
IEE
E P

ro
of

IEEE TRANSACTIONS ON SMART GRID 1

A Learning-Based Power Management Method
for Networked Microgrids Under

Incomplete Information
Qianzhi Zhang , Student Member, IEEE, Kaveh Dehghanpour , Member, IEEE,

Zhaoyu Wang , Member, IEEE, and Qiuhua Huang , Member, IEEE

Abstract—This paper presents an approximate Reinforcement1

Learning (RL) methodology for bi-level power management of2

networked Microgrids (MG) in electric distribution systems. In3

practice, the cooperative agent can have limited or no knowl-4

edge of the MG asset behavior and detailed models behind the5

Point of Common Coupling (PCC). This makes the distribu-6

tion systems unobservable and impedes conventional optimization7

solutions for the constrained MG power management problem.8

To tackle this challenge, we have proposed a bi-level RL frame-9

work in a price-based environment. At the higher level, a10

cooperative agent performs function approximation to predict11

the behavior of entities under incomplete information of MG12

parametric models; while at the lower level, each MG provides13

power-flow-constrained optimal response to price signals. The14

function approximation scheme is then used within an adaptive15

RL framework to optimize the price signal as the system load16

and solar generation change over time. Numerical experiments17

have verified that, compared to previous works in the litera-18

ture, the proposed privacy-preserving learning model has better19

adaptability and enhanced computational speed.20

Index Terms—Distribution systems, networked microgrids,21

power management, reinforcement learning, adaptive22

training.23

NOMENCLATURE24

Indices25

i, j Indices of bus numbers ∀i, j ∈ �I .26

k Index of line number ∀k ∈ �K .27

n Index of MG.28

t Index of episode/time instant.29

Parameters30

af / bf / cf Coefficients of the DG quadratic cost function.31

ECap Max. capacity of ESS unit.32

ePV , eD Prediction error standard deviations.33
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G/B Real/imag. parts of the bus admittance matrix. 34

ÎPV Vectors of solar irradiance estimation. 35

IPV Real normalized solar irradiance. 36

PCh/Dis,M Max. ESS charging/discharging limits. 37

P/QD Active/reactive load. 38

P/QDG,M Max. DG active/reactive power capacity. 39

PDG,R Max. DG ramp limit. 40

PPV PV active power output. 41

P/QPCC,M Max. active/reactive power flow at the PCCs. 42

P̂D Vectors of aggregate active load estimation. 43

PD Real active load. 44

QPV,M Max. PV reactive power output limit. 45

S States in Markov decision process. 46

LM Max. line flow limit. 47

SOCM/m Max./min. SOC limits. 48

T Length of the moving decision window. 49

�t Time step. 50

α/β Shape parameters of beta distribution. 51

ηCh/Dis Charging/discharging efficiency of ESS unit. 52

λF Diesel generator fuel price. 53

λR,M/m Max./min. retail price limits. 54

λW Wholesale energy price. 55

θ Vector of regression parameter. 56

θ∗ Vector of converged regression parameter. 57

θTh/VTh Threshold value. 58

γ Discount factor that defines the preference. 59

δ Step size that defines the rate of learning. 60

μ Regularization factor. 61

φ Forgetting factor. 62

ε ε-greedy exploration factor. 63

Variables 64

a Actions in Markov decision process. 65

F Fuel consumption of DG. 66

SOC SOC of the battery system. 67

PCh/Dis Charging/discharging power of ESS unit. 68

P/QDG DG active/reactive power outputs 69

P/Qij Line active/reactive power flows 70

P/QPCC Active/reactive power flow at the PCC. 71

PW Exchanged power with the wholesale market. 72

QESS Reactive power outputs of ESS unit. 73

QPV PV inveter reactive power outputs. 74

V/�θ Voltage magnitude and phase angle difference. 75
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xp/xq MGs power management decision vectors.76

λR Retail price signals at the PCCs.77

uCh/Dis ESS charge/discharge binary variables.78

Functions79

Qt(S, a) State-action value function.80

Q∗t (S, a) Optimal state-action value function.81

Q̂t(S, a|θ) Parameterized approximate state-action value82

function.83

QS·a(t|θ) Parameterized regression sub-component with84

state-action interaction.85

QS(t|θ) Parameterized regression sub-component with86

state values.87

Qa(t|θ) Parameterized regression sub-component with88

action values.89

R(t) Reward function in Markov decision process.90

I. INTRODUCTION91

ASMART distribution system consisting of networked92

microgrids (MGs), with local Distributed Generators93

(DG), Renewable Energy Resources (RES), and Energy94

Storage Systems (ESS), can facilitate reliable service provi-95

sion to customers in power systems [1]. Smart independent96

MGs are considered as a viable solution for electrification97

of rural areas, which are excluded from traditional electri-98

fication programs due to their remote location and financial99

constraints [2]. To ensure the long-term sustainability and100

encourage economic development in rural communities, the101

feasibility of cooperative business models for rural system102

electrification has been analyzed previously [2]–[4]. It has103

been shown that a non-profit cooperative can act as an interme-104

diary agent between the rural MGs and the wholesale market.105

The power is exchanged between the MGs and the cooperative106

at a retail rate, and the revenue from electricity sales in the107

wholesale market is returned to MGs. The retail energy pricing108

program can be used to influence the MGs’ behavior based on109

the availability of resources. Real cases of cooperative business110

models with rural MGs as participating members can be found111

in [3], [4]. The autonomous cooperative business settings in112

these cases have been designed to benefit rural communities.113

Coordinating the real-time behavior of multiple privately-114

owned rural MGs in a cooperative business model is a115

necessary, yet challenging task [5], [6]. Due to data pri-116

vacy and ownership concerns for MGs, the main difficulty117

in the way of obtaining a desirable coordination scheme is118

the limited access to real-time asset behaviors and models119

behind the Point of Common Coupling (PCC) with MGs,120

which hinders conventional model-based constrained power121

management solvers. This problem becomes more severe as122

the penetration of MGs in rural distribution systems grows.123

A wide range of methods have been applied in the litera-124

ture with the aim of economic operation of the networked125

MGs, including methods such as heuristic techniques [7], [8],126

centralized decision models [9], [10], constrained hierarchical127

control architectures [11]–[13], and distributed optimization128

methods [14], [15].129

However, the functionality of previous models [7]–[15] 130

highly depends on the full system operator’s knowledge of 131

MG operation behind the PCC and customers’ private data 132

at node-level, including nodal demand load consumption, 133

nodal generation capacities, nodal PV generations, sensitive 134

cost information, asset constraints, as well as MG network 135

topology and configuration data. Access to these information 136

could compromise the data confidentiality and privacy of MGs 137

and customers that participate in a cooperative business set- 138

ting. Also, previous methods can be mostly categorized as 139

“model-based”, since the decision agents depend on detailed 140

physical models of the distribution systems. One shortcom- 141

ing of model-based solutions is their inability to adapt to 142

constantly-changing system conditions when the amount of 143

measurement data is limited. 144

A promising alternative to model-based optimization 145

approaches is reinforcement learning (RL), which is a model- 146

free data-driven technique that can be used to optimize the 147

behavior of an agent through repeated interactions with its 148

environment, without full system identification and no a pri- 149

ori knowledge of the system. A number of papers have given 150

examples of how RL techniques can be applied in power 151

systems. In [16], [17], energy consumption scheduling prob- 152

lems were solved for single MGs and individual residential 153

buildings using RL algorithms. However, the above studies 154

only focus on providing optimal solutions to power man- 155

agement problems for single entities instead of addressing 156

coupled decision models for multiple interconnected entities 157

in a cooperative setting. 158

In this paper, to solve the problem of decision making under 159

incomplete information while providing decision adaptability, 160

a bi-level cooperative framework is proposed using an RL- 161

based method for a distribution system consisting of multiple 162

networked privately-owned MGs: at Level I of the hierarchy, a 163

non-profit cooperative agent maximizes the total MGs’ revenue 164

from power exchange with the wholesale market. This is done 165

by setting the retail prices, with access only to active/reactive 166

power measurements at the MG PCCs and aggregate load and 167

solar irradiance information behind the PCCs. The cooperative 168

agent acts as an intermediary between the MGs and the whole- 169

sale market, and returns the revenue to the MGs. At Level II 170

of the hierarchy, each MG Control Center (MGCC) agent 171

receives the price signal from the cooperative agent and solves 172

the power-flow-constrained MG power management problem. 173

The objective at this level consists of the MG operational cost 174

and the allocated revenue from the cooperative agent. In sum- 175

mary, the main contributions of this paper can be listed as 176

follows: 177

• The proposed power management system can handle 178

the current limitations raised from data privacy and 179

ownership in the cooperative setting. Considering the 180

model-free nature of our RL-based method, the data pri- 181

vacy of MGs and the data confidentiality of customers are 182

maintained. The power management problem is solved 183

with access to only minimal and aggregated data. 184

• The proposed RL solver is faster than conventional 185

optimization solvers since the learned state-action value 186

function acts similar to a memory that recalls from the 187
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Fig. 1. The architecture of the bi-level networked MGs power management.

cooperative agent’s past experiences to estimate new188

optimal solutions. This is done by updating the state val-189

ues at each decision window and without re-solving the190

decision problem.191

• The RL framework is trained using a regularized recur-192

sive least square methodology with a forgetting factor,193

which enables the decision model to be adaptive to194

changes in system parameters which are excluded from195

the cooperative agent’s state set.196

The reminder of the paper is organized as follows:197

Section II presents the overall decision hierarchy. Section III198

elaborates the proposed RL-based framework. Section IV199

describes the MG power management problem. Simulation200

results and conclusions are given in Sections V and VI,201

respectively.202

II. OVERALL DECISION HIERARCHY203

Fig. 1 gives a general overview of the proposed bi-level204

power management scheme for a distribution system with205

multiple MGs, as follows:206

Level I - RL-based Distribution System Control: The coop-207

erative agent employs an adaptive model-free RL method,208

developed using a regularized recursive least square function209

approximation methodology, to find the optimal retail price210

signals for the MGs based on the latest system states. This211

cooperative agent is non-profit in the sense that it does not212

maximize its own profit, but maximizes the social welfare for213

the whole system, which includes the summation of profits of214

all the MGs as participating members in the cooperative busi-215

ness model. The price signals are then transmitted to MGCC216

agents. The RL training process is performed by the coop-217

erative agent through repeated interactions with the MGCC218

agents. At this level, each MG is modeled as an aggregate219

controllable load which is price-sensitive. The task of the220

RL algorithm is to discover the complex relationship between221

retail price and exchanged power with MGs at PCCs, with-222

out direct detailed knowledge of system operation behind the223

PCCs and only with access to estimations of the solar irra-224

diance and aggregate fixed loads for each MG. Based on225

the definitions of data privacy and confidentiality in smart226

grid [18], this approach limits the need for access to local227

cost and operational constraint data of individual MGs in the228

first place. Hence, the proposed method maintains both the 229

privacy of personal information and privacy of behavior for 230

MGs. Moreover, unlike conventional centralized optimization 231

methods, the proposed RL technique does not need customer 232

confidential information at the node-level, such as customer 233

load consumption, as it only uses aggregate data at the MG 234

PCCs for optimal decision making. Furthermore, renewable 235

and load power uncertainty are represented within the learn- 236

ing model state set. To facilitate adaptive conformation to 237

changes in system parameters that are not included in coopera- 238

tive agent’s state set, such as fuel price, a forgetting mechanism 239

has been integrated into the training process to assign higher 240

importance levels to the latest observed data, compared to 241

previous observations. 242

Level II - MG Power Management: At the second level, 243

the MGCC agents receive the price signal for a look-ahead 244

moving decision window. Based on the received price sig- 245

nals, each MGCC agent solves a constrained Mixed Integer 246

Nonlinear Programming (MINP) to dispatch their local gener- 247

ation/storage assets to maximize their revenue (or equivalently 248

minimize their cost) in the price-based environment, subject 249

to full AC power flow constraints. Each MG’s total rev- 250

enue includes the cost of operation and the allocated revenue 251

received from the cooperative agent. Based on the solution 252

to this problem, each individual MGCC agent determines the 253

exchanged active and reactive power with the distribution 254

system at PCC. 255

Note that the RL-based reward maximization problem at 256

Level I is subject to the power-flow-constrained response of 257

MGs at Level II. Since the MGs are sensitive to electricity 258

price, the reward value cannot be maximized by setting the 259

price to its highest value. This will lead to the maximum 260

DG generation, which will result in a decline in the coopera- 261

tive agent’s revenue. Hence, optimal price is reached based on 262

a tradeoff between MGs’ over-generation (when price is too 263

high) and over-consumption (when price is too low). Also, 264

note that the response of MGs itself is explicitly constrained 265

by network power flow constraints. 266

III. LEVEL I: ADAPTIVE RL-BASED DISTRIBUTION 267

SYSTEM CONTROL 268

At the first level of the hierarchy, a non-profit cooperative 269

agent is in charge of setting the retail price of electricity at 270

different times to maximize the revenue from power exchange 271

with wholesale market, which will be allocated between MGs. 272

This problem is formulated and solved over a moving decision 273

window of length T . The difficulty in solving this problem is 274

that the cooperative agent has incomplete knowledge of MGs’ 275

asset control and management data. To solve this problem, 276

an RL approach is adopted, in which the decision making 277

cooperative agent observes the response of its environment, 278

consisting of networked MGs, to its actions at different states. 279

Based on the received reward/cost signals from its environment 280

and without explicit modeling, the cooperative agent searches 281

for actions that optimize its expected accumulated received 282

rewards at different system states. 283
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A. Proposed RL-Based Method Structure284

A RL framework consists of a Markov decision process285

including a set of states (SSS ∈ S), a set of actions (aaa ∈286

A), a reward function (π : S × A → R), and a state-287

action value function corresponding to each state-action pair288

(Q : S × A → R). These components are defined for the289

problem at hand, as follows.290

1) State Set Definition: In this paper, the system state,291

which is denoted by SSS(t) = (S1S1S1(t), . . . ,SNSNSN(t))� at time t, is292

a concatenation of MGs’ local state vectors (SnSnSn(t) for the nth
293

MG) defined as:294

SnSnSn(t) =
{

ÎPV(t, n), P̂D(t, n)
}

(1)295

where, ÎPV(t, n), P̂D(t, n) are the vectors of solar irradiance296

estimation, and aggregate active load power estimation for the297

nth MG at time t, respectively. Hence, to define the global state,298

the cooperative agent needs to estimate or predict the uncer-299

tain aggregate solar irradiance and load at the PCC for each300

MG. To represent the uncertainty of the prediction process,301

prediction error values are considered to the actual underlying302

solar irradiance and load values, as shown below:303

ÎPV(t, n) ∼ Beta(α, β) (2a)304

α = β
(∑

i IPV
i,t,n

)
(
1−∑

i IPV
i,t,n

) (2b)305

β =
(

1−
∑

i

IPV
i,t,n

)(∑
i IPV

i,t,n

(
1+∑

i IPV
i,t,n

)

e2
PV

− 1

)
(2c)306

P̂D(t, n) ∼ N
(∑

i

PD
i,t,n, e2

D(t)

)
(2d)307

where,
∑

i IPV
i,t,n and

∑
i PD

i,t,n are the real aggregate normalized308

solar irradiance and load over the decision window, and ePV309

and eD are the beta and Gaussian estimation error standard310

deviations. The values of parameters of beta and Gaussian311

distributions are adopted from the [19]–[21].312

2) Action Set Definition: Given the definition of model313

states, the global action vector is similarly defined by the retail314

price signals at the PCCs with MGs, denoted as λR
t,n for the315

nth MG, aaa(t) = (λR
t,1, . . . , λ

R
t,N)�.316

3) Reward Function Definition: The reward function at317

time t represents the discounted accumulated revenue of the318

cooperative agent over the moving decision window with319

length T:320

R(t) =
T−1∑
t′=0

γ t′
(

λW
t+t′P

W
t+t′ −

N∑
n=1

λR
t+t′,nPPCC

t+t′,n

)
(3)321

where, γ is a discount factor (0 ≤ γ ≤ 1) that322

defines the cooperative agent’s preference for the immediate323

reward, defined as the revenue at time t, π(t) = λW
t PW

t −324 ∑N
n=1 λR

t,nPPCC
t,n . Also, λW

t denotes the wholesale energy price,325

PW
t is the exchanged power with the wholesale market, where326

PW
t ≤ 0 represents power import from the wholesale market.327

PPCC
t,n is the active power transfer between grid and the nth

328

MG through the PCC, where PPCC
t,n ≥ 0 implies export from329

MGs to grid. The extreme case of γ = 0 represents a myopic330

cooperative agent, which favors only the immediate economic 331

rewards and assigns zero weights to future expected rewards. 332

However, as the discount factor increases the cooperative agent 333

starts to include future expected rewards into its optimal deci- 334

sion problem. Hence, when the discount factor reaches γ = 1 335

the cooperative agent assigns equal weights to all the expected 336

reward values for all the time instants in the decision window. 337

4) State-Action Value Function Parameterization: To 338

optimize the cooperative agent’s action, an auxiliary state- 339

action value function is formed, denoted as Q(S, a), which 340

can be thought of as a replacement for the explicit system 341

model. The state-action value function determines the long- 342

term accumulated expected reward given the current state and 343

action vectors: 344

Qt(SSS,aaa) = E

{
T−1∑
t′=0

γ t′π
(
t + t′

)|SSS(t) = SSS,aaa(t) = aaa

}
(4) 345

where, Qt(SSS,aaa) is the expected accumulated reward if the ini- 346

tial starting state is SSS(t), while the selected initial action is 347

aaa(t), and the latest optimal policy is followed for every other 348

time-step in the future. The expectation operator E{} is calcu- 349

lated with respect to the future expected action-states, which 350

in this case are in turn functions of the solar-load uncertain 351

powers. 352

The goal of RL is to learn an optimal state-action value 353

function, Q∗t (SSS,aaa), that satisfies the Bellman optimality equa- 354

tion [22], as follows: 355

Q∗t (SSS,aaa) = E

{
π(t + 1)+ γ ·max

a′a′a′
Q∗t

(
SSS(t + 1),a′a′a′

)}
(5) 356

Since solving (5) directly is not possible, RL provides a 357

framework to obtain the optimal state-action value function 358

which satisfies (5) using an iterative episodic learning envi- 359

ronment. To implement this framework for the cooperative 360

agent interacting with multiple MGs, the state-action value 361

function is parameterized employing a multivariate polynomial 362

regression approximation technique [22]–[24], defined by Q̂t, 363

which consists of three multivariate polynomial elements with 364

maximum degree 2: 365

Qt(SSS,aaa) ≈ Q̂t(SSS,aaa|θθθ) = QSSS·aaa(t|θθθ)+ QSSS(t|θθθ)+ Qaaa(t|θθθ) (6) 366

Given the regression parameter vector θθθ , QSSS·aaa, QSSS, and 367

Qaaa are the parameterized sub-components that quantify the 368

impacts of state-action interaction QSSS·aaa(t|θθθ), state values 369

QSSS(t|θθθ), and action values Qaaa(t|θθθ), respectively. These regres- 370

sion sub-components in multivariate polynomial regression 371

model are defined as follows: 372

QSSS·aaa(t|θθθ) =
N∑

n=1

θ1
t,nλ

R
t,nÎPV(t, n)+

N∑
n=1

θ2
t,nλ

R
t,nP̂D(t, n) (7) 373

QSSS(t|θθθ) =
N∑

n=1

θ3
t,nÎPV(t, n)+

N∑
n=1

θ4
t,nP̂D(t, n) (8) 374

Qaaa(t|θθθ) =
N∑

n=1

θ5
t,nλ

R
t,n + θ6 (9) 375
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Fig. 2. Proposed RL-based framework.

where, θθθ = {θk
t,n, θ

k} constitute the parameters of the approxi-376

mate state-action value function that have to be learned by the377

cooperative agent through repeated interaction with the MGs.378

Together these three components form a bilinear regression379

model to parametrize the state-action value function (i.e., the380

regression model is linear with respect to each of its argu-381

ments.) The reason for selecting a bilinear regression model382

is the structure of the reward function (3), which also fol-383

lows a bilinear relationship between the price signal and the384

aggregate power measured at MG PCCs and the substation.385

Furthermore, the state-action value parameterization shown386

in (7)-(9) offers two critical advantages compared to other387

types of function approximators: 1) Using a bilinear regres-388

sion model will simplify optimal action selection procedure389

considerably, as will be shown in Section III-B. For instance,390

if an artificial neural network is used, optimal action selec-391

tion becomes intractable. However, using the proposed bilinear392

regression model, optimal action selection reduces to linear393

programming, which can be solved easily. 2) A basic challenge394

in choosing the form of a function approximator is the trade-395

off between over-parametrization and estimation accuracy. For396

example, as we increase the degree of the multivariate poly-397

nomial approximator the value estimation accuracy for new398

state-action pairs would also improve; however, at some point399

the function approximator becomes over-parameterized and400

will start overfitting to the available data, at which point the401

performance declines. We observed that by limiting the degree402

of the multivariate polynomial degree to 2, the best estimation403

accuracy can be achieved while maintaining a safe margin to404

avoid overfitting under various practical case studies.405

B. Adaptive RL-Based Method Training406

To achieve this task we have adopted an adaptive episodic407

learning mechanism, which is shown in Fig. 2. Each episode in408

the learning process corresponds to an online decision instant.409

Hence, as the decision window rolls along time new episodes410

are perceived by the cooperative agent. The learning process411

has the following steps.412

Step 1 (Initialization): The time index is initialized as 413

t = t0, representing the first episode. The parameters of the 414

state-action value function are initialized, θθθ ← θθθ(t0). The 415

initial state of the system, corresponding to solar irradiance 416

and aggregate load of all the MGs for the decision window 417

[t0, t0 + T] is predicted, SSS(t0), . . . ,SSS(t0 + T). Note that these 418

predicted states, while representing system uncertainty, are 419

updated continuously as the decision window rolls along time. 420

Step 2 (ε-greedy Action Selection): Based on the latest state- 421

action value function defined by parameter θθθ , the optimal 422

actions are estimated for the decision window [t, t + T] to 423

maximize the cooperative agent’s accumulated reward, as 424

follows: 425

aoptaoptaopt
(
t′
) = arg max

a′a′a′
Qt′

(
SSS
(
t′
)
,a′a′a′

)
426

s.t. a′a′a′ =
(
λR

t′,1, . . . , λ
R
t′,N

)�
427

λR,m ≤ λR
t′,i ≤ λR,M,∀ i = {1, . . . , N} 428

∀t′ = {t, . . . , t + T} (10) 429

where, ρλρλρλ = [λR,m, λR,M] defines the minimum/maximum 430

range of action for retail price. Note that given the param- 431

eterization for Qt(SSS,aaa) in (7)-(9), (10) is basically a set of 432

linear programs, which can be solved efficiently using off the 433

shelf solvers. A critical aspect of (10) is that the obtained 434

optimal action, aoptaoptaopt(t), is calculated with respect to the lat- 435

est state-action value function, which could be far from being 436

accurate in the early stages of training. Hence, to reduce the 437

risk of sub-optimality and to strike a balance between explo- 438

ration and exploitation of decision space, an ε-greedy action 439

selection method [22] is adopted, with 0 ≤ ε � 1, to select 440

the cooperative agent’s action at time t: 441

aaa(t) =
{

aoptaoptaopt(t) if r ≥ ε

λR
t,i ∼ U{ρλρλρλ} ∀i if r < ε

(11) 442

where, r is a random number selected uniformly, r ∼ 443

U{[0, 1]}, with U{AAA} representing uniform probability dis- 444

tribution over the set AAA. The randomization (11) promotes 445

continuous exploration of action space to improve the outcome 446

of the learning process. Upon obtaining the action vector aaa(t), 447

retail price signals are sent to each MGCC agent. 448

Step 3 (Networked MG Power Management): Based on 449

the received price signals, λR
t′,n,∀n, t′ = {t, . . . , t + T}, each 450

MGCC agent solves its optimal power management problem 451

(Section IV). Based on the solutions at this stage, the aggre- 452

gate power injection/withdrawal to/from the grid are obtained 453

at the PCCs with the MGs, denoted as PPCC
t′,n and QPCC

t′,n , 454

∀n, t′ = {t, . . . , t + T}. 455

Step 4 (Accumulated Reward Calculation): Based on the 456

outcomes of the MG power managements, the net power 457

exchange with the wholesale market, PW
t , is determined and 458

used to calculate the discounted accumulated revenue for the 459

decision window [t, t + T], using (3). 460

Step 5 (Adaptive Model Training): Using the observed 461

reward signal, the regression models defined in (7)-(9) are 462

updated, based on a gradient descent approach to modify the 463

parameters in the direction of improving the generalization 464
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capacity of the state-action value function [22]:465

θθθ(t + 1)← θθθ(t)+ δ
{

R(t)− Q̂t(SSS,aaa|θθθ)
}
∇θθθ Q̂t(SSS,aaa|θθθ) (12)466

where, δ is the step size that defines the rate of learning. Note467

that ideally we require Q̂t(SSS,aaa|θθθ) = R(t), which implies that468

the approximate state-action value function is able to accu-469

rately predict the accumulated reward. Accordingly, (12) is470

devised to reduce this prediction error over time. To imple-471

ment (12), two points have to be taken under consideration:472

1) since data acquisition and the training process both depend473

on cooperative agent action selection, approximate RL algo-474

rithms are known to be prone to overfitting and over-estimation475

of the values of state-action pairs [25]. Hence, a regular-476

ization mechanism has to be adopted to reduce the risk of477

overfitting, 2) the distribution system parameters are subject478

to change over time. These time-varying parameters, such as479

price of fuel, are not directly captured in the Markov decision480

process’s state definition. This makes the learned model sus-481

ceptible to failure in case considerable changes occur in the482

values of these parameters. Hence, the training process needs483

to be adaptive to enable cooperative agent to quickly conform484

to new system conditions. To implement (12) while consider-485

ing the above-mentioned points, a regularized recursive least486

squares algorithm with exponential forgetting is designed [26].487

The regression parameters are updated recursively, as follows:488

θθθ(t + 1)← θθθ(t)+���(t)xxx(t)
{

R(t)− Q̂t(SSS,aaa|θθθ)
}

(13)489

���(t + 1)← �̂��(t + 1)
(

I + μ�̂��(t + 1)
)−1

(14)490

�̂��(t + 1)← 1

1− φ

(
���(t)− ���(t)xxx(t)xxx(t)����(t)

1+ xxx(t)����(t)xxx(t)

)
(15)491

where, xxx(t) = (SSS(t),aaa(t))� represents the latest cooperative492

agent’s observation, ��� is an auxiliary matrix mimicking the493

regression pseudo-inverse matrix, μ is the regularization fac-494

tor which is used for re-scaling the model covariance, and495

0 ≤ φ < 1 is the forgetting factor. The regularization fac-496

tor acts as a weight for penalizing the Euclidean norm of497

parameter vector (i.e., ||θθθ ||2) in a ridge regression setting to498

prevent overfitting. The forgetting factor enables the coop-499

erative agent to “forget” its earlier experiences in favor of500

the newer observations by assigning lower weights to the501

previously learned parameters. Hence, the forgetting factor502

introduces an exponential extenuation of data history over503

time.504

Step 6 (State Transition): The decision window is moved505

forward to the new episode, t← t+ 1. The new system state506

for the decision window, [t, t+T] is predicted and denoted as507

{SSS(t), . . . ,SSS(t + T)}.508

IV. LEVEL II: MGCC AGENT POWER MANAGEMENT509

At Level II, each MG receives the price signals from the510

cooperative agent to solve the constrained optimal power511

management problem within a moving decision window indi-512

vidually, as shown in the paper Appendix, (16)-(40). Each MG513

is comprised of local DGs, ESS, solar Photo-Voltaic (PV) pan-514

els and a number of loads. Hence, to account for the impacts515

Fig. 3. Test system under study.

TABLE I
RL-BASED METHOD PARAMETERS

of MGs on each other, the MG-level optimal power flow solver 516

is based on an interactive non-linear programming algorithm. 517

The steps of the interactive power flow solution are as follows: 518

Step I (Receive Input Signals From Level I): The MGs 519

receive the retail price signals at the PCCs, λR
t,n, from the 520

cooperative agent. 521

Step II (Solve Individual MG Optimal Power Management 522

Problem): Given λR
t,n and the estimated voltage at PCC, the 523

power management problem (16)-(40) is solved independently 524

by each MGCC, and the exchanged active and reactive powers 525

at the PCCs are obtained for each MG. 526

Step III (Solve Power Flow Problem Over Distribution 527

System): Treating MGs as fixed PQ loads in the external 528

distribution system, power flow is solved over the network 529

connecting the MGs. The total substation exchanged power, 530

PW
t , and voltage values at PCCs, VPCC

t,n , are updated based on 531

the power flow solution. 532

Step IV (Check Convergence): Go back to Step III to update 533

PQ values corresponding to each MG, until the changes in 534

voltage values at MG PCCs are smaller than a threshold 535

value VTh. 536

To summarize, the pseudo-code of the proposed bi-level RL- 537

based framework has been shown in Algorithm 1. 538

V. NUMERICAL RESULTS 539

The proposed method is tested on a modified medium volt- 540

age 33-bus distribution network [27], which has been widely 541

used for studies pertaining to distribution system [28]. The 542

case study consists of four MGs as shown in Fig. 3. Each MG 543

is modeled as a modified IEEE 13-bus network at a low voltage 544

level [29]. Hence, the system has a total number of 85 nodes. 545

To represent a realistic model, we simulated an unbalanced 546

system, where the loads and generators are almost uniformly 547

distributed across phases. Note that the proposed model-free 548

power management technique applies to both balanced and 549

unbalanced systems. Table I presents all setting parameters 550

for the proposed RL-based method in this paper. 551
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Algorithm 1 Bi-Level RL-Based Power Management Method
1: Select T, γ, δ, μ, φ, ε,θθθ(t0)
2: procedure LEVEL I: RL ACTION SELECTION(θθθ)
3: t← 1
4: SSS← [SSS(t), . . . ,SSS(t + T)]
5: Qt(SSS,aaa)← Q̂t(SSS,aaa|θθθ)

6: aoptaoptaopt(t)← Solve linear program (10)
7: λR

t,i ∼ U{ρλρλρλ}
8: r ∼ U{[0, 1]}
9: if r ≥ ε then

10: aaa(t)← aoptaoptaopt(t)
11: else
12: aaa(t)← λR

t,i
13: end if
14: end procedure
15: procedure LEVEL II: MGCC AGENT POWER

MANAGEMENT(aaa)
16: k← 1
17: λR ← aaa(t), Vn(k)← VPCC

t,n
18: PPCC

t,n , QPCC
t,n ← Solve (16)-(40) ∀n with Vn(k)

19: Vn(k)← Solve power flow with {PPCC
t,n , QPCC

t,n }
20: if �|Vn| ≥ VTh then
21: k← k + 1
22: Go back to Step 18
23: else
24: Go to Step 27
25: end if
26: end procedure
27: procedure LEVEL I: RL UPDATE STATE-ACTION VALUE

FUNCTION(PPCC, PW ,SSS,aaa, θθθ )
28: R(t)←∑T−1

t′=0 γ t′(λW
t+t′P

W
t+t′ −

∑N
n=1 λR

t+t′,nPPCC
t+t′,n)

29: Q̂t(SSS,aaa|θθθ)← QSSS·aaa(t|θθθ)+ QSSS(t|θθθ)+ Qaaa(t|θθθ)

30: θθθ(t + 1)← θθθ(t)+ δ{R(t)− Q̂t(SSS,aaa|θθθ)}∇θθθ Q̂t(SSS,aaa|θθθ)

31: if ||θθθ(t + 1)− θθθ(t)|| ≥ θTh then
32: t← t + 1
33: Go back to Step 4
34: else
35: θ∗ ← θ(t + 1)

36: Output θ∗
37: end if
38: end procedure

A. System Operation Outcomes552

The aggregate active load profiles of all the MGs and553

the average load are presented in Fig. 4(a). The aggregate554

solar active generations in each MGs have been shown in555

Fig. 4(b). Both load demands and PV generations data with556

15 minutes time resolution are obtained from smart meters to557

provide realistic numerical experiments. The wholesale mar-558

ket prices used in the numerical case study have been shown559

in Fig. 4(c), which are adopted from the historical whole-560

sale electricity market data from U.S. Energy Information561

Administration [30].562

The retail price signals for the MGs, which are the optimal563

actions from Level I of the proposed RL-based model, are564

presented in Fig. 5. Power exchange between MGs and the565

Fig. 4. Input data for the case study.

main grid under optimal price actions, which are the responses 566

of each MG to the actions, are shown in Fig. 6. These fig- 567

ures show the correlation between MGs’ behavior and the 568

retail price signal. This demonstrates the mutual impacts of 569

the two levels of the decision model. As the wholesale price 570

increases, the cooperative agent increases the retail prices to 571

encourage the MGs to produce more power to reduce the 572

costs of power purchase from the wholesale market. It can 573

be observed that, most of the time, the cooperative agent 574

exports power to the heavily loaded MGs to maintain power 575

balance in the system. The reason for this is that MGs cannot 576

provide their local demand consumption by their own local 577

generation and have to purchase power from the coopera- 578

tive service provider. The overall operational costs of MGs 579

have been compared with and without a cooperative agent 580

as an intermediary between the wholesale market and MGs. 581

As can be seen from Fig. 7, the total operational costs of 582

each MG are reduced due to the returned revenue from the 583

cooperative service provider. Therefore, as an intermediary 584

between the MGs and the wholesale market, the coopera- 585

tive agent can help MGs to reduce their overall operational 586

cost. Hence, it is in the interest of the MGs to participate 587

in the wholesale market through the non-profit cooperative 588

agent. 589
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Fig. 5. Optimal retail price signals (Level I actions).

Fig. 6. Optimal power transfer through PCC of MGs (Level II responses to
optimal actions).

Fig. 7. Comparison of total operational cost of MGs.

B. Benefits of RL-Based Method590

A numerical comparison between a centralized off the shelf591

solver [31] versus the proposed method for the multiple MGs592

power management problem is shown in Table II. In this table,593

the total social welfare is defined as the summation of the594

cooperative agent’s accumulated reward and the operational595

cost of all the MGs. Ideally both of the solvers should output596

the global optimal solution to the problem. As can be seen, the597

difference between the solutions obtained by the centralized598

solver with complete system information, and the proposed599

RL method under incomplete information is less than 0.5%600

of the total achieved welfare. Note that while the initial RL601

training stage can be time-consuming, the decision time is602

much smaller than that of a centralized optimization method,603

upon convergence. This is due to the fact that the proposed RL-604

based method is able to receive continual updates over time,605

which enables the decision framework to reach a solution in606

real-time without the need to solve a large-scale optimization607

problem at each time instant.608

To further demonstrate this, we have performed numerical609

experiments in which the trained state-action value functions610

TABLE II
COMPARISON WITH A CENTRALIZED OPTIMIZATION METHOD

of three different decision windows have been used for a new 611

decision window without re-training. In Fig. 8, optimal power 612

transfers are compared for four scenarios representing four 613

distinct decision windows: in each scenario the RL training 614

is performed for one of the decision windows from random 615

initial conditions, while the updated aggregate MG solar gen- 616

eration and load demand from that decision window are simply 617

inserted into the learned state-action value functions obtained 618

from the other three decision windows. Then, the optimal 619

actions are calculated for each decision window. As can be 620

seen, for all scenarios the optimal solutions are close to each 621

other and almost identical. This shows that the state-action 622

value function learned from other decision windows can be 623

used reliably in new situations using updated state information. 624

Hence, the RL model does not necessarily need to be trained 625

from scratch, and the latest learned function approximator can 626

be simply used to update the cooperative agent’s decisions. In 627

practice, however, the re-training process has to be performed 628

with a user-defined frequency depending on the rate of change 629

of system parameters. 630

Therefore, the RL-based method has two fundamental 631

advantages over centralized optimization method: 1) RL is 632

model-free; hence, unlike centralized optimization approaches, 633

it does not require detailed private knowledge of MG systems 634

to reach the optimal solution. 2) RL is much faster com- 635

pared to centralized solvers since the learned state-action value 636

function, which acts similar to a memory, is able to leverage 637

the cooperative agents past experiences to obtain new optimal 638

solutions by generalizing to new unseen states. 639

C. Adaptive RL Results 640

To verify the functionality of the RL framework, the esti- 641

mated reward obtained from the multiple linear regression is 642

compared with the actual reward at each episode, as shown 643

in Fig. 9. As can be seen, at the earlier stages of the learn- 644

ing process, the difference between the estimated reward and 645

the real reward is relatively high. However, as the number of 646

episodes increases, this difference drops to within an accept- 647

able range. The results imply that the cooperative agent is able 648

to accurately estimate the response of MGs to control actions. 649

Hence, using the proposed RL approach the cooperative agent 650

is able to track the behavior of MGs and maximize the reward 651

through continuous interactions. 652

To test the adaptability of the learning framework against 653

changes in parameters that have not been included in the 654

definition of state set and are not directly observed by the 655

cooperative agent, a numerical scenario is devised. At a point 656

in time (episode t = 250 h), the DG fuel price is doubled. The 657

reward estimation mean absolute percentage error (MAPE) 658
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Fig. 8. Verifying the accuracy of previously-learned models under new state
scenarios from different decision windows (memory effect).

Fig. 9. Performance of the proposed reward function approximation.

with forgetting factor is shown in Fig. 10(a). As can be seen,659

upon the occurrence of the sudden change in fuel price, the660

learning MAPE temporarily jumps to a very high value since661

the cooperative agent is now facing a new unknown environ-662

ment, as the price of fuel is not included within the cooperative663

agent’s Markov decision process. However, as the learning664

process with forgetting proceeds, the MAPE drops to within665

acceptable range once more. The cooperative agent can still666

track the actual underlying reward signal as the number of667

episodes increases with the sudden parameter changes. The668

reward estimation MAPE without forgetting factor is shown669

Fig. 10. Adaptability of the proposed RL-based method.

Fig. 11. Impact of forgetting factor on learning convergence.

in Fig. 10(b). As can be seen, compared to the proposed adap- 670

tive RL-based method with forgetting factor, the conventional 671

RL-based method without forgetting factor shows slow adapta- 672

tion to changes in parameters. For this case, our RL-method is 673

able to achieve 25% improvement in the convergence constant 674

over conventional RL. 675

In Fig. 11, the impact of forgetting factor on the convergence 676

of the RL framework is demonstrated. This figure shows the 677

RL-based reward estimation error for the cooperative agent 678

under two different forgetting factor values. As the forgetting 679

factor increases from 0.01 to 0.1, the convergence speed of the 680

RL framework has been improved. Hence, the forgetting factor 681

controls the rate of adaptiveness to new conditions. However, 682

a tradeoff exists between the rate of convergence and the accu- 683

racy of the solution. As can be seen, higher forgetting factors 684

also lead to higher variances in the estimation error signal. 685

VI. CONCLUSION 686

Smart distribution systems with networked MGs in a coop- 687

erative setting can facilitate reliable power delivery to cus- 688

tomers in future rural power grids. However, cooperatives 689

can have incomplete knowledge of MG members’ opera- 690

tional parameters due to data privacy and ownership concerns, 691
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which is an obstacle in the way of optimal decision mak-692

ing. Motivated by the shortcomings of model-based multiple693

MG power management in distribution systems with lim-694

ited observability, this paper presents an adaptive RL-based695

methodology for bi-level power management of cooperatives696

consisting of multiple networked MGs.697

We have shown that: 1) using the proposed decision method,698

a cooperative agent is able to accurately track the behavior699

of multiple networked MGs under incomplete knowledge of700

operation variables behind the PCCs. This can be used to indi-701

rectly control the response of participants in a price-based702

environment. 2) The proposed RL-based method is able to gen-703

eralize from its past experiences to estimate optimal solutions704

in new situations without re-training from random initial con-705

ditions (i.e., fast response under evolving system conditions).706

This immensely speeds up the power management compu-707

tational process. 3) The framework is shown to be adaptive708

against the changes happening to unobserved parameters that709

are excluded from cooperative agent’s state set. The learning710

model has been tested and verified using extensive numerical711

scenarios. To summarize, the proposed decision model shows712

better adaptability, solution quality, and computational time713

compared to conventional centralized optimization methods.714

The current RL-based decision model is limited to the715

power management of a single cooperative service provider716

with multiple MGs. However, in more realistic cases, there717

could also be multiple cooperative service providers in an718

interconnected rural area, which implies that the impact719

of cooperative service providers on each other and on the720

wholesale price could not be ignored. Hence, an optimal coor-721

dination scheme needs to be designed to enable collaboration722

among multiple entities. In future work, we will extend the723

proposed RL method to address this challenge.724

APPENDIX725

MG OPTIMAL POWER MANAGEMENT FORMULATION726

A moving look-ahead decision window [t, t+ T] is defined727

using the latest estimations of solar and load power at dif-728

ferent instants, where n is the MG index (n ∈ {1, . . . , N}),729

i and j define the bus numbers for each MG (∀i, j ∈ �I),730

and k denotes the line index (∀k ∈ �K). It has deci-731

sion vector xpxpxp = (PDG
i,t,n, PPCC

t,n , PCh
i,t,n, PDis

i,t,n)
� and xqxqxq =732

(QDG
i,t,n, QPCC

t,n , QPV
i,t,n, QESS

i,t,n)
�.733

min
xpxpxp,xqxqxq

T+t∑
t

(
−λR

t,nPPCC
t,n + λF

i,t,nFi,t,n

)
(16)734

s.t. Fi,t,n = af

(
PDG

i,t,n

)2 + bf PDG
i,t,n + cf (17)735

∣∣∣PPCC
t,n

∣∣∣ ≤ PPCC,M
t,n (18)736

∣∣∣QPCC
t,n

∣∣∣ ≤ QPCC,M
t,n (19)737

0 ≤ PDG
i,t,n ≤ PDG,M

i,n (20)738

0 ≤ QDG
i,t,n ≤ QDG,M

i,n (21)739 ∣∣∣PDG
i,t,n − PDG

i,t−1,n

∣∣∣ ≤ PDG,R
i,n (22)740

Pij
t,n = Vi

t,n

(
Vi

t,nGij
n − Vj

t,n

(
Gij

ncos
(
�θ

ij
t,n

)
741

+ Bij
nsin

(
�θ

ij
t,n

)))
(23) 742

Qij
t,n = −Vi

t,n

(
Vi

t,nBij
n + Vj

t,n

(
Gij

ncos
(
�θ

ij
t,n

)
743

− Bij
nsin

(
�θ

ij
t,n

)))
(24) 744

(
Pij

t,n

)2 +
(

Qij
t,n

)2 ≤
(

Lij,M
t,n

)2
(25) 745

K∑
ij∈k

Pij
t,n =

K∑
ji∈k

Pji
t,n − pi,t,n (26) 746

K∑
i,j∈k

Qij
t,n =

K∑
j,i∈k

Qji
t,n − qi,t,n (27) 747

pi,t,n = PD,e
i,t,n − PDG

i,t,n − PPV,e
i,t,n + PCh

i,t,n − PDis
i,t,n (28) 748

PD
i,t,n = PD,e

i,t,n − εD
i,t,n (29) 749

PPV
i,t,n = PPV,e

i,t,n − εPV
i,t,n (30) 750

qi,t,n = QD
i,t,n − QDG

i,t,n − QPV
i,t,n + QESS

i,t,n (31) 751

VPCC
t,n = VPCC,E

t,n (32) 752

Vm
i,n ≤ Vi,t,n ≤ VM

i,n (33) 753∣∣QPV
i,t,n

∣∣ ≤ QPV,M
i,n (34) 754

SOCi,t,n = SOCi,t−1,n 755

+ �t
(

PCh
i,t,nηCh − PDis

i,t,n/ηDis

)
/ECap

i,n (35) 756

SOCm
i,n ≤ SOCi,t,n ≤ SOCM

i,n (36) 757

0 ≤ PCh
i,t,n ≤ uCh

i,t,nPCh,M
i,n (37) 758

0 ≤ PDis
i,t,n ≤ uDis

i,t,nPDis,M
i,n (38) 759

0 ≤ uCh
i,t,n + uDis

i,t,n ≤ 1 (39) 760

uCh
i,t,n, uDis

i,t,n ∈ {0, 1} (40) 761

The objective function (16) minimizes each MG’s total 762

cost of operation, which is composed of two terms: the neg- 763

ative of revenue from power transfer with the cooperative 764

agent and the cost of running local DGs. Here, λF
t,n is the 765

diesel generator fuel price in $/L adopted from [32]. The 766

fuel consumption Fi,t,n of diesel generator can be expressed 767

as a quadratic polynomial function (17), with coefficients 768

af = 0.0001773 L/kW2, bf = 0.1709 L/kW, and cf = 14.67L 769

adopted from [33]. Constraints (18)-(19) describe the power 770

exchange limit between the MG and the upstream distribution 771

grid with the maximum active/reactive power exchange lim- 772

its, PPCC,M
t,n , QPCC,M

t,n . Constraints (20)-(21) ensure that the DG 773

active/reactive power outputs, PDG
i,t,n/QDG

i,t,n, are within the DG 774

power capacity PDG,M
i,n , QDG,M

i,n , and (22) enforces the maxi- 775

mum DG ramp limit, PDG,R
i,n . Internal AC power flow model 776

of the MG is considered here with the network topology con- 777

straints, with (23) and (24) determining the active and reactive 778

power flows of each branch, where Gij and Bij are the cor- 779

responding real and imaginary parts of the bus admittance 780

matrix, and Vi
t,n and �θ

ij
t,n are the nodal voltage magnitude and 781

phase angle difference, respectively. Constraint (25) denotes 782

the power flow limits for each branch. Equations (26)-(31) 783

are the nodal active/reactive power balances at MG buses. 784
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The difference between the predicted and actual PV/load val-785

ues are modeled using Gaussian error variables as shown in786

equations (29) and (30), where PD,e
i,t,n denotes the estimated787

active load, and PPV,e
i,t,n is the estimated active power out-788

put of PV. Also, εD
i,t,n, ε

PV
i,t,n ∼ N(0, σ ) denote the Gaussian789

estimation errors for active load and PV power, respectively.790

Constraint (32) sets the voltage at the PCC of the MG accord-791

ing to the estimated input voltage, VPCC,E
t,n . Constraint (33)792

sets the limits for nodal bus voltage amplitude, [Vm
i,n, VM

i,n].793

PV reactive power output, QPV
i,t,n, is constrained by its max-794

imum limit QPV,M
i,n in (34). Operational ESS constraints are795

described by (35)-(40). Adopted from [34], constraint (35)796

determines the state of charge (SOC) of ESSs, SOCi,t,n. The797

SOC and charging/discharging power of ESS, PCh
i,t,n, PDis

i,t,n, are798

constrained in (36)-(40). Here, [SOCm
i,n, SOCM

i,n], PCh,M
i,n and799

PDis,M
i,n define the permissible range of SOC, and maximum800

charging and discharging power, with uCh
i,t,n and uDis

i,t,n denoting801

the charge/discharge binary indicator variables, and ηCh/ηDis802

representing the charging/discharging efficiency. ECap
i,n denotes803

the maximum capacity of ESSs.804
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