the proposed machine learning technique, 143

the performance of both pseudo-measurement generation and 144

DSSE can be enhanced considerably. The machine-learning- 145

based estimation technique is tested on real data from a 146

distribution feeder belonging to a utility company in the 147

U.S. with smart meter measurements (power consumption and 148

voltage measurement data). 149

To summarize, the contributions of this paper are as follows: 150

a novel computationally-efficient machine learning frame- 151

work is proposed to generate accurate nodal active power 152

pseudo-measurement samples for DSSE. The novelty of the 153

proposed model is to train parallel machine learning units 154

by exploiting the seasonal patterns in load, which improves 155

the performance of pseudo-measurements and computational 156

efficiency of the framework. Seasonal changes in customer 157

behavior are captured via a game-theoretic platform. Also, 158

compared to previous works in the literature, the proposed 159

approach provides a basis for automatic rejection of bad 160

training data samples for enhanced robustness against noise, 161

along with concurrent estimation of the variance of pseudo- 162

measurements. The proposed machine learning module is 163

integrated within a closed-loop DSSE to further improve the 164

accuracy of state estimation, by feeding the DSSE informa- 165

tion back into the machine-learning-based power consumption 166

estimation. This paper is an effort towards enhanced monitor- 167

ing and management of emerging smart distribution grids as 168

cyber-physical systems using AMI [22], [23]. The proposed 169

framework is tested on real utility data for verification. 170

The rest of this paper is constructed as follows: in Section II, 171

a description of the game-theoretic probabilistic learning 172

framework for power consumption pseudo-measurement gen- 173

eration is presented. In Section III, the overall closed-loop 174

DSSE module is described (and summarized in Section IV). 175

The numerical results are analyzed in Section V. In Section VI, 176

the conclusions of the paper are presented. 177

II. PROPOSED PSEUDO-MEASUREMENT GENERATOR 178

A. AMI Dataset Description and Pre-Processing 179

The available AMI data history contains the hourly power 180

consumption (kW) and voltage magnitude measurement of 181

3000 customers (with more than 40,000 data samples per cus- 182

tomer) connected to 10 distribution feeders, which are located 183

in the U.S. The dataset spans a time period of around five con- 184

secutive years (2013-2018). While a few industrial and large 185

commercial loads are included in the dataset, the majority of 186

customers are residential and small commercial loads. 187

The data was initially processed to remove grossly erro- 188

neous data samples. The bad data removal process was defined 189

by the deviation of data samples from the seasonal mean 190

of consumption signal for each customer. Hence, the sam- 191

ples that fall outside of ±5 deviation from the seasonal mean 192

are removed, as having grossly erroneous values. The dataset 193
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Fig. 1. Machine learning framework functionality.

was divided into two separate subsets for training (80% of the194

total data) and testing (20% of the total data). K-fold cross-195

validation was performed (over the training set) to choose196

certain model parameters (e.g., kernel bandwidth) [24]. A197

basic statistical analysis was performed on the dataset to iden-198

tify variables with high correlation levels. As discussed in [25],199

the power consumption variable has a relatively high correla-200

tion level with voltage magnitude at the same bus and the201

neighboring nodes. This was also observed in the distribu-202

tion system under study in this paper, specifically for larger203

loads, for which close to unit correlation values were recorded.204

Hence, available voltage magnitude measurement samples can205

be used as inputs in the regression models for estimating the206

consumption levels at different buses of the feeder. All these207

variables are normalized based on their maximum/minimum208

range of change. The objective of the pseudo-measurement209

generation process is to use the available noisy observations210

in real-time (i.e., customer voltage measurements, customer211

power measurements, time of day, etc.) to infer the unknown212

power consumption levels of unobserved secondary transform-213

ers connected to the primary distribution feeder nodes. The214

unobservability can be caused by the unavailability of meters,215

missing data, bad data, communication delays, and faulty mea-216

surements. To perform this task, regression models are trained217

using the system data history and employed to develop a218

mapping between the input and output data samples.219

B. Machine Learning Framework220

The machine learning framework is a supervised approach,221

which maps the input data to the output target space (power222

consumption), as shown in Fig. 1. The input space consists of223

three types of variables: 1) nodal voltage measurement data224

input with high correlation with power consumption (mea-225

sured at bus k (Vk) or neighboring buses (Vkn, kn ∈ Nk)).226

A “node” or a “bus” in this paper refers to the primary227

network nodes. Notice that customers are connected to these228

primary network nodes via secondary transformers. Hence,229

available AMI measurements are collected from secondary 230

distribution systems. To transfer these measurements to the pri- 231

mary feeder, the aggregator module performs two operations: 232

(a) the available customer power measurements are aggre- 233

gated at secondary transformer level through summation at 234

different times, ignoring system losses. (b) The available sec- 235

ondary voltage measurements are averaged at the secondary 236

transformer level for each time point, and then transferred 237

to the primary side of each secondary transformer. Note that 238

our assumption here is that the voltage drops on secondary 239

networks are small. 2) context variables (time of day (t), 240

and day of week d), and 3) the “feedback” power consump- 241

tion signal generated by DSSE-based Load Estimation module 242

(DLE), which also is highly correlated with the target nodal 243

power consumption (more details in Section III). Note that in 244

this paper two distinct variables are defined to approximate 245

the target power consumption space: P̂k, which defines the 246

kth node’s power pseudo-measurement variable (i.e., output 247

of the machine learning framework), and P̃k, which denotes 248

the estimated nodal power using the DLE module (i.e., DSSE 249

feedback signal). Basically, after solving BCSE over the pri- 250

mary network the estimated nodal voltages (or branch currents) 251

are used to determine nodal power consumption levels. These 252

estimations are used in a closed-loop mechanism to re-train 253

the machine learning consumption estimation models. Hence, 254

the role of the DLE module is to provide a link between the 255

BCSE and machine learning framework. 256

The RVM algorithm is premised on a kernelized regression 257

model, which can be formulated as follows [19]: 258

P̂k =
N∑

i=1

ωiK(xxx(k),xixixi(k))+ ω0 (1) 259

where, P̂k represents the nodal power consumption pseudo- 260

measurement for the kth node, N denotes the total number of 261

samples in the training set (i.e., number of previous obser- 262

vations), ωi is the weight assigned to the ith input sample 263

in the training set (xixixi), and K denotes the kernel function 264

over the samples in the training set and the new input sam- 265

ple xxx in the test set (xxx(k) = {Vk,VknVknVkn , t, d, P̃k}). In this paper, 266

radial basis function kernel, which is a measure of similar- 267

ity between the training samples and the new observations, is 268

used to quantify K(., .): 269

K
(
xixixi(k),xjxjxj(k)

) = exp

{
−

∥∥xixixi(k)− xjxjxj(k)
∥∥2

r2

}
(2) 270

where, r is a tunable parameter which defines the kernel band- 271

width. The objective of the machine learning framework is 272

twofold: 1) learn the parameters of the kernelized regression 273

model (ωi’s), 2) quantify the uncertainty of estimation. This 274

uncertainty is defined by the variance (σ 2) of the estima- 275

tion error ε = Pk − P̂k, where Pk is the power consumption 276

of the kth node. RVM provides a computationally robust 277

approach to achieve these goals. The learning mechanism 278

employs a probabilistic view of the regression equation (1), 279

in which parameters ωωω = {ω0, . . . , ωN} are assumed to 280

be normally-distributed independent random variables, with 281
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hyperparameters αi defining their variance, as follows:282

p{ωωω|(α0, . . . , αN)} =
N∏

i=0

N
(

0, α−1
i

)
(3)283

where, N (a, b) denotes a normal distribution with mean a and284

variance b. Note that using (3), the α values can be used for285

eliminating irrelevant samples and pruning the training set.286

Accordingly, data samples for which the α levels converge287

to very large values can be removed safely from the training288

set, as their assigned weights get more concentrated around289

zero. The learning process is based on finding the most prob-290

able values for the set of hyperparameters {α0, . . . , αN} and291

parameter σ of the kernelized model to maximize the marginal292

likelihood function, which is formulated as follows:293

(
α∗α∗α∗, σ ∗

) = arg max
ααα,σ

p{Pk|(ααα, σ )} (4)294

To achieve this, different recursive update rules have295

been obtained for these variables based on expectation-296

maximization process. The overall algorithm has the following297

steps for each bus, as discussed in [19]:298

• Step 1: Initialize hyperparameters ααα, and parameter σ299

• Step 2: Formulate the “design matrix”, �, and auxiliary300

matrix A over the existing data samples in the training301

set X = {x1x1x1, . . . ,xNxNxN}:302

� =
⎡

⎢⎣
1 K(x1x1x1,x1x1x1) · · · K(x1x1x1,xNxNxN)
...

...
. . .

...

1 K(xNxNxN,x1x1x1) · · · K(xNxNxN,xNxNxN)

⎤

⎥⎦ (5)303

A =
⎡

⎢⎣
α0

. . .

αN

⎤

⎥⎦ (6)304

• Step 3: Given the current values of ααα and σ , the param-305

eters ωωω are estimated using a joint Gaussian distribution306

with covariance matrix ��� and mean vector μμμ, obtained307

as follows:308

��� =
(
σ−2���+ A

)−1
(7)309

μμμ = σ−2�����PPPk (8)310

• Step 4: Update hyperparameters ααα and parameter σ by311

equating the derivative of the objective function in (4) to312

zero, as follows:313

αnew
i = 1− αi�i,i

μ2
i

(9)314

(
σ 2

)new = ||PPPk −�μ||2
N −∑

i

(
1− αi�i,i

) (10)315

where, �i,i and μi denote the (i, i)th and ith elements of316

��� and μμμ, respectively.317

• Step 5: Prune the training data set by removing sam-318

ples that correspond to αi ≥ αmax, with αmax denoting319

a user-defined threshold. The columns and rows of �320

corresponding to the pruned data samples will also be321

removed.322

• Step 6: Go to Step 2, until convergence is achieved (i.e., 323

changes in hyperparameters fall below a threshold). 324

The objective of RVM is to learn a “sparse” model using 325

the basic regression framework (1) (with ωi’s and σ as 326

model parameters to be learned). The sparsity of the learn- 327

ing process is based on convergence of most of the model 328

parameters (ωi) to near-zero values, which is also an automatic 329

mechanism to avoid overfitting. To implement this mecha- 330

nism, a pruning operation is performed at each iteration of 331

the algorithm (Step 5) to eliminate the irrelevant data-points 332

within the training set (only “relevant” samples are used for 333

model-fitting). 334

Following convergence, the estimated power consumption 335

target variable at bus k (P̂k) can be written as a conditional 336

normal distribution (which is highly nonlinear in the input 337

variables): 338

p
(

P̂k|X
)
∼ N

(
μμμ�φφφ(xxx(k)), σ 2 + φφφ(xxx(k))��φ�φ�φ(xxx(k))

)
(11) 339

where, xxx(k) denotes the input variable from the test set. Also, 340

φφφ is the basis function designed over the remaining training 341

samples xrxrxr = {xr1xr1xr1 , . . . ,xrMxrMxrM } where xrxrxr ⊂ X, and is defined as 342

follows: 343

φφφ(xxx(k)) = [
1 K

(
xxx(k),xr1xr1xr1

) · · · K
(
xxx(k),xrMxrMxrM

) ]�
(12) 344

As can be seen from (11), RVM is able to estimate both 345

the target variable and its uncertainty (i.e., variance parame- 346

ter, which represent factors such as noisy data and modeling 347

errors). 348

C. Game-Theoretic Extension 349

The computational complexity of RVM is normally propor- 350

tional to N3 (with N denoting the number of training samples), 351

which poses a considerable burden for large datasets. In this 352

paper, to reduce the high computational cost of learning, the 353

training dataset is decomposed into multiple subsets and dis- 354

tributed among a population of RVMs that train models in 355

parallel with each other. Hence, each RVM unit is trained 356

based on a specific time interval of the input space. In this way, 357

the computational load becomes proportional to N3

M2 , with M 358

denoting the number of parallel RVM units. Hence, the compu- 359

tational complexity can be reduced by a factor of 1/M2 due to 360

parallelization compared to the case where the whole dataset 361

is used for training one RVM unit. The generated pseudo- 362

measurement samples from the parallel RVM units are then 363

recombined through weighted averaging (with weight value 364

wj,t for the jth RVM unit at time t) to reach a final power 365

consumption pseudo-measurement value. The objective is to 366

find the optimal values of the weight values to maximize the 367

pseudo-measurement accuracy. It was observed that to reach 368

the best pseudo-measurement accuracy, the training set should 369

be decomposed based on seasons of the year, which implies 370

existence of strong seasonal changes in customers’ behavior. 371

Thus, four parallel RVM units (each corresponding to a sea- 372

son) are selected and trained over the training set. The recom- 373

bination process has to be performed in a manner to preserve 374

the precision of the estimation process. To perform this recom- 375

bination task, the pseudo-measurement generation process is 376
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modeled as a repeated game with vector payoff [21]. Based377

on this model, the game has two elements: 1) the “nature”,378

which generates target time-series according to an unknown379

process (in our case, these time-series are the estimated nodal380

power consumption data generated by DLE), and 2) the “esti-381

mator” (referred to as the “player”), which has the objective382

of inferring the behavior of nature and tries to maximize its383

long-term payoff by predicting the time-series generated by384

the nature. The estimator has access to multiple sources of385

“advice” (generated by RVM units) and needs to combine the386

received advice in a way to optimize its behavior in the game.387

Mathematically, the goal of the estimator is to minimize the388

Cumulative Regret, which is defined with respect to the jth389

advisor (j ∈ {1, . . . , M}), kth node, at time m, as follows:390

Rj,k(m) =
m∑

t=1

{
	
(

P̂k(t), Pk(t)
)
− 	

(
fj,k(t), Pk(t)

)}
(13)391

where, fj,k(k) is the jth advisor (i.e., RVM unit) estimation of392

the target variable (Pk(t)). The function 	(., .) defines the loss393

level due to mis-estimation, and is defined as 	(x, y) = |x− y|394

(which is convex in its first variable). Hence, the cumulative395

regret at a certain time point represents the player’s loss for396

not following a specific advisor’s estimations up to that point.397

For ease of reference, the player’s instantaneous regret level398

with respect to the jth advisor at time t is defined as follows:399

rj,k(t) = 	
(

P̂k(t), Pk(t)
)
− 	

(
fj,k(t), Pk(t)

)
(14)400

Hence, the instantaneous regret vector and the regret401

vector are defined as, rk(t)rk(t)rk(t) = (r1,k(t), . . . , rM,k(t))� and402

Rk(m)Rk(m)Rk(m) = ∑m
t=1 rk(t)rk(t)rk(t), respectively. While rk(t)rk(t)rk(t) represents403

a vectorized representation of instantaneous regret in the404

advisor space, Rk(m)Rk(m)Rk(m) quantifies the summation of these405

instantaneous vectors up to a point in time.406

The objective of the player is to assign optimal weight407

values to the advisors. Thus, the combination process for408

obtaining pseudo-measurements relies on weighted averaging409

of the received estimations from the RVM units, as follows:410

P̂k(t) =
∑M

j=1 wj,k(t − 1)fj,k(t)
∑M

j=1 wj,k(t − 1)
(15)411

The weight selection process is based on the choice of scalar412

non-negative, and twice-differentiable convex potential func-413

tions over the regret vector, denoted by U(Rk(m)Rk(m)Rk(m)) [21]. The414

goal of weight selection is to reduce the potential function415

value to limit the long term accumulated estimation regret.416

Basically, the potential function penalizes higher levels of417

regret. Hence, one choice of weight for adaptive correction418

of importance levels (weights) of RVM units is wj,k(t) =419

∇U(Rk(t)Rk(t)Rk(t))j to improve the weights based on local gradient420

information of potential function. In this paper, an exponential421

potential function is chosen as follows:422

U(Rk(t)Rk(t)Rk(t)) = 1

ηk(t)
ln

⎛

⎝
M∑

j=1

eηk(t)Rj,k(t)

⎞

⎠ (16)423

where, ηk(t) is a tunable parameter (at time t). The choice of424

an exponential potential function leads to the following weight425

Fig. 2. Proposed structure of the game-theoretic learning process.

update mechanism: 426

wj,k(t − 1) = ∇U(Rk(t − 1)Rk(t − 1)Rk(t − 1))j = eηk(t)Rj,k(t−1)

∑M
j=1 eηk(t)Rj,k(t−1)

(17) 427

It can be proved that with the choice of ηk(t) =
√

8lnM
t (and 428

a normalized convex loss function) the following upper-bound 429

on the maximum regret level is achieved [21]: 430

max
j=1,...,M

Rj,k ≤ 2

√
k · ln M

2
+

√
ln M

8
(18) 431

The overall game-theoretic platform is shown in Fig. 2. As 432

can be seen in this figure, the game-theoretic machine learn- 433

ing framework updates the importance weight factors online 434

(in case the nodal data samples or DLE outputs become avail- 435

able) or offline (using cross-validation). Also, the combined 436

estimated nodal power pseudo-measurement variance for the 437

kth node (σ̂ 2
k ) is calculated at time t as follows: 438

σ̂ 2
k (t) =

∑M
j=1 wj,k(t − 1)2σ̂j,k(t)2

(∑M
j=1 wj,k(t − 1)

)2
(19) 439

where, σ̂j,k(t)2 is the estimated variance for the jth RVM unit 440

at time t obtained using (11). 441

III. CLOSED-LOOP DSSE MODULE 442

The structure of the DSSE module is shown in Fig. 3. The 443

module consists of two subsystems: BCSE and DLE. 444

A. BCSE 445

A BCSE algorithm is used for implementing the DSSE 446

module over the primary distribution system [26], [27]. This 447

algorithm is based on minimization of summation of weighted 448

measurement residuals: 449

ŝ̂ŝs = arg min
sss

Nz∑

i=1

1

σ 2
i

(zi − hi(sss))
2 (20) 450

where, zi’s represent the measurement and pseudo- 451

measurements (with standard deviations σi representing 452
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Fig. 3. Overall structure of the DSSE.

user’s confidence, and total number of Nz), sss denotes the453

state vector, hi is the measurement function (which maps the454

state vector to the ith measurement/pseudo-measurement.) In455

this paper, the measurement samples are the active/reactive456

customer power consumption and voltage magnitude data457

which are aggregated at secondary transformer level to458

obtain equivalent measurements for the primary network,459

branch flow measurements (primary feeder), and voltage460

measurement at the main substation. The state variables are461

the real/imaginary branch current values for each phase of the462

primary feeder. Gauss-Newton method is used to iteratively463

update the state vector and achieve convergence [28]. The464

update mechanism at step q is as follows:465

sssq+1 = sssq + G−1(sssq
)
H�

(
sssq

)
R−1

Z

(
zzz− hhh

(
sssq

))
(21)466

where, G is the “gain matrix” defined as G(sssq) =467

H�(sssq)R
−1
Z (sssq)H(sssq), H is the Jacobian matrix correspond-468

ing to the measurement function vector hhh(sssq), and RZ =469

diag(σ 2
1 , . . . , σ 2

Nz
) is the measurement/pseudo-measurement470

uncertainty matrix.471

B. DLE472

After the convergence of the BCSE, the active power con-473

sumption is estimated at each node of the feeder using the474

estimated nodal voltage variables for each phase, employing475

power flow equations:476

P̃k =
∑

m∈Nk

Re
(

V̂k

(
Z−1

km

(
V̂k − V̂m

)∗))
(22)477

where, V̂k and V̂m denote the BCSE-based three phase voltage478

phasor at bus k and its neighboring nodes (included in the set479

Nk), and Zkm defines the phase-based impedance matrix of the480

line connecting nodes k and m. The estimated active power481

usage of each node (P̃k) is used to train and test the machine482

learning framework. The basic idea is that even under initial483

erroneous pseudo-measurement assignment, P̃k is highly corre-484

lated with the actual power usage information. The maximum485

correlation levels between the input/outputs of the machine486

learning framework at different nodes (for the primary dis-487

tribution feeder) are shown in Fig. 4. As can be seen, the488

Fig. 4. Correlation between inputs/outputs of the machine learning frame-
work, with respect to the state of the inner-loop.

DLE output (obtained under open-loop state) has close-to- 489

unity correlation with the actual power consumption. Hence, 490

these artificially-constructed DLE signals can be exploited for 491

training the machine learning framework to improve the accu- 492

racy of power consumption pseudo-measurements and state 493

estimation algorithm in a closed-loop information system. 494

IV. OVERALL ESTIMATION FUNCTIONALITY 495

In this section a summary of the different stages of the 496

proposed state estimation framework is presented: 497

• Stage I - Offline BCSE: Perform BCSE on the primary 498

feeder using nodal measurement data history (consisting 499

of real measurements and open-loop pseudo-measurement 500

samples) to obtain estimated power consumption data. 501

The primary feeder nodal measurements are obtained 502

from aggregating the AMI measurements of secondary 503

networks. 504

• Stage II - Offline Training: Augment the training set, 505

using the DLE outcome of Stage I. Decompose the train- 506

ing set along seasonal time frames and train parallel RVM 507

units (Section II-B). 508

• Stage III - Weight Initialization: Choose uniformly- 509

random initial weights for the RVM units. 510

• Stage IV - Online Inference (time T): Based on the 511

available measurements and the DLE output (not avail- 512

able in the first iteration), and the weights assigned to 513
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RVM units update the value and weights of pseudo-514

measurements (Section II-C).515

• Stage V - Online BCSE (time T): Run the BCSE516

algorithm for T based on the input measurements517

and pseudo-measurements until convergence is achieved518

(Section III-A).519

• Stage VI - Online DLE (time T): Update the power520

consumption information using the outcomes of DLE521

(Section III-B).522

• Stage VII - Loop Cycling (time T): Go to Stage IV523

(with updates from DLE), until changes in pseudo-524

measurements for time T fall below a threshold.525

• Stage VIII - Weight Update: T ← T + 1, Update526

the weights assigned to the RVMs based on the latest527

available observations at time T (Section II-C). Go to528

Stage IV.529

The overall complexity of the proposed system monitor-530

ing can be approximated by O( N3

M2 + M + N3
b f ε−2), with Nb531

denoting the number of distribution system nodes, f is the532

number of iterations in the designed feedback loop, and ε is533

the threshold over gradient norm below which the BCSE is534

terminated. This complexity approximation is based on the535

computational complexities of three modules: multiple RVM536

learning (O( N3

M2 )) [19], game-theoretic extension (O(M)) [21],537

and BCSE (O(N3
b f ε−2)).538

The designed framework consists of numerical routines that539

need to have access to: 1) online AMI/SCADA/PMU data540

stream, and 2) AMI data history. In our case, the customer541

data history is available to utility partners directly or through542

hired third-party companies. The online data stream will be543

fed to the machine learning framework after resolving data544

formatting and structuring issues. Hence, protocols need to be545

designed to ensure the interoperability of interfaces. Other than546

that the proposed framework can be easily (and independently)547

implemented and integrated within the distribution automation548

systems with minimum modifications in the hardware (except549

maybe addition of parallel computational resources). The out-550

come of the framework is the state variables for the system551

operator.552

V. NUMERICAL RESULTS553

The proposed method is tested on a sample feeder from554

the available utility dataset (described in Section II) with 220555

customers. The test feeder and symbolic secondary to pri-556

mary data aggregation process are shown in Fig. 5. The test557

feeder has three primary power flow measurement units and558

has around 35% smart meter penetration. The accuracy of mea-559

surement units is assumed to be ±1%. The performance of560

the monitoring system is analyzed in both open- and closed-561

loop states. Also, the machine learning framework’s robustness562

against bad data has been compared to conventional meth-563

ods, such as ANN, linear regression, and Gaussian Maximum564

Likelihood Estimation (MLE).565

A. Pseudo-Measurement Generation Performance566

The machine learning framework was tested using the AMI567

data history. The histogram for nodal power consumption568

Fig. 5. The test system under study (220 customers).

Fig. 6. The pseudo-measurement generation error histograms.

Fig. 7. Game-theoretic weight assignment (outer-loop).

pseudo-measurement error is shown in Fig. 6 for both open- 569

and closed-loop situations. As can be seen in this figure, 570

by closing the inner-loop (i.e., using DLE data) the pseudo- 571

measurement precision (defined as the inverse of the error 572

distribution variance) has been improved by a considerable 573

margin of 347.6%. The Mean Absolute Percentage Error 574

(MAPE) has also been reduced from 31.74% to 1.94% by 575

employing model training using the signals generated by the 576

DLE module in the inner-loop. The actual nodal consumption 577

is used as the ground truth for performance evaluation. 578

The behavior of the outer-loop is captured by studying 579

the changes in the game-theoretic weight assignment mod- 580

ule. The weights assigned to the parallel RVM units (averaged 581

over all nodes), corresponding to different seasons of the 582

year in the training set, are shown in Fig. 7. Given that 583

the test set is selected to be the summer of 2017, higher 584

weights are assigned to the regions of training set with similar 585
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Fig. 8. Pseudo-measurement accuracy demonstration.

patterns (summer and spring of 2014-2016). A critical aspect586

of the estimation process is that the game-theoretic aggrega-587

tion of the RVM units outperforms each of the individual units588

in the long run on average. The long run average MAPE for589

the aggregate estimator is 1.94%, while this index increases590

to 2.18%, 2.97%, 3.15%, and 5.37% for the available indi-591

vidual RVM units, implying the advantage of the proposed592

signal combination method in terms of accuracy. Hence,593

parallelization not only reduces training computational com-594

plexity but also leads to more accurate pseudo-measurement595

samples.596

The performance of the pseudo-measurement generation597

module for the two cases of open and closed inner-loop598

states are shown in Fig. 8. As can be seen in this figure,599

after closing the inner-loop near-perfect fit to the underlying600

data can be achieved, which demonstrates the effectiveness601

of the proposed machine learning framework in closed-loop602

setting.603

Providing robustness and detecting bad data is a critical step604

of DSSE [29]–[31]. The robustness of the proposed machine605

learning model is tested by injecting artificially generated bad606

data to the training set. The pseudo-measurement generation607

MAPE is shown as a function of the bad data sample pop-608

ulation for different methods in Fig. 9. To add the error to609

the training data two steps were taken: 1) N data points were610

randomly selected from the training set. 2) Noise values gen-611

erated by Gaussian distributions were added to each selected612

data point. The Gaussian distributions have zero means and613

standard deviations equal to 50% of the magnitude of the614

corresponding selected data sample. After distorting the N615

training data samples the machine learning models are trained616

and tested. This process is repeated several times for each N617

value. Then N is modified (decreased or increase). As is seen618

in this figure, an increase in the population of bad data sam-619

ples leads to a drastic decline in the performance of ANN,620

MLE, and linear regression. However, the performance of the621

proposed MRVM method remains highly stable for a wide622

range of bad data sample population size. The reason for this623

stability is the ability of the RVM algorithm to prune the train-624

ing dataset and eliminate “irrelevant” data samples that do not625

contribute positively to the marginal likelihood function. In626

other words, RVM has a natural mechanism for bad data detec-627

tion and elimination, which is highly beneficial when dealing628

with real data.629

Fig. 9. Performance of the machine learning frameworks against bad data.

Fig. 10. BCSE performance in estimating state variables in open- and closed-
inner-loop conditions. (a) Branch current real component error. (b) Branch
current imaginary component error.

B. State Estimation Performance 630

The state estimation performance (in terms of MAPE) is 631

shown in Fig. 10 for both open- and close-loop conditions for 632

real and imaginary branch current components. As is demon- 633

strated in these figures, using the closed-loop DSSE module 634

improves both the accuracy and precision (i.e., mean and 635

variance) of the BCSE. 636

The distribution of current magnitude and phase estimation 637

error is shown under open- and closed-inner loop conditions 638

in Fig. 11 using scatter plots. In this figure, the improve- 639

ments in DSSE can be observed, where a shift in the regions 640

with high concentration of error data is observed (from 641

(1.57%, 2.61%) to (0.54%, 0.87%)). We have also observed 642
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Fig. 11. State estimation accuracy demonstration (open-loop and closed-loop
comparison).

Fig. 12. Convergence of the proposed DSSE module.

that the performance of state estimation depends on the loca-643

tion and number of measurement units distributed across644

the system. However, in all cases the proposed closed-loop645

machine learning framework leads to improvements compared646

to the open-loop setting for any number of measurement units.647

The convergence of the proposed DSSE model is shown648

in Fig. 12, where the estimation MAPE is demonstrated as649

function of iterations, with each iteration representing a cycle650

in the inner-loop. Note that the estimation error is calculated651

as an average over all branches in the feeder. As is seen in the652

figure, the proposed method reaches steady-state after a single653

iteration, which implies fast convergence and suitability for654

real-time applications.655

The proposed framework requires an average 10.1 seconds656

per transformer per year of training data to generate solutions657

for each hour, as tested on a Intel Xeon CPU E3-1240 V6658

@ 3.7 GHz hardware. Hence, given that the processing time659

is almost 357 times faster than the actual system time flow,660

the proposed method is well capable of real-time monitoring661

of distribution system states. The total training time using the662

data collected over 3 years, is 484.2 seconds.663

VI. CONCLUSION664

In this paper, we have presented a computationally-efficient665

machine learning method for accurate pseudo-measurement666

generation to improve the quality of DSSE against unknown,667

missing, and bad data. The proposed approach is based on668

parallel training of multiple machine learning units and is669

shown to be highly robust against bad data samples in the 670

training set. Employing the proposed technique we are able to 671

exploit the seasonal patterns in customers’ behavior to improve 672

the accuracy of pseudo-measurement generation. A nested 673

closed-loop DSSE module is developed to improve the accu- 674

racy and precision of the state estimation process by enabling 675

interaction between the learning framework and the DSSE. 676

The proposed method is successfully tested on a utility feeder 677

with real smart meter data. 678
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