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Abstract—This paper proposes a stochastic optimization1

approach for disaster preparation in distribution systems. For2

an upcoming storm, utilities should have a preparation plan that3

includes warehousing restoration supplies, securing staging sites4

(depots), and prepositioning crews and equipment. Pre-storm5

planning enables faster and more efficient post-disaster deploy-6

ment of crews and equipment resources to damage locations. To7

assist utilities in making this important preparation, this paper8

develops a two-stage stochastic mixed integer linear program. The9

first stage determines the depots, number of crews in each site,10

and the amount of equipment. The second stage is the recourse11

action that deals with acquiring new equipment and assigning12

crews to repair damages in realized scenarios. The objective of13

the developed model is to minimize the costs of depots, crews,14

equipment, and penalty costs associated with delays in obtain-15

ing equipment and restoration. We consider the uncertainties of16

damaged lines, number and type of equipment required, and17

expected repair times. The model is validated on modified IEEE18

123-bus distribution test system.19

Index Terms—Allocation, disaster preparation, distribution20

system, extreme weather, stochastic programming.21

NOMENCLATURE22

Indices and Sets23

k, c, s, τ Indices for distribution line, crew, scenario24

and resource type25

d/e Indices for depot (staging site)26

CL,CT , IC Set of line crews, tree crews, and internal27

crews28

�CD,�P Set of buses with critical loads and set of29

depots30

�c
L(k),�

p
L(k) Set of conductors and poles in line k.31

Manuscript received March 11, 2019; revised June 3, 2019; accepted June
23, 2019.AQ1 This work was supported in part by the U.S. Department of Energy’s
Solar Energy Technologies Office under Grant CPS4228, and in part by
the National Science Foundation under Grant ECCS 1609080. Paper no.
TSG-00367-2019. (Corresponding author: Zhaoyu Wang.)

A. Arif is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA, and also with the Department
of Electrical Engineering, King Saud University, Riyadh 11451, Saudi Arabia
(e-mail: aiarif@iastate.edu).

Z. Wang is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA (e-mail: wzy@iastate.edu).

C. Chen and B. Chen are with the Energy Systems Division, Argonne
National Laboratory, Lemont, IL 60439 USA (e-mail: morningchen@anl.gov;
bo.chen@anl.gov).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSG.2019.2925620

Parameters 32

CE
d , CH

d The capacity of depot d for storing the sup- 33

plies and capacity for accommodating the 34

crews 35

CR
τ The capacity required to store resource τ 36

Dk,n Distance between components k and n dam- 37

aged line 38

D̄ Maximum distance allowed between a crew’s 39

location and assigned damaged line 40

ETL
k,s,ETT

k,s Estimated time to repair line k for line and 41

tree crews 42

E0
d,τ ,L0

d, T 0
d Initial number of equipment, line crews and 43

tree crews at d 44

PD
d ,PEI

τ Cost of staging depot d and ordering equip- 45

ment τ 46

PH
c ,PEC Hourly pay for crew c and cost of obtaining 47

an external crew 48

PLF
τ ,PR Penalty costs for late delivery of equipment τ 49

and penalty on restoration time 50

PTE
d,e,τ Cost of transporting equipment τ between 51

locations d to e 52

Rk,τ,s The number of type τ resources required to 53

repair damaged line k in scenario s 54

UT
k,s Binary random variable equals one if line k 55

in scenario s is damaged by a tree 56

UL
k,s Binary random variable indicating the damage 57

state of line k in scenario s. 58

Decision Variables 59

AL/T
k,c,s Binary variable equal to 1 if line k is assigned 60

to line/tree crew c in scenario s 61

δd,c Binary variable equals 1 if crew c is posi- 62

tioned in depot d 63

Ed,e,τ Number of τ supplies transferred between 64

depots d and e 65

EC
c,d,τ,s The amount of type τ supplies that crew c 66

obtains from depot d in scenario s 67

Ed,τ,s Additional τ supplies required in depot d 68

scenario s 69

EId,τ ,ED
d,τ Number of τ supplies ordered to depot d and 70

the total number of τ supplies at d 71

Ld,e, Td,e Number of line and tree crews transferred 72

from depot d to e 73

LId, T Id Number of external line and tree crews posi- 74

tioned at depot d 75
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LL
s ,LT

s The expected times of the last repair con-76

ducted by the line and tree crews77

Hc,s Amount of hours crew c is expected to work78

in scenario s79

νd Binary variable equals 1 if depot d is staged80

uk, yi Binary variables indicating the connection81

status of line k and load at bus i.82

I. INTRODUCTION83

OUTAGES due to weather-related events cause signifi-84

cant damage to the power grid infrastructure. In 2017,85

around 37 million customers were affected by power outages86

in the United States [1]. This threat to the electric grid has87

raised a growing need to address disaster management and88

power system resilience. Disaster management consists of four89

phases: mitigation, preparedness, response, and recovery. For90

power systems, the mitigation and preparation phases include91

long-term and short-term pre-disaster planning. Tree trimming,92

pole hardening, and distributed generator (DG) installation93

belong to long-term pre-disaster planning [2]. Short-term pre-94

disaster planning includes acquiring and allocating crews and95

equipment and selecting staging areas. The response and96

recovery phases are post-disaster actions that include damage97

assessment [3], crew dispatch and repair scheduling, and ser-98

vice restoration [4]. Effective disaster management measures99

can improve power system resistance during extreme events100

and accelerate recovery after events. The focus of this paper101

is to study the short-term pre-disaster preparation problem,102

which is critical to achieve resiliency. Resilience is defined103

as the ability to prepare for, adapt to, withstand, and recover104

rapidly from disruptions [5]. Pre-disaster planning enables effi-105

cient post-disaster recovery by ensuring there are enough and106

optimal number of equipment and crews in the right places to107

quickly conduct the repairs [6].108

After severe events, utility companies dispatch emergency109

crews to assess and repair the damage in order to restore power110

as fast as possible. A major challenge that utilities face is the111

lack of resources, including human resources and equipment,112

to handle extreme events [7]. Once utilities request assistance113

from neighboring companies, they are facing another task of114

managing the newly acquired resources. Utilities must provide115

water, food, and shelter [8] and communicate differences in116

work practices to the visiting crews [6]. For these reasons,117

early preparation is essential to deal with upcoming extreme118

or severe weather events. This paper aims to develop a method119

to assist utilities in their preparation process by identifying the120

required resources and preallocating the crews and equipment.121

Disaster preparation is a well-studied research area [9]–[15].122

In [9], a two-stage stochastic programming model was123

developed to select the storage location of medical supplies,124

and the required amount of various supplies before a disas-125

ter. The objective of the developed model was to minimize126

the operation cost of the warehouses, the total transporta-127

tion time, and the unfulfilled demand. A similar stochastic128

problem was tackled in [10], while considering the impact129

of the disaster on the warehouses. The paper used Benders130

Decomposition to solve the stochastic model. The authors131

in [11] developed a multi-objective mixed integer linear pro- 132

gram (MILP) to determine the location of emergency facilities, 133

resource allocation and relief distribution for flood prepara- 134

tion. The authors in [12] used robust optimization to produce 135

a logistic plan for mitigating demand uncertainty in humani- 136

tarian relief supply chains. A multi-objective robust model for 137

humanitarian relief logistics was developed in [13]. The paper 138

considered demand and supply uncertainty and considered the 139

possibility that some supplies may be damaged during the 140

event. In [14], the authors developed a p-robust optimization 141

model, which combines robust optimization with Monte Carlo 142

simulation, for determining the location of relief bases, num- 143

ber of rescue vehicles, and other relief supplies. A min-max 144

robust model is developed in [15] to optimize the relief facil- 145

ity location and pre-position emergency supplies for disaster 146

preparation. 147

However, further research is needed on disaster prepara- 148

tion in the context of power system and its infrastructure. 149

In [16], the authors divided the power network into different 150

areas/cells, and developed a MILP to find the optimal num- 151

ber of depots and their locations. Each area was assumed to 152

have a specific demand and can only contain one depot. The 153

objective was to minimize the transportation cost between the 154

predefined areas. A storage and customer allocation problem 155

was presented in [17]. The authors developed a multi-objective 156

stochastic mixed-integer program (SMIP) that determines 157

which warehouse to use and the number of resources to store in 158

each warehouse. The objectives were to minimize the amount 159

of unsatisfied demand, the transportation cost of the resources 160

between the warehouses, and the investments and mainte- 161

nance cost of the warehouses. Reference [18] developed a 162

SMIP model and a column generation approach for stockpiling 163

resources before a disaster. The developed approach focused 164

on determining the quantity and type of equipment, while 165

neglecting the crews and the distances between the warehouses 166

and the damaged components. 167

The distribution system preparation problem is a challeng- 168

ing one because it combines the combinatorial optimization 169

problems of depot location, equipment transportation and 170

allocation, and crew allocation. The preparation problem is 171

inherently stochastic, as the damaged components and the 172

required resources are not known beforehand. This makes it a 173

complex stochastic combinatorial optimization problem. The 174

previous work approached the preparation stage by dividing 175

the electric network into different areas, with each area having 176

a specific demand. This kind of approach neglects the individ- 177

ual components within each area and the distances between 178

these components and the depots. Moreover, the interdepen- 179

dence between the location and number of crews, damaged 180

components in the network, and the number of resources 181

required to repair the damage was not examined in the prepa- 182

ration stage. We propose a two-stage SMIP to model the 183

preparation problem. The first stage in the stochastic pro- 184

gram is to determine the depots and the locations of crews 185

and equipment. The second stage is the recourse action that 186

deals with acquiring new equipment and assigning the crews 187

to repair the damaged components. The contributions of this 188

paper are listed as follows: 189
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Fig. 1. Framework for extreme event proactive recovery operation.

• A new two-stage SMIP model is developed and used190

to select depots and allocate crews and equipment. We191

consider different types of crews (line and tree crews)192

and equipment (poles, transformers, and conductor). The193

stochastic problem is solved using a modified Progressive194

Hedging algorithm and high performance computing.195

• Mathematical equations for modeling the interdepen-196

dencies of the depots, crews, equipment, and damaged197

components are formulated. Also, symmetry-breaking198

constraints are designed to improve the performance of199

the model.200

• We provide a procedure for estimating the number and201

types of required equipment after extreme weather events,202

in addition to identifying the critical components to repair.203

The rest of the paper is organized as follows. Section II204

presents the framework of this paper. Outage scenario gen-205

eration is discussed in Section III. The formulation for prepo-206

sitioning the crews and allocating the resources is presented207

in Section IV. The simulation and results are presented in208

Section VI and Section VII concludes this paper.209

II. FRAMEWORK210

Extreme weather events result in damage to the electric grid211

infrastructure, which leads to significant losses and power out-212

ages. Utilities mobilize the available crews to damage sites to213

repair the damaged components and restore normal operation.214

The effectiveness of the recovery response depends on the215

preparation processes that are taken before extreme events hit.216

For an upcoming severe weather event, utilities position repair217

crews and supplies in (or near) the areas that are expected to218

suffer the greatest damage. In addition, utilities can acquire219

services from crews in neighboring utilities through mutual220

assistance programs. Pre-staging crews, equipment and other221

resources safely before a severe event allows for a proactive222

response and efficient resource management. Fig. 1 illustrates223

the proposed pre- and post-event framework.224

First, the forecasted weather and fragility models of the 225

components are used to generate damage scenarios. For each 226

scenario, we solve a power flow (PF) problem to identify 227

critical components that must be repaired to restore service 228

for high-priority customers. This information is used in the 229

stochastic crew and resource allocation problem (SCRAP) to 230

ensure there is enough equipment to repair the critical compo- 231

nents. Once the weather event hits the distribution system, the 232

repair and restoration problem is solved to restore the network 233

to its normal state [19]–[21]. This paper focuses on the steps 234

before the weather event occurs. 235

III. DAMAGE SCENARIO GENERATION 236

Prepositioning crews and resources is subject to uncertain 237

damage states of distribution lines. In this paper, the uncer- 238

tainty is represented by a finite set of discrete scenarios, which 239

are obtained using a Monte Carlo sampling procedure. The 240

Monte Carlo sampling method generates |S| number of sce- 241

narios with equal probability (1/|S|). The focus of this paper 242

is on the impact of strong wind events, such as hurricanes and 243

windstorms. Since the study focuses on wind-related failures, 244

we only consider overhead distribution lines. To generate dam- 245

age scenarios, we first estimate the wind speed that will affect 246

the distribution system. In this paper, we simulate hurricane 247

events for illustration. 248

A. Hurricane Model 249

Since distribution networks cover small geographical areas, 250

we assume that the wind speed experienced by all components 251

in a distribution network is the same at any given moment [22]. 252

The wind speed w(t, s) that impacts the distribution network at 253

time t and scenario s is modeled using the inland wind decay 254

model [23], which is expressed by the following equation: 255

w(t, s) = wb +
(

Rww0
s − wb

)
e−αwt − Cw (1) 256

where w0
s is the maximum sustained surface wind speed at 257

landfall in scenario s; αw = 0.095h-1 is the decay constant; 258

wb = 26.7 knots (kt) is the background wind speed; and 259

Rw = 0.9 is a reduction factor that represents the abrupt wind 260

speed decrease as hurricanes make landfall. In this paper, the 261

value of w0
s is simulated using a logonormal distribution to 262

generate the scenarios. Cw is a factor that represents the effect 263

of the distance inland [23]. 264

B. Fragility Models 265

Distribution lines are modeled using edges that connect 266

distribution buses, which connect customers to the distribu- 267

tion network. Distribution lines include poles and conductors 268

between the poles. Damage of a single pole or conductor 269

on a distribution line renders the line inoperable. Therefore, 270

we conduct fragility analysis for each pole and conductor 271

in the system, while assuming that the fragility of different 272

components is independent. 273

1) Pole Failure: Using the fragility model presented in [25], 274

the probability of failure for pole z is found using the following 275
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equation:276

pp
z (w) = min{apebpw, 1} (2)277

where ap and bp are constants related to pole properties, and278

w is the wind speed.279

2) Conductor Failure: Conductors between distribution280

poles are prone to failures due to strong winds and falling281

trees during severe events [25]. Define pw
l as the direct wind-282

induced damage probability, and pt
l as the damage probability283

due to a fallen tree near conductor l [22], [26]. The wind-284

induced damage probability of a conductor is calculated using285

the ratio of the maximum perpendicular force that the conduc-286

tor can endure Ff
l and the conductor wind loading Fw

l [26].287

The wind loading and pw
l are calculated by [27]:288

ql(w) = 0.613(G1G2G3w)2 (3)289

Fw
l (w) = Lc

l × Dc
l × ql(w)× Cf (4)290

pw
l (w) = min

{
Fw

l (w)/F
f
l , 1

}
(5)291

Equation (3) calculates the dynamic pressure ql(w) (N/m2),292

where G1, G2, and G3 are factors related to the topography,293

ground roughness, and a statistical factor depending upon level294

of security required. Lc
l is the length (m) and Dc

l is the diam-295

eter (m) of conductor l, and Cf is a force coefficient [27]. As296

for the damage due to fallen trees, the probability is modeled297

by [28]:298

pt
l(w) = eh(Sw

l )

1 + eh(Sw
l )

(6)299

h
(
Sw

l

) = ah + ch
(
klS

w
l

)
Dbh

H (7)300

where ah, bh, and ch are parameters associated with tree301

species, Sw
l is the estimated storm severity on conductor l302

(which varies from 0-1), kl is a factor that represents the local303

terrain effects, and DH is the tree diameter at breast height.304

C. Equipment305

The damage state of a component is determined using306

Bernoulli distribution (Bernoulli(p)), which takes the value307

of 1 (damaged) with probability p, and 0 (functional) with308

probability 1 − p. For each scenario, we evaluate the sta-309

tus of the system using the maximum sustained wind speed310

w̄s = max∀t{w(t, s)},∀s. Therefore, the damage state of pole311

z in scenario s is determined by the outcome of the random312

variable ψpole
z,s ∼ Bernoulli(pp

z (w̄s)). A conductor can either313

be damaged by wind force ψwind
l,s ∼ Bernoulli(pw

l (w̄s)) or tree314

ψ tree
l,s ∼ Bernoulli(pt

l(w̄s)). Consequently, the damage state of315

conductor l is determined as ψcond
l,s = ψwind

l,s ∨ ψ tree
l,s . After316

assessing the state of damage for each conductor and pole in317

the network, we can estimate the amount and type of equip-318

ment required to repair the damaged components. Although319

distribution networks include many types of components, we320

classify them into the following categories:321

• Type 1: Poles for 3-phase lines322

• Type 2: Poles for 1- and 2-phase lines323

• Type 3: 3-phase transformers with protective equipment324

• Type 4: 1-phase transformers with protective equipment325

• Type 5: Conductors326

Fig. 2. Single line diagram of a distribution network. AQ2

The line segment connecting two distribution buses consists of 327

poles and conductors, as shown in Fig. 2, where line 2–5 has 328

one damaged pole and line 5–6 has one damaged conductor. In 329

case of a damaged bus, such as bus 3 in Fig. 2, both lines 2–3 330

and 3–4 are affected. To avoid repetition when calculating the 331

number of equipment required and repair time, we associate 332

the poles on shared buses (e.g., pole at bus 3 for lines 2–3 and 333

3–4) with the line that has the bus with the lowest index (line 334

2–3). The number of type τ equipment required for line k in 335

scenario s can be calculated using the following equations: 336

Rk,τ,s =
∑

z∈�p
L(k,τ )

ψpole
z,s , ∀k, τ ∈ {1 . . . 4}, s (8) 337

Rk,5,s = nφk Lc
l

∑
l∈�c

L(k)

ψcond
l,s , ∀k, s (9) 338

where �p
L(k, τ ) is the set of type τ equipment for the poles 339

on line k, �c
L(k) is the set of conductors on line k, and nφk 340

is the number of phases for line k. Equation (8) calculates 341

the number of pole-related equipment and (9) calculates the 342

amount of conductor required. 343

D. Repair Time 344

The repair times for the damaged lines are estimated based 345

on the number of damaged conductors and poles. The repair 346

time for a damaged distribution pole is assumed to satisfy a 347

normal distribution with mean 5 hours and 2.5 hours standard 348

deviation (rp
z,s ∼ N (5, 2.5)) [25]. For damaged conductors, 349

the repair time is assumed to satisfy a normal distribution 350

with mean 4 hours and 2 hours standard deviation (rc
l,s ∼ 351

N (4, 2)) [25]. The estimated time to repair a damaged line is 352

found by adding the repair times of the damaged poles and 353

conductors of the line, as follows: 354

ETL
k,s =

∑

z∈�p
L(k)

ψpole
z,s rp

z,s +
∑

l∈�c
L(k)

ψcond
l,s rc

l,s, ∀k, s (10) 355

According to the report in [29], the average time to remove 356

a tree after a storm is 1 hour. Therefore, the tree removal time 357

for each line, in hours, is estimated by calculating the number 358

of downed trees on the line: 359

ETT
k,s =

∑
l∈�c

L(k)

ψ tree
l,s , ∀k, s. (11) 360

E. Critical Components 361

After extreme events cause large-scale outages, it is imper- 362

ative to quickly restore power to critical sites, such as hos- 363

pitals, community shelters and emergency dispatch centers. 364
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Fig. 3. Single line diagram of a distribution network.

Therefore, we must ensure that there are enough equipment365

and resources to repair vulnerable lines near critical sites. A366

MILP model is used to solve a PF problem to determine367

the critical lines to be repaired, so that all critical loads are368

restored. If one pole or conductor on a line is damaged, then369

the whole line is considered to be damaged and cannot be370

operated. The binary variable UL
k,s is used to indicate the dam-371

age state of line k, UL
k,s = 1 if ψpole

z,s = 1 or ψcond
l,s = 1 for any372

(i, l) ∈ k. For example, both lines 2–5 and 5–6 are damaged373

in Fig. 2, therefore, UL
2−5 = UL

5−6 = 1. The set of damaged374

lines �DL(s) can the be found by using the binary variable375

UL
k,s, such that �DL(s) = {k|UL

k,s = 1,∀k, s}. Define binary376

variables uk which equals 1 if line k is repaired and 0 oth-377

erwise, and yi as the connection status of load at bus i. The378

MILP for identifying the critical components is formulated as379

follows:380

min
∑

k∈�DL(s)

uk (12)381

subject to yi = 1, ∀i ∈ �CD (13)382

subject to power operation constraints [21] where �CD is the383

set of buses with critical loads. In this paper, we provide a sum-384

mary for the model due to space limitations. The objective (12)385

minimizes the number of lines to repair. Constraint (13) indi-386

cates that all critical loads must be served. Furthermore, power387

operation constraints such as power flow, network reconfigu-388

ration, fault isolation, and distributed generator (DG) dispatch389

are used in the model [21]. Consider the distribution network390

shown in Fig. 3, with a critical load located at bus 7, and 5391

damaged lines. In order to restore the load at bus 7 with min-392

imal repairs, line 9–10 must be repaired (u9−10 = 1), switch393

5–12 closed, and switches 1–2 and 4–5 opened to keep the394

damaged lines isolated. If line 9–10 requires 2 poles to repair,395

then the utility must have a minimum of 2 poles in their inven-396

tory. The PF model is solved for each generated scenario s.397

The set of critical lines �CL(s) for scenario s can then be found398

as: �CL(s) = {k|uk = 1,∀k ∈ �DL(s), s}. This information is399

used in the SCRAP model in the following section.400

IV. STOCHASTIC CREW AND RESOURCE ALLOCATION401

The decision variables in the two-stage crew and resource402

allocation problem can be divided into two groups. The403

first group is the first-stage variables that are determined404

before the realization of the uncertain parameters. These vari-405

ables include the number of external equipment and crews406

(EId,LId, T Id), the number of equipment and internal crews407

transferred between depots d and e (Ed,e,τ ,Ld,e, Td,e), and the408

number of equipment in each depot d (ED
d,τ ). Furthermore, a409

Fig. 4. Crew and equipment allocation.

decision on utilizing a depot is made in the first stage using 410

binary variable (νd), while the location of each crew is deter- 411

mined using binary variable (δd,c). The second part contains 412

the second-stage variables, which are decided according to 413

specific realization of the uncertainty. The second-stage vari- 414

ables are indexed by s to indicate the response for the specific 415

scenario. In this stage, the crews are assigned to damaged 416

lines (AL
k,c,s, AT

k,c,s) to ensure they are staged near the damaged 417

lines, and the expected working hours for each crew (Hc,s) is 418

estimated. Also, the number of additional equipment required 419

(Ed,τ,s) to finish the repairs is determined in this stage. SCRAP 420

models a joint location-allocation-inventory problem. Fig. 4 421

provides an illustration for the SCRAP model, which includes 422

the following steps: 1) depots are selected; 2) different types 423

of equipment are allocated to depots; 3) line and tree crews are 424

allocated to the depots; 4) equipment is assigned to crews; and 425

5) crews are assigned to damaged components. The two-stage 426

stochastic crew and resource allocation problem is formulated 427

in the following subsections. 428

A. Objective 429

min
∑

∀d,e,τ

PTE
d,e,τEd,e,τ +

∑
∀d,τ

PEI
τ EId,τ 430

+
∑
∀d

(
PEC(LId + T Id)+ PD

d νd

)
431

+
∑
∀s

Pr(s)

⎛
⎝∑

∀c

PH
c Hc,s +

∑
∀d,τ

PLF
τ Ed,τ,s + PR(

LT
s + LL

s

)
⎞
⎠ 432

(14) 433

The first two lines in (14) are for the first-stage objective, 434

which aims to minimize the costs of equipment transportation, 435

ordering equipment and external crews, and staging depots. 436

The third line in (14) is dependent on the realization of the 437

uncertainty, i.e., the second-stage objective. The first term in 438

the second-stage objective minimizes the labor costs associ- 439

ated with the crews. The second and third terms are penalty 440

costs. We add a penalty cost for unmet equipment demand 441

and penalize the time needed to repair all components. The 442
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penalty PLF
τ minimizes the shortage of equipment. The pur-443

pose of penalizing the expected time of the last repair is to444

minimize the system restoration time.445

B. First-Stage Constraints446

In the first stage, the depots are selected and both equipment447

and crews are allocated to the selected depots in anticipation of448

an extreme event. Constraints (15)-(22) represent the first-stage449

constraints.450

1) Depot Selection:451

1 ≤
∑
∀d

νd ≤ νmax (15)452

0 ≤
∑
∀τ

CR
τ ED

d,τ ≤ CE
d νd, ∀d (16)453

0 ≤
∑
∀c

δd,c ≤ CH
d νd, ∀d (17)454

The number of selected depots is limited to νmax in (15), and455

at least one depot must be selected. Each depot, if selected, can456

contain a limited amount of equipment, as enforced by (16).457

Constraint (17) limits the number of crews in depots. A depot458

can accommodate a limited number of crews depending on459

its resources. The limits in (16) and (17) are multiplied by νd460

so that if the depot is not selected, it will have no crew or461

equipment.462

2) Crew and Equipment Allocation:463

ED
d,τ = E0

d,τ +
∑

∀e,e�=d

Ee,d,τ −
∑

∀e,e�=d

Ed,e,τ + EId,τ , ∀d, τ464

(18)465 ∑

∀c∈CL

δd,c = L0
d +

∑
∀e,e�=d

Le,d −
∑

∀e,e�=d

Ld,e + LId, ∀d (19)466

∑

∀c∈CT

δd,c = T 0
d +

∑
∀e,e�=d

Te,d −
∑

∀e,e�=d

Td,e + T Id, ∀d (20)467

∑
∀d

δd,c = 1, ∀c ∈ IC (21)468

∑
∀d

δd,c ≤ 1, ∀c /∈ IC (22)469

Constraints (18)-(20) model the transportation of equip-470

ment, line crews, and tree crews, respectively. The three471

constraints are formulated using flow conservation equations.472

For instance, the constraint for the equipment (18) states that473

the amount of type τ equipment in depot d is equal to the474

sum of equipment initially in the depot, equipment transferred475

to the depot, newly obtained equipment, and minus the equip-476

ment transferred to other depots. The summations
∑

∀c∈CL δd,c477

and
∑

∀c∈CT δd,c are the number of line and tree crews in478

depot d, respectively. The first term in the right-hand side479

of (19) is the number of line crews initially present in depot480

d. The second term represents the number of line crews trans-481

ferred to depot d and the third term is the number of line crews482

transferred from depot d. The last term LId is the number of483

visiting line crews to be positioned in depot d. Similarly, con-484

straint (20) is designed for tree crews. Constraint (21) states485

that each internal crew must be located in one of the depots,486

while external crews can be either located in one depot, or not 487

used; i.e., δd,c = 0, as enforced by (22). 488

3) Symmetry-Breaking Constraints: The presented problem 489

allow a large number of feasible symmetric solutions with 490

equal objective value. Therefore, we add symmetry breaking 491

constraints to keep at least one solution and remove all other 492

symmetric solutions. Consider a case where there are four line 493

crews and three potential depots. Assume that depot 1 and 494

depot 3 are selected, and all four crews must be allocated. In 495

this case, there are four possible solutions for allocating the 496

crews: 497

δd,c =
⎛
⎝

1 1 0 0
0 0 0 0
0 0 1 1

⎞
⎠ ≡

⎛
⎝

1 0 1 0
0 0 0 0
0 1 0 1

⎞
⎠ ≡

⎛
⎝

0 1 0 1
0 0 0 0
1 0 1 0

⎞
⎠ 498

≡
⎛
⎝

0 0 1 1
0 0 0 0
1 1 0 0

⎞
⎠ (23) 499

To deal with the symmetry problem in (23), we allocate the 500

crews to the depot starting from the lowest indexed row and 501

column. Therefore, for δd,c = 1, all depots with indices d̄ < d 502

must not have any crews with indices c̄ > c, i.e., δd̄,c̄ = 0. The 503

following equations are used to break the symmetry in (23): 504

∑
∀d

δd,c+1 ≥
∑
∀d

δd,c,∀c ∈ CL, c < |CL| (24) 505

∑
∀d

(|�P| − d)δd,c+1 ≥
∑
∀d

(|�P| − d)δd,c, ∀c ∈ CL, c < |CL| 506

(25) 507∑
∀d

δd,c+1 ≥
∑
∀d

δd,c,∀c ∈ CT , c < |CT | (26) 508

∑
∀d

(|�P| − d)δd,c+1 ≥
∑
∀d

(|�P| − d)δd,c, ∀c ∈ CT , c < |CT | 509

(27) 510

Constraint (24) state that for similar crews, we allocate the 511

crew with the lowest index first. Constraint (25) allocates the 512

crews starting from the depots with the lowest index, and skips 513

depots that are not staged. Constraints (24) and (25) are also 514

enforced to the tree crews in (26) and (27). The feasible solu- 515

tions are then reduced from four to one possible solution in 516

this example, where only the first matrix in (23) is feasible. 517

C. Second Stage Constraints 518

After selecting the depots and allocating the crews and 519

equipment in the first stage, the crews are assigned to repair 520

the damaged components and the equipment are distributed to 521

the crews in the second stage. 522

1) Crew Assignment: 523

∑

∀c∈CL

AL
k,c,s = UL

k,s, ∀k, s (28) 524

∑

∀c∈CT

AT
k,c,s = UT

k,s, ∀k, s (29) 525

∑
∀k

AL
k,c,s ≤ M

∑
∀d

δd,c, ∀c ∈ CL, s (30) 526

∑
∀k

AT
k,c,s ≤ M

∑
∀d

δd,c, ∀c ∈ CT , s (31) 527
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D̄ ≥ Dd,k
(
δd,c + AL

k,c,s − 1
)
, ∀d, k, c ∈ CL, s (32)528

D̄ ≥ Dd,k
(
δd,c + AT

k,c,s − 1
)
, ∀d, k, c ∈ CT , s (33)529

Equations (28) and (29) assign the line and tree crews to530

the damaged lines, respectively. The binary parameter UT
k,s531

equals 1 (0) if line k is damaged (functional). Therefore, if532

UL
k,s equals 0, then line k will not be assigned to any crews533

(i.e.,
∑

∀c∈CL AL
k,c,s = 0). Also, if crew c is not staged at a534

depot (i.e.,
∑

∀d δd,c = 0), then crew c is not assigned to535

any damaged line as enforced by (30) and (31). The big M536

value in (30) can be the maximum number of damaged lines537

(max∀s(
∑

∀k UL
k,s)). Constraints (32)-(33) are used to identify538

the distances between the damaged components assigned to539

each crew and the depots. This distance is limited to D̄. If540

line crew c is positioned at depot d (δd,c = 1) and is assigned541

to line k (AL
k,c,s = 1), then D̄ ≥ Dd,k.542

2) Working Hours: In this subsection, we estimate the543

working hours for each crew in order to distribute the working544

assignments fairly between the crews and ensure that enough545

crews are present. The working hours constraints are modeled546

in (34)-(37).547

Hc,s =
∑
∀k

(ETL
k,sA

L
k,c,s), ∀c ∈ CL, s (34)548

Hc,s =
∑
∀k

(
ETT

k,sA
T
k,c,s

)
, ∀c ∈ CT , s (35)549

LL
s ≥ Hc,s, ∀c ∈ CL, s (36)550

LT
s ≥ Hc,s, ∀c ∈ CT , s (37)551

The total expected working time for each line and tree crew552

is calculated in (34) and (35). Constraints (36) and (37) define553

the expected time of the last repair. The value of LL
s is greater554

or equal to the largest Hc,s for the line crews, and LT
s is greater555

or equal to the largest Hc,s for the tree crews. Since we are556

minimizing the expected time of the last repair, it will take557

the value max∀c(Hc,s) in each scenario. By minimizing LL
s558

and LT
s , we minimize the restoration time of the system and559

ensure that we do not have a single crew or few crews in a560

location with many damaged components.561

3) Equipment Assignment: The next set of constraints562

model the distribution of equipment to the depots and crews.563

∑
∀d

ED
d,τ ≥

∑
∀k∈�CL(s)

Rk,τ,s, ∀τ, s (38)564

∑
∀d

(
ED

d,τ + Ed,τ,s
) ≥

∑
∀k

Rk,τ,s, ∀τ, s (39)565

∑
∀τ

EC
c,d,τ,s ≤ Mδd,c, ∀d, c ∈ CL, s (40)566

∑

∀c∈CL

EC
c,d,τ,s ≤ ED

d,τ + Ed,τ,s, ∀d, τ, s (41)567

∑
∀d

EC
c,d,τ,s ≥

∑
∀k

AL
k,c,sRk,τ,s, ∀c ∈ CL, τ, s (42)568

Constraint (38) indicates that the number of equipment569

available must be sufficient for repairing all critical lines570

before the extreme event occurs. Constraint (39) states that571

the total equipment that the utility have must be equal or572

greater than the required equipment to repair the damaged573

components. Ed,τ,s identifies the additional number of equip- 574

ment (unmet equipment demand) that must be ordered in each 575

scenario to finish the repairs. Each crew can obtain equip- 576

ment from the depot they are positioned at, as enforced by 577

constraint (40). The crews must use the resources available 578

in the depot (41). Constraint (42) indicates that the number 579

of resources the crew have should be enough to repair the 580

assigned damaged components. After positioning the crews 581

and resources, the utility will be ready for the recovery opera- 582

tion after the outages. The next section presents the algorithm 583

used to solve the stochastic model. 584

V. SOLUTION ALGORITHM 585

The standard method for solving stochastic programs is to 586

use a MILP solver, e.g., CPLEX, to directly solve the extensive 587

form (EF) of the SMIP. Define (x) and (ys) as vectors con- 588

taining the first-stage and second-stage variables, respectively. 589

Also, let a and bs represent the coefficients associated with 590

(x) and (ys), then the EF form of the SMIP can be expressed 591

as follows: 592

ζ = min
x,ys

aTx +
∑
∀s

Pr(s) bs
Tys (43) 593

s.t. (x, ys) ∈ Qs, ∀s (44) 594

where (x, ys) ∈ Qs represents the subproblem constraints that 595

ensures a feasible solution. Solving the EF for large-scale 596

problems is however computationally difficult. Decomposition 597

methods, such as the L-shaped and Benders Decomposition 598

methods [30], have been proposed in the literature to solve 599

stochastic programs. The L-shaped method and Benders 600

decomposition cannot be applied directly when the second 601

stage is non-convex with integer values, which is the case 602

for the preparation problem in this paper. Rockafellar and 603

Wets developed the Progressive Hedging (PH) algorithm as 604

a heuristic to effectively solve SMIP problems [31]. The algo- 605

rithm decomposes the EF into scenario-based subproblems. 606

Therefore, for |S| scenarios, the SMIP is decomposed into |S| 607

subproblems. The PH algorithm is described in Algorithm 1. 608

The first step initializes the iteration number τ and the indi- 609

vidual scenarios are solved in Step 2. In Step 3, the first stage 610

solution obtained from Step 2 is aggregated. Step 4 calcu- 611

lates the multiplier ηs. The multiplier is used in Step 6 to 612

update x, where the scenarios are solved independently in 613

parallel. Steps 7 and 8 update the first-stage solution and 614

the multiplier, respectively. The program terminates once all 615

first-stage decisions xs converge to the same x̄ in Step 9, 616

i.e.,
∑

s∈S Pr(s)||xs
(τ ) − x̄(τ )|| < ε. The PH algorithm may 617

experience slow convergence with large problems that include 618

many scenarios. A detailed analysis of PH showed that individ- 619

ual first-stage variables frequently converge to specific values 620

across all scenario subproblems [32]. Therefore, we fix some 621

of the first-stage variables if they converge to the same val- 622

ues after certain numbers of iterations. In the SCRAP model, 623

we fix the variable νd (depot selected) if it converges to the 624

same values after τ1 iterations, as shown in Steps 12–16. In 625

Steps 17–21, the crew allocation and selection variable δd,c is 626

fixed after τ2 iterations if the variable converges to the same 627
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Algorithm 1 The Two-Stage PH Algorithm
1: Let τ := 0
2: For all s ∈ S, compute:

xs
(τ ) := arg minx

{
aT x + bs

T ys : (x, ys) ∈ Qs

}

3: x̄(τ ) := ∑
s∈S Pr(s)xs

(τ )

4: ηs
(τ ) := ρ(xs

(τ ) − x̄(τ ))
5: τ := τ + 1
6: For all s ∈ S compute:

xs
(τ ) := arg minx

{
aT x + bs

T ys + ηs
(τ−1)x +

ρ
2 ||x − x̄(τ−1)||2:(x, ys) ∈ Qs

}

7: x̄(τ ) := ∑
s∈S Pr(s)xs

(τ )

8: ηs
(τ ) := ηs

(τ−1) + ρ(xs
(τ ) − x̄(τ ))

9: if
∑

s∈S Pr(s)||xs
(τ ) − x̄(τ )|| < ε then

10: terminate
11: else
12: if τ ≥ τ1 then
13: if ντd,1 = ντd,s, ∀d, s then
14: fix νd = ντd,s, ∀d, s
15: end if
16: end if
17: if τ ≥ τ2 then
18: if δτd,c,1 = δτd,c,s, ∀d, c, s then
19: fix δd,c = δτd,c,s,∀d, c, s
20: end if
21: end if
22: go to Step 5
23: end if

Fig. 5. Flowchart for the proposed PH algorithm.

value across all scenario subproblems. Once the variables are628

fixed, they are treated as parameters in the following iterations.629

In this paper, the values of τ1 and τ2 are set to be 5 and 20,630

respectively. A flowchart for the algorithm is given in Fig. 5.631

VI. SIMULATION AND RESULTS632

The preallocation model is simulated on the modified IEEE633

123-bus distribution feeder [21], [33]. The size of the IEEE634

123-bus feeder is scaled up, as shown in Fig. 6. The modified635

network, shown in Fig. 7, includes 4 dispatchable DGs, 18636

new switches, 5 PVs and 2 battery energy storages. Note that637

Fig. 7 does not reflect the actual x- and y-coordinates. The 4638

DGs are rated at 300 kW and 250 kVAr. The PV at bus 62 is639

rated at 900 kW and the other PVs are rated at 50 kW. The640

battery systems at bus 2 and 62 are rated at 50 kW/132 kWh641

Fig. 6. x- and y- of the modified IEEE 123-bus distribution feeder and
location of depots.

Fig. 7. Modified IEEE 123-bus distribution feeder.

and 500 kW/ 2100 kWh, respectively. Additional details about 642

the network can be found in [33]. 643

We assume that a category 3 hurricane is forecasted to make 644

its way towards the test system. Fig. 8 shows an example of 645

a hurricane landfall and the maximum sustained wind speed. 646

Monte Carlo sampling is used to generate 100 damage scenar- 647

ios with equal probability. First, lognormal distribution with 648

μ = 4.638 and σ = 0.039 [24] is used to generate 100 sce- 649

narios of possible wind speeds at landfall. Then, the models 650

presented in Section III are used to evaluate the impact of 651

the extreme event. The number of scenarios are reduced to 30 652

using the tool SCENRED2 in the General Algebraic Modeling 653

System (GAMS) [34] to reduce the computational complex- 654

ity [35]. The simulation data used in equations (2)–(7) are 655

listed in Table I. 656

After generating the damage scenarios, the PF problem (12) 657

is solved for each scenario to find the critical lines to be 658

repaired. Then, the SMIP model presented in Section IV is 659

used to model the preallocation problem. It is assumed that 660

there are 5 potential staging areas, the location of each depot 661
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Fig. 8. Maximum wind speed (kt) on test area.

TABLE I
SIMULATION DATA FOR THE FRAGILITY MODELS

TABLE II
SIMULATION DATA FOR SCRAP ON THE IEEE 123-BUS FEEDER

is shown in Fig. 6. We set the maximum distance between662

the staged crews and damaged components to be 16 km663

(D̄ = 16 km) in this simulation. Depot 1 is assumed to be the664

main location of the utility and must be staged (ν1 = 1). Depot665

1 has 5 line crews, 3 tree crews, and a stockpile of 25 poles666

(10 for 3-phase lines and 15 for 1- and 2-phase lines), 4 km667

of conductor, 8 single-phase transformers, and 3 three-phase668

transformers. The utility can obtain additional resources based669

on the results of the SCRAP model. The data for the costs used670

in the SCRAP model are presented in Table II [38], [39].671

TABLE III
PRE-EVENT PREPARATION RESULTS

The penalty costs for the unmet equipment demand is 672

assumed to be 10 times the actual cost of the equipment. As 673

for the penalty cost on the restoration time, we estimate the 674

per hour outage cost $/h. For the IEEE-123 bus system con- 675

sidered in this paper, the average daily load is 2772.75 kW. 676

Using the average per hour cost [41] of $2/kWh for regular 677

loads and $16/kWh for critical loads, the estimated per hour 678

cost is found to be $14610.5/h. We set PR to equal half of 679

the estimated per hour cost so that the penalty cost is divided 680

between line repairs and tree removal in (14). 681

A. Preparation 682

The SCRAP model is solved using Pyomo with IBM’s 683

CPLEX 12.6 mixed-integer solver on a high-performance com- 684

puting system. The simulation is performed on Iowa State 685

University’s Condo cluster, whose individual blades consist of 686

two 2.6 GHz 8-Core Intel E5-2640 v3 processors and 128GB 687

of RAM. Table III presents the results of the preparation 688

problem using SCRAP and PH with 30 scenarios and 1 sce- 689

nario, which we refer to as deterministic allocation (DA). The 690

single scenario for DA is obtained by reducing the number 691

of scenarios to 1 using SCENRED2. Moreover, the robust 692

stochastic optimization (RSO) method presented in [13] is 693

used to solve the preparation problem. The staging sites and 694

the number of crews are found to be the same for both stochas- 695

tic and deterministic solutions. However, SCRAP invested 696

around $30,000 more in equipment. The deterministic solu- 697

tion is biased towards a single scenario and did not consider 698

extreme cases where the required number of equipment is high. 699

On the other hand, RSO favors a solution that would perform 700

better with worst-case scenarios. RSO invested around $40,000 701

more than SCRAP on equipment. However, this can lead to 702

over-preparation and over-investment. 703

The results of the SCRAP model indicate that Depot 4 704

should be staged in preparation to the weather event in sup- 705

port to the main location (Depot 1). Five new external line 706

crews are contracted with one positioned at Depot 1 and four 707

positioned at Depot 4. In addition, one tree crew is trans- 708

ferred from Depot 1 to Depot 4. Six 3-phase poles (type 1) 709

are ordered to Depot 4 and fourteen type 2 poles are ordered, 710

one to Depot 1 and thirteen to Depot 4. Also, two single-phase 711

transformers are transferred to Depot 4 from Depot 1. Finally, 712

around 200 meters of conductor is transferred from Depot 1 713



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON SMART GRID

TABLE IV
PERFORMANCE OF THE STOCHASTIC PROGRAM

to Depot 4, and approximately 1800 meters of conductor is714

ordered to Depot 4.715

To show the importance of considering uncertainty in716

the problem, we calculate the expected value of perfect717

information (EVPI)). EVPI is the difference between the wait-718

and-see (WS) and the stochastic solutions. It represents the719

value of knowing the future with certainty. WS is the expected720

value of reacting to random variables with perfect foresight.721

It is obtained by calculating the means of all determinis-722

tic solutions of the scenarios. WS provides a lower bound723

for the objective value and cannot be obtained in practice.724

As for evaluating the performance of the deterministic solu-725

tion across different scenarios, we set the first-stage variables726

obtained from DA as fixed parameters and solve the stochas-727

tic problem. Let ζ = F(x, ξ) be the stochastic programming728

problem with first-stage variables x and random variables ξ .729

If xDA is the first-stage solution obtained by solving the deter-730

ministic problem, then the expected value of the deterministic731

solution (ED) is ζED = F(xDA, ξ). The same approach is used732

to calculate the objective value of RSO. From Table IV, the733

stochastic solution from SCRAP with PH is less than ED,734

which is expected since SCRAP considers the variability of the735

extreme event outcome unlike the deterministic solution. The736

difference between PH and ED is $163,017, which is around737

80% of the difference between ED and WS. This indicates738

that the stochastic model leads to a better preparation strategy739

by acquiring and positioning enough equipment. Solving the740

two-stage stochastic problem is more beneficial than solving741

a deterministic problem. PH achieved a solution only 0.36%742

less than EF with a considerably lower computation time.743

RSO achieved a solution that outperforms the deterministic744

one, however, the EVPI for RSO is $95,513 and $38,415 for745

SCRAP-PH. In addition, RSO requires more computation time746

when compared to SCRAP-PH.747

B. Stability Test748

The stability test in [40] is used in this study to check749

the sensitivity of solution stability to the number of scenar-750

ios. The idea of the test is to solve the stochastic problem751

with multiple independent sets of scenarios and compare the752

objective values. The model is stable if the objective values753

are approximately equal [40]. We generate 8 sets of scenar-754

ios, each set includes 30 to 100 scenarios. The simulation755

results are shown in Fig. 9, which shows that the varia-756

tion of the objective value is small. Therefore, the method757

is stable and 30 scenarios is adequate for representing the758

uncertainties.759

Fig. 9. Sensitivity analysis of optimal objective value versus the number of
scenarios.

TABLE V
REPAIR AND RESTORATION PERFORMANCE AFTER THE EVENT

Fig. 10. Post-event percentage of load served.

C. Restoration 760

After the event impacts the system, it is up to the utility to 761

dispatch the crews and manage the equipment. The efficiency 762

of this process depends on the location of the crews and the 763

amount of stored equipment. To assess the devised prepara- 764

tion plan, we solve the repair and restoration problem [21]. 765

A new random scenario is generated on the IEEE 123-bus 766

system, with crews and equipment allocated according to the 767

results in Table III. In the generated scenario, 13 three-phase 768

poles, 18 single-phase poles, 2 single-phase transformers, and 769

4343.4 meter of conductor are damaged. The method presented 770

in [21] is used to dispatch the crews and operate the network to 771

restore energy to customers as fast as possible. Four prepara- 772

tion methods are tested: 1- SCRAP; 2- RSO; 3- DA; 4- without 773

preparation (the utility starts with its crews and equipment 774

positioned at Depot 1). The results are shown in Table V 775

and Fig. 10. The “+” sign in Table V indicates a surplus of 776

equipment (number of available equipment is higher than the 777

amount required) and “−” indicates a shortage of equipment. 778

Both SCRAP and RSO over prepare with a large surplus of 779
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11 single-phase poles for SCRAP and 23 single-phase and 10780

three-phase poles for RSO. However, the restoration process781

is faster with 80 MWh served in the first 48 hours for both782

methods. Without preparation and DA have a shortage of 3783

three-phase poles and 0.34 km of conductor. Moreover, with-784

out preparation, there is a shortage of 3 single-phase poles.785

We assume that the equipment required to finish repairs can be786

obtained 12 hours after the event. With 10 line crews and 3 tree787

crews, the system can be completely restored within 48 hours788

(27 and 30 hours with SCRAP/RSO and DA, respectively).789

On the other hand, it takes more than 48 hours to restore790

the system for 5 line crews and 3 tree crews. The percentage791

of load served comparing the three preparation strategies is792

shown in Fig. 10, where SCRAP has the best performance.793

VII. CONCLUSION794

In this paper, a new study for disaster preparation consider-795

ing crews and equipment allocation is presented. The study796

starts with analyzing the fragility of distribution networks797

to extreme events in order to estimate their impacts on the798

network. Several outcome scenarios are generated providing799

information on the number of equipment required, estimated800

repair times, and critical lines. A two-stage stochastic math-801

ematical model is developed to select staging locations, and802

allocate crews and equipment. A study case is presented on the803

IEEE 123-bus system where the performance of the proposed804

model is tested. The results demonstrate the effectiveness of805

the proposed approach for both meeting the equipment demand806

and post-event recovery operation. By using an effective prepa-807

ration procedure, we can ensure that enough equipment is808

present for repairing the damaged components in the network809

and facilitate a faster restoration process.810
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