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Abstract—This article presents a supervised multi-agent safe
2 policy learning (SMAS-PL) method for optimal power manage-
s ment of networked microgrids (MGs) in distribution systems.
4+ While unconstrained reinforcement learning (RL) algorithms are
s black-box decision models that could fail to satisfy grid oper-
s ational constraints, our proposed method considers AC power
7 flow equations and other operational limits. Accordingly, the
s training process employs the gradient information of operational
constraints to ensure that the optimal control policy functions
generate safe and feasible decisions. Furthermore, we have
developed a distributed consensus-based optimization approach
to train the agents’ policy functions while maintaining MGs’ pri-
vacy and data ownership boundaries. After training, the learned
14 optimal policy functions can be safely used by the MGs to
15 dispatch their local resources, without the need to solve a com-
16 plex optimization problem from scratch. Numerical experiments
have been devised to verify the performance of the proposed

method.

Index Terms—Safe policy learning, multi-agent framework,
networked microgrids, power management, policy gradient.

Indices
i,j
ij
k

m
n
4

Parameters

n> Yns

n

NOMENCLATURE

Indices of buses, Vi,j € Q.

Index of branch between bus i and bus j, Vij €
Qp;.

Iteration index in distributed optimization, k €
{1,..., K"},

Constraint index, m € {1, ..., M.}.

Agent index, n € {1,...,N}.

Episode index in training process, ¢’ € [t, t+T].

Coefficients of the DG quadratic cost function
for agent n.
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Gradient vector of the constraint return function
m w.r.t. the parameters (.

Gradient vectors of the constraint return func-
tion m w.r.t. the parameters X,,.

Dimension of multivariate Gaussian distribu-
tion function for agent n.

Upper limit for constraint m.

Max. capacity of ESS unit.

Fisher information matrix of agent n.
Gradient vector of the reward functions w.r.t.
the parameters .

Gradient vector of the reward functions w.r.t.
the parameters X,.

Max. current limit on branch ij.

Number of constraints.

Number of global constraints.

Number of local constraints.

Number of MGs.

Number of neighboring MGs for agent n.
Max. ESS charging limits.

Max. ESS discharging limits.

Active and reactive load power.

Max. DG active power capacity.

Max. DG reactive power capacity.

Max. DG ramp limit.

PV active power output.

Max. active power flow at the PCCs.

Max. reactive power flow at the PCCs.

Max. PV reactive power output limit.

Max. SOC limits.

Min. SOC limits.

Length of the moving decision window.

Max. and min. voltage limit on bus i.

Weight parameters assigned of agent n to
neighboring agent n’.

Real and imaginary parts of the nodal admit-
tance matrix Y.

Charging and discharging efficiency of ESS.
Diesel generator fuel price.

Retail price signals at the PCCs.

Vector of DNN weights and bias of agent n.
Mean vector and covariance matrices for con-
trol action of agent n.

Step sizes for updating 6 and A.
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B P Penalty factor for constraints violation.
79 At Time step.

oAby Threshold for parameter updating.

g Y Discount factor.

2 T Tightening multiplier.

ss Variables

YR Vector of control actions of agent n.

s Cp(m) Return value of constraint m based on the
86 control policy 7.

7 Fiy Fuel consumption of DG at bus i of agent n.
s IRe [Im Real and imaginary parts of the injected current
89 at bus i.

9 I{;e, Iil;" Real and imaginary parts of the branch current
91 at branch ij.

2 O Vectors of observation variable.

e PC" PPl Charging and discharging power of ESS unit.
w  PPY QPC DG active and reactive power outputs

s PPCC Active power flow at the PCC.

w QFCC Reactive power flow at the PCC.

o QFSS Reactive power outputs of ESS unit.

w QFY PV inverter reactive power output.

% SOC SOC of the battery system.

100 Sp Vectors of system state of agent n.

101 Vl-Re, Vilm Real and imaginary parts of the bus voltage

102 magnitude at bus i.

103 Ap Vector of Lagrangian multipliers.

104 Functions

105 JR, Expected reward function of agent n.
w0 Jc, Expected return function of constraint m.
107 Ty Multivariate distribution function over control

108 actions of agent n.
109 A Kullback Leibler (KL)-divergence function.

110 I. INTRODUCTION

111 ICROGRIDS (MGs) are active clusters of distributed
112 M energy resources (DERs), loads, energy storage system
13 (ESS), and other onsite electric components. A smart distribu-
114 tion system may consist of multiple MGs and the coordinated
115 control of the networked MGs can offer various benefits,
ne including higher perpetration of local DERs, improved con-
17 trollability, and enhancement of power system resilience and
s reliability [1], [2]. Solving the power management problem of
119 networked MGs is a complex task. While previous works in
120 this area have provided valuable insight, we have identified
121 two shortcomings in the literature:

122 (1) Limitations of model-based optimization methods: In the
123 existing literature, there are quite a few model-based methods
124 for solving the optimal power management problem of net-
125 worked MGs, such as centralized decision models [3]-[5] and
126 distributed control frameworks [6]-[8]. However, with increas-
127 ing number of MGs in distribution networks, these methods
128 have to solve large-scale optimization problems with numerous
120 nonlinear constraints that incur high computational costs and
130 hinder real-time decision making. Furthermore, model-based
131 methods are unable to adapt to the continuously evolving
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system conditions, as they need to re-solve the problem at
each time step.

(2) Potential infeasibility of model-free machine learning
methods: To address the limitations of model-based methods,
model-free reinforcement learning (RL) techniques have been
used to solve the optimal power management problem through
repeated interactions between a control agent and its environ-
ment. This approach eliminates the need to solve a large-scale
optimization problem at each time point and enables the con-
trol agent to provide adaptive response to time-varying system
states. Existing examples of RL application in power systems
include economic dispatch and energy consumption schedul-
ing of individual MGs [9]-[11] and multi-area smart control of
generation in interconnected power grids [12], [13]. Further,
in our previous paper [14], we have proposed a bi-level power
management method for networked MGs, where a centralized
RL agent determines retail prices in a cooperative business
model for each MG under the incomplete information of phys-
ical model. Current RL-based solutions employ control agents
to train black-box functions to approximate the optimal actions
through trial and error. However, the trained black-box func-
tions can fail to satisfy critical operational constraints, such
as network nodal voltage and capacity limits, since these
constraints have not been encoded in the training process.
This can lead to unsafe operational states and control action
infeasibility.

However, incorporating constraints into the training pro-
cess of conventional black-box methods is challenging since
these methods have generally relied on adding penalty terms
to training objective functions for enforcing constraints, which
cannot guarantee the safety of control policies as the number
of constraints grows. Inspired by recent advances in con-
strained policy learning (PL) [15]-[17] and to address the
shortcomings in the existing literature, we have cast the power
management of networked MGs as a supervised multi-agent
safe PL problem (SMAS-PL). The various resources inside
each MG and the collaborative behavior of MGs are both
controlled to optimize the total cost of operation, while sat-
isfying all the local and global constraints. Moreover, we
have proposed a multi-agent policy gradient solution strategy,
which enables individual MGs learn control policy functions
to maximize the social welfare and ensure safety in a dis-
tributed way. The proposed method introduces a trade-off
between model-free and model-based methods and combines
the benefits offered by both sides. The purpose is to leverage
the advantages of both model-free and model-based methods,
for scalable real-time decision making while also maintain-
ing a user-defined level of safety by considering constraints
in the training process. Hence, on one hand, MGs’ power
management policy functions are modeled using black-box
deep neural networks (DNNs); while on the other hand, to
ensure decision feasibility, a constrained gradient-based train-
ing method is proposed that exploits the derivatives of the
constraints and objective functions of the power management
problem w.r.t. control actions and learning parameters. The
training process employs these gradient factors to provide
a convex quadratically constrained linear program (QCLP)
approximation to the power management problem at each
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episode. This enables the proposed method to be both adapt-
able to changes in the inputs of the black-box components, and
feasible with respect to operational constraints, including AC
power flow. Finally, a distributed consensus-based primal-dual
optimization method [18] is adopted to decompose the train-
ing task among MG agents. In summary, compared to existing
decision making solutions, the main advantages of this article
are as follows:

« Compared to the black-box learning-based methods, the
proposed SMAS-PL leverages the gradient information
of all the operational constraints to devise a tractable
QCLP-based training process to promote the safety and
feasibility of control policies. A backtracking mechanism
is added into the PL framework to perform a final verifi-
cation of feasibility before issuing control commands to
the assets.

« Compared to conventional centralized training methods,
the distributed training process in the SMAS-PL offers
two advantages: it preserves the privacy of MG agents,
including their control policies parameters and struc-
tures, operation cost functions, and local asset constraints;
it also enhances computational efficiency and maintains
scalability as the number of learning parameters grows
into a humongous size.

o The proposed SMAS-PL method does not need to solve a
complex optimization problem in real-time. The agents’
policy functions, that are trained offline, can be leveraged
online to select optimal control actions in response to
latest system state data.

The reminder of this article is organized as follows.
Section II presents the overall framework of the proposed solu-
tion. Section III introduces the SMAS-PL problem and inte-
grates problem gradients into the solver. Section IV describes
the multi-agent consensus-based training algorithm for SMAS-
PL. Simulation results and conclusions are given in Section V
and Section VI, respectively.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

The general framework of the proposed SMAS-PL method
is shown in Fig. 1. Note that vectors are denoted in bold let-
ters throughout this article. The micro-sources within each MG
are controlled by an agent that adopts a private control policy.
Here, the control policy for the n’th agent, m,, is a parametric
probability distribution function, with parameters 6,, over the
agent’s control actions (@), including active/reactive power
dispatching signals for local diesel generators (DGs), ESS and
solar photo-voltaic (PV) panels. Note that the control policy
7, is a function of the MG’s state variables (S,,), defined
by the aggregate MG load and solar irradiance. To ensure the
safety of the control policies, MG agents receive the observed
variables from the grid, including network nodal voltages V;
and injection currents I;, to determine gradient factors of the
problem constraints and objectives w.r.t. to learning param-
eters, VgJ. These gradient factors are then integrated into
a multi-agent constrained training algorithm, which employs
local inter-MG communication to satisfy all global and local
operational constraints through exchanging and processing

Local Communication

MG Agent n PN MG Agent n’
———————————— . T —,—
| 7 - [REMOM| . - - |
l—» Policy Learning | | | Policy Learning T
...<|— 0, « U(V,,n]) - 7 ’(t)'| 0, « U(VB",]) 4_'_'"
| ¢9n I S *9'{ W
@ v @ |
l Action Selection § et : l Action Selection § Ve I
SN of | Lenmaien | 200
Sa(t 15} t 5}
o [ 21 2 2
21 2 [an(t+1) | 8| Slayt+1D |
< Q < Q
Al=——<<}-————- L — =l —_——— A} — — — — L —
s Y - y

[ Distribution Grid with Networked MGs ]

Fig. 1. Structure of the proposed SMAS-PL method for power management
of networked MGs.

dual Lagrangian variables, A(t). The Lagrangian multipliers
embody the interactions among the MGs and capture the
impacts of MGs’ decisions on each other. Theoretical anal-
ysis and numerical simulations are conducted to show that the
proposed SMAS-PL method can minimize the MG agents’
operational cost and satisfy operational constraints. Note that
the proposed SMAS-PL is not a purely model-free approach,
since the AC power flow equations are used to calculate gra-
dient factors and ensure the decision feasibility when training
the DNNs.

In this article, the MGs are chosen to be collaborative,
because the satisfaction of the global constraints (i.e., lim-
its on nodal voltages and line flows) for the whole network
needs coordination among all MGs. Since global constraints
are impacted by the response of all the MGs, we have devised
a collaborative policy learning to ensure that grid-wide oper-
ation remains safe. Specifically, the consensus-based training
method leverages the Lagrange multipliers of the global con-
straints to coordinate the policy optimization of the MGs.
Thus, each Lagrange multiplier serves as a penalty factor
or a shadow price, which enforces safety in the data-driven
procedure.

III. SAFE POLICY LEARNING FOR POWER MANAGEMENT
OF NETWORKED MGS

To facilitate the discussion, Section III-A introduces a gen-
eral power management formulation that is commonly used in
literature [4], [6], [14]. Sections III-B defines each component
of the proposed SMAS-PL. In Sections III-C and III-D, we
propose a tractable SMAS-PL method, employing the gradi-
ent factors of reward function and constraint return functions
w.r.t. actions and learning parameters, to solve the power
management of networked MGs.

A. Power Management Problem Statement

Each MG is assumed to have local DGs, ESS, solar PV
panels and a number of loads. This optimization problem is
solved over a moving look-ahead decision window ¢’ € [z, t +
T], using the latest estimations of solar and load power at
different instants. Here, n is the MG index (n € {1,..., N}),
i and j define the node numbers (Vi,j € €2;), ij defines the
branch numbers (Vij € Qp,).
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1) Problem Objective: The objective function (1), with
control action vector [PPC, pCh pDis PG PV QESS] ¢
(xp, Xq), minimizes MGs’ total cost of operation, which is
composed of the income/cost from power transfer with the
grid and cost of running local DG. Here, AL is the DG fuel
price, AR is the electricity price, and PP cc” is active power
transfer between grid and the n’th MG at the point of com-
mon coupling (PCC). The fuel consumption of DG, F; ,, y, can
be expressed as a quadratic polynomial function of its power,

PDGt,, with parameters d,, bl and ).
N 4T
min ZZ( WEPPCC 40 E Fy, ,/) (1)
gl
Flnt’—af(P“”/> —|—bfPlth/~|—C (2)

2) Global Constraints: These constraints are defined over
variables that are impacted by control actions of all the MGs,
including the voltage amplitude limits for the entire nodes,
[vir, V. ], and the maximum permissible branch current flow
magnltudes If]” throughout the distribution grid and the MGs:

3)
“4)

The global constraints (3)-(4) are implicitly determined by
the AC power flow equations, which will be used to calculate
the gradient factors of objective (1) and constraints (3)-(16)
w.r.t. learning parameters as elaborated in Section III-D. Note
that unlike previous centralized optimization solutions that are
generally model-based, our strategy is a combination of both
model-based and model-free approaches. Thus, while power
flow equations appear explicitly in centralized optimization
models, our solution only leverage power flow equations in an
implicit way in the training process to ensure that the learning
modules are generating feasible outcomes.

3) Local Constraints: These constraints are defined over the
local control actions of each MG. Constraints (5) (6) ensure
that the DG active/reactive power outputs, P / Q; Pt

within the DG power capacity PD G, M D G, M and (7) enforces
the maximum DG ramp limit, PD

V< Vip<VvM
M M
_Iij = Iij,f/ = Iij

PV reactive power out-
put, Ql »» s constrained by its maximum limit Q; X M per (8).
The active power transfer Pi CC and the reactive power trans-

fer QlD at the PCCs are Bounded with the constraints (9)
and (10) respectively.
0<PPG, < pPoM (5)
0< 000, <0 ©)
DG G.R
’Pllll/ Pznt—l SPi[,)n (7)
o, | < o ®)
Pi?'c < PﬁCC.M ©)
e | < gpees (10)

The operational ESS constraints are described by (11)-(16),
where (11) determines the state of charge (SOC) of ESSs,
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SOC; . Elc P denotes the maximum capacity of ESSs. To
ensure safe ESS operation, the SOC and charging/discharging
power of ESS, P" PP are constrained as shown in

Ln’ nLn’
(12)(16). Here, [SOC?,, SOCY], P{"M and PPEM define

nLn’
the permissible range of SOC, and maximum chargmg and
discharging power, respectively. Constraint (15) indicates that
ESSs cannot charge and discharge at the same time instant.
And ncn/npis represents the charging/discharging efficiency.

The reactive power of ESS, 055, is kept within maximum

in >

limit, QESSM through constraint (16).
(sz,ﬂ’?Ch - P?,’;ft//ﬂDis)

SOCi,n‘t/ = SOCi,n,t/fl + At Cap

Ei,n
(an
SOCm = SOC’ nt = SOCt n 12)
0= P, <P (13)
0 giiins Pfr’f’M (14)

Ch
PiniPiny =0 (15)
SS,

0555 | < oo (16)

Note that the distribution system and networked MGs are
operated in normal condition, which means the switch opera-
tion and the network topology are assumed to be unchanged
during the operation period.

B. Safe Policy Learning Setup

In this section, the optimal power management of networked
MGs is transformed into a SMAS-PL problem. The purpose
of the SMAS-PL is to provide a framework for control agents
to collaboratively find control policies to maximize their total
accumulated reward while satisfying all problem constraints.
To do this, we have provided formulations to ensure that the
outcome of the SMAS-PL also corresponds to the solution of
optimal power management of networked MGs (1)-(16). To
show this, first we provide a description of the components of
the SMAS-PL method:

1) Control Agents: The problem consists of N autonomous
control agents, where each agent is in charge of dispatching
the resources within an individual MG. The MGs are collabo-
rative, in the sense that they depend on local communication
with each other to optimize their behaviors.

2) State Set: The state vector for the n’th MG agent at
time ¢ is defined as S, over the time window [¢, 7 + T, as
St = [If‘:,,i’gt,]?c, where IPV, and PD are the vectors
of predlcted aggregate internal load power and solar irradi-
ance of the n’th MG at time 7, respectively. The prediction
errors follow random distributions with zero mean and the
standard deviations selected from the beta and Gaussian dis-
tributions adopted from [19]-[21]. Note that the parameters of
forecasting error distributions are different for different MG
agents.

3) Action Set: The control action vector for the n’th agent at
time # is denoted as a,,, € RP" and consists of the dispatching
decision variables for the n’th MG over the time window [¢, t+
T] as an,; = [PDG PC/’L PDZA QD[/’ QPt’9 in;g itt

n, 1 t/7 t/’
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4) Observation Set: The observation variable vector for the
agents at time ¢ is denoted as Oy, and includes grid’s nodal
voltages V; and current injections I; at that time, Oy = [Vy, I¢].
Note that the observations are implicitly determined by the
agents’ control actions, and thus, cannot be predicted indepen-
dently of the agents’ policies. However, unlike the observation
variables, the state variables are independent of the agents’
control actions and can be predicted for the whole decision
window without the need to consider agents’ policies. In
the power management problem, nodal sensors or distribution
grid’s state estimation module will provide the latest values of
observations.

5) Control Policy: In this work, the control policies are
modelled as multivariate Gaussian distributions due to several
reasons: (i) Gaussian distributions allow for explicit learning of
both expectations and uncertainties of control policies, which
are directly represented by the parameters of the distribution.
Most of other distributions are parameterized by unintuitive
parameters that make the decision model harder to interpret
and verify. (ii) The gradients of Gaussian policy functions with
respect to actions and learning parameters are easy to com-
pute (see Appendices A and B). (iii) Gaussian policy functions
have been adopted and suggested by [22] and [23]. Thus, the
control policy for the n’th agent, denoted as m,, is defined as
a D,-dimensional multivariate Gaussian distribution over con-
trol actions a,. The policy function determines the probability
of the agent’s optimal control action after training, as follows:

1 Tyl
an ~ T (@n|0n) = e~ 2@n—Hn) T, (@n—pn) (17)

1

V12 2m)Pn
where p, € RP»*! is the mean vector and %, € RP»*Pn g
the covariance matrix of of multivariate Gaussian distribution
for the n’th agent. The Gaussian policy function explicitly
determines the expected value and uncertainties of optimal
control actions for each agent. Each agent’s learning parameter
vector, 6y, consists of two parametric subsets 6, and 05,
corresponding to the mean vector and the covariance matrix of
the agent’s policy function. To do this, two DNNs are used for
each MG agent as parametric learning functions to represent
control policy components. These DNNs receive the agent’s
states, S,, as input to fully quantify the sufficient statistics of
optimal control policies of MGes, i.e., the mean vector and the
covariance matrix of the agent’s actions, as follows:

I, = DNN(S,10,,)
2, = DNN(S,105,)

(18)
19)

The DNNs are maintained, continuously updated, and
deployed in real-time by local control agents of each MG. Note
that the proposed SMAS-PL method introduces a trade-off
between model-free and model-based methods and combines
the benefits offered by both sides. Thus, the reasons for the
use of DNN-based distributions for modeling actions are as
follows: (i) we have leveraged the model information to train
safe policy functions that guarantee feasibility (i.e., the model-
based aspect of the solution); (ii) the trained policy functions
are deployed online for action selection, simply by inserting
the latest data samples into the DNN-based policy functions
(i.e., the model-free aspect of the solution).

6) Reward Function: The reward function for the n’th MG
is defined as the discounted negative accumulated operational
cost of individual MG over the decision window [¢,t + T],
Roy = —[ §,+:Tt(—,\§P§f,C + AF Fin)], obtained from the
objective functions of the networked MGs power management
problem, (1), as follows:

t+T
JRn(jT”) = Eﬂn ZVIRH,I/ 7vn S {15 . aN}

=t

(20)

where, y € [0, 1) is a discount factor that determines each
MG agent’s bias towards rewards received at different time
instances. An agent with y = 0 is a purely-myopic decision
maker, which favors immediate reward at the expense of later
expected reward values. On the other hand, y = 1 represents
an unbiased agent, which assigns equal weights to the reward
received at all time instants. This parameter is user-defined and
depends on each MG’s economic priorities. The expectation
operation E, {} is used to calculate reward with respect to the
future expected action-states, which are in turn impacted by
the uncertainties of states and observations.

7) Constraint Return: The SMAS-PL consists of a total of
M constraints, including Mf local and MCG global constraints,
defined by (3)-(4) and (5)-(16), respectively, and denoted as
Cn(m) <dpy,m e {l,...,M.}, where C,(r) represents the
return value of m’th constraint under the control policy 7 and
dp is the upper-boundary of the m’th constraint. Note that
all constraints in the power management problem have been
transformed into this format (equality constraint (15) can be
transformed into two inequality constraints). Constraint satis-
faction is encoded into the SMAS-PL using the discounted
constraint return values of agents’ policies m as:

+T
Je, (1) = Ex | >y Cy | < dm. ¥m e {1..... Mc} 21)
t'=t
where, expectation operation has been leveraged in (21) to
handle the state and observation uncertainties.

C. Safe Policy Learning Formulation

Given the definitions of the components of the SMAS-
PL (Section III-B), the power management problem of the
networked MGs (1)-(16) is transformed into an iterative
SMAS-PL problem, where the control policies of the agents
are updated at time ¢, around their latest values, by maximiz-
ing a reward function (22), while satisfying constraint return
criteria:

N

't = argmax Z‘]Rn (770) (22)
TNy

s.t. ap ~ 1,(Sy) (23)

Jc, () < dp, Ym (24)

A(mp, 7h) <8, Vn (25)

where, 1 = {my,...,m,} denotes the set of control policies
of all agents. In (23), the agent’s policy is a function of the
state vector, S,. In (24), the expected constraint return value
are used to ensure the satisfaction of m’th constraint based on
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47 control policies. In (25), A(-, -) is the Kullback Leibler (KL)-
divergence function [15] that serves as a distance measure
480 between the previous policy, 7}, and the updated policy, n,’l“,
490 and is constrained by a step size, §. Note that (25) ensures that
consecutive policies are within close distance from each other.
42 The intractable non-convex PL formulation, (22)-(25), can
493 be solved in principle using a trust region policy optimization
494 (TRPO) method [15]; however, in this article we apply a fur-
495 ther approximation to TRPO to transform the problem into a
496 tractable convex iterative QCLP, which enables learning the PL
497 parameters, § = {0y, ..., Oy}, in a more scalable and efficient
498 manner. Our solution leverages the linear approximations of
499 the objective and constraint returns around the latest parameter
so0 values '

48

®

49

N
s Ol = arg max Zg,,T(G,, — 0,’,) (26)
LN
02 st Jo (0)) + b’ (0 —0") <dy, Ym (27
L0 =) 0, - ) <5, v 09

s where, g, = VpJg and b,, = VgJc, are the gradient factors
sos of the reward and constraint return functions w.r.t. the learning
sos parameters. Constraint (25) is transformed into (28) using the
so7 Fisher information matrix (FIM) of the policy functions, 7,
sos denoted by H,. The FIM is a positive semi-definite matrix,
s00 whose (c, d)’th entry for policy functions with a Gaussian

s10 structure is determined as follows [24]:

15}

511 H,(c,d) =E 9 log 7t (@n|6p) 0 10g 70 (@n |0n)
96, (c) 20, (d)
H
512 =2 9ty Erz_l dfn
36, (c) 06, (d)
0% EDY
Tr{n | L g1 1 29
513 + r{ " 3l(c) " 30,,(d)} (29)

sia~ Note that (26)—(28) provides a convexified constrained
s15 gradient-based method for training the policy functions’
sie parameters of the MG agents; using this QCLP-based strategy
stz the agents do not need to learn an action-value function explic-
sis itly. Instead, the power-flow-based gradient factors, g, and b,y,,
s19 have to be determined for the two sets of learning parameters,
s20 [0y, 0%, 1. This process is outlined in Section III-D.

s21 D. Gradient Factor Determination

s22  To determine gradient factors, the following information are
s23 used: (i) the observation variables, Oy, including nodal voltage
s2« V and current injections I; (ii) the latest system states Sy,
s2s for each MG agent; (iii) the latest control actions a, of each
s2s MG agent; (iv) the latest learning parameters 6, = [0y, , 0x,];
s27 (V) network parameters, including the nodal admittance matrix,
s2s Y. Using information (i)-(v) and chain rule, g, = [gy,, &%, ]
s20 and by = [, p,,> bin,3,1 in (26) and (27) can be written as:

dJg, 0a, 0w, Ipg

530 8p, = (303)

0a, 01y Oty 00y,

" b, = 2JCo Dn O Oltn (30b)
Tl T day 91, Dy 30y,
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0Jr, da, dm, 0%,
da, 0m, 0%, 90y,
dJc,, da, dm, 0%,

da, 9m, 0%, 03,

where, each gradient factor, gy,,, b, u, > £%,, and by 5,, con-
sists of four elements. All the elements in (30) and (31) can
be obtained as follows.

1) dJg,/0a, and 0Jc, /day: The gradients of the expected
reward Jg, and the expected constraint return Jc,, w.r.t. con-
trol actions a, can be obtained using a proposed four-step
process, that leverages the current injection-based AC power
flow equations. The details of this process are shown in
Appendix A.

2) day/dm,: Using the latest values for parameters pp,, %,
and actions a,, the gradient of control actions w.r.t. m, is
obtained from (17), as shown in (32):

-1
day, _ N E,1_1(an — Mn) e_%A
97t VIZal2m)Pr

where, A = (a, — ;L,,)TZn_ La, — In). The detailed derivation
of (32) can be found in Appendix B.

3) om,/op, and 0m,/dX,: Using the latest values for
parameters f,, ¥, and actions a,, the gradients of control
policies, w.r.t. u, and X, are determined using (17), as shown
in (33) and (34):

8z, = (31a)

bn,z, = (31b)

(32)

om, _ En_l(an - ﬂn)e_%A (33)
O VIZ4l@m)Pr

97T, _ _l (En_l - z:n_l(an — Mn)(@n — ILn)TEn_])e_%A
2 |2l @)

(34)

where, the detailed derivations of (33) and (34) are shown in
Appendix B.

4) Opn/00y, and 0%,/00s,: A back-propagation pro-
cess [25] is performed on the two DNNs within each MG
agent’s control policy function, (18) and (19), to determine
the gradients of DNNs’ outputs w.r.t. their parameters. In each
iteration, the latest values of state variables are employed as
inputs of the DNNs. The back-propagation process exploits
chain rule for stage-by-stage spreading of gradient information
through layers of the DNNs, starting from the output layer and
moving towards the input [25]. To enhance the stability of the
back-propagation process, a sample batch approach is adopted,
where the gradients obtained from several sampled actions are
averaged to ensure robustness against outliers.

IV. MULTI-AGENT CONSENSUS-BASED SAFE POLICY
LEARNING

A. Offline Policy Training

Using the gradient factors (30) and (31), the QCLP,
(26)—(28), is fully specified and can be solved at each pol-
icy update iteration for training the agents’ PL frameworks.
However, we have identified two challenges in this problem:
(1) the size of the DNN parameters € can be extremely large,
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s7o which results in high computational costs during training; (ii)
se0 the control policy privacy of the MG agents needs to be
sst preserved during training, which implies that the agents might
ss2 not have access to each other’s control policies, cost func-
ses tions, and local constraints on assets. Centralized solvers can
ss4 be both time-consuming and lack guarantees for maintaining
ses data ownership boundaries.

ss6  In order to address these two challenges, we have developed
ss7 @ multi-agent consensus-based constrained training algo-
ses rithm [18]. Due to its distributed nature this method is both
ss0 scalable and does not require sharing control policy param-
so0 eters among agents. Thus, the proposed algorithm is able
so1 to efficiently solve the QCLP (26)—(28), while relying only
se2 on local inter-MG communication. The purpose of inter-MG
se3 interactions is to satisfy global constraints, (3)—(4). To do this,
so4 the agents repeatedly estimate and communicate dual vari-
ses able A,, corresponding to the Lagrangian multiplier of global
ses constraints. Furthermore, a local primal-dual gradient step is
so7 included in the algorithm to move the primal and dual param-
ses eters towards their global optimum. The proposed distributed
seo algorithm consists of four stages that are performed iteratively,
eo0 as follows:

et  Stage I [Initialize (k < 1)]: Gradient factors g, and b, are
ez obtained from Section II-D. The previous values of learning
es parameters are input to the QCLP, 8/ (0) < #:~1. Lagrangian
e+ multipliers are initialized as zero for each MG agent.

eos Stage II (Weighted Averaging Operation): MG agent n
receives the Lagrangian multiplier A,s, for global con-
eo7 straints (3)-(4), from its neighbouring MG agents n’ €
es {I,...,N,} and combines the received estimates using
s0s Weighted averaging:

@©

>

60

>

N

N

610 An(k) = Z Wi (1) A (k)

n'=1

(35)

61

where, w,(n’) is the weight that MG agent n assigns to the
incoming message of the neighbouring MG agent n’. To guar-
s13 antee convergence to consensus, the weight matrix, composed
s« of the agents’ weight parameters is selected as a doubly
stochastic matrix [18], i.e., w,(n) = Nln This weight selection
strategy implies that the MG agents assign equal importance
to the information received from their neighboring agents.

Stage Il (Primal Gradient Update): The n’th MG agent
updates its primal parameters 6’ employing a gradient descent
e20 Operation, using the gradients of the agent’s reward and the
e21 global constraint returns, m’ € MCG, and step size p1:

61

o

w

61

[

61

o

61

J

61

©

61

©

o

@ Op(k) = 0,(k) — pi(ga(05(K)) + b (6,(K)An(K)). (36)

e Stage IV (Projection on Local Constraints): The agent
e2¢ projects the local learning parameters to the feasible region
e2s defined by the gradients of the local constraints (5)-(16):

626 0! (k 4+ 1) = argmin |6, (k) — 0 H (37
9

627 s.t. Jo, (05(0)) + by (85(0) — 0) < dy, Ym € ME (38)

(6(0) — 6)" H,(65(0) — ) <5, Vn. (39)

628

1
2

Algorithm 1 SMAS-PL Training
1: Select ™M T, 8§, kK" w,('), p1, p2, A,
2: Initialize 6%
3: for t < 1 to ™ do
4: Sp < [Sn(@®), ... Su(t+ T)]
: Mn < (18) [Parameter insertion]

5
6: Y, < (19) [Parameter insertion]

7: a, ~ 1,(8,10,) < (17) [Action selection]
8 dJR,/dan < (55)-(56)

9: dJc,,/0an < (59), (57)-(58)

10: 0a,/om, < (32)

11: oy, /o, < (33)

12: 0, /0%, < (34)

13: Ofn /00y, < DNN,, [Back-propagation]
14: 0%,/00s, < DNNs, [Back-propagation]
15: &un» bm,p, < (30) [Chain rule]

16: g3, bm,3, < (31) [Chain rule]

17: H, < (29) [FIM Construction]

18: Initialize A, (ko)

19: for k < 1 to K™ do

20: )_:,, (k) <— (35) [Averaging operation]

21: 0, (k) < (36) [Primal gradient update]
22: 0,’, (k+1) < (37)-(39) [Projection on M~]
23: An(k 4+ 1) < (40) [Dual gradient update]
24: if 65k + 1) — 0L (k)|| < AY, then

25: 0+ < 0! (k + 1); Break;

26: end if

27: end for

28: if 5! — 0% < A6, then

29: Output 7 < 0:+1; Break;

30: end if

31: end for

32: Output well-trained parameterized policy 7, (6;;)

Stage V (Dual Gradient Update): Each agent’s estimations
of dual variables A, for the global constraints, (3) and (4), will
be updated using a gradient ascent process over A;:

Mk + 1) = [(RnGO) + p2 (b6l (k + D)—dy) |7, Vi € ME
(40)

where, py is a penalty factor for global constraints violation,
and the operator [-]T returns the non-negative part of its input.

Stage VI (Stopping Criteria): Check algorithm convergence
using the changes of 6/, (k); stop when the changes in param-
eters falls below the threshold value A6,; otherwise, go back
to Stage II.

The overall flowchart of the SMAS-PL training process
using the proposed distributed training technique is shown in
Algorithm 1. The calculations of Steps 8 and 9 can be found
in Appendix A.

B. Online Action Selection

The trained policy functions are used by the MG agents for
online action selection. This process can be simply represented
as sampling from the learned Gaussian policy functions (17).
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Fig. 2. Flowchart of the backtracking strategy.

First, the agents receive the latest values of the states, includ-
ing the predicted solar irradiance and aggregate internal load
power of MGs. These values are inserted into the trained
DNNs (18) and (19) to obtain the mean and covariance matri-
ces of the policy functions. Finally, samples are generated
from the multivariate Gaussian distributions. These samples
are averaged and passed to the local controllers of each
controllable asset as a reference signal.

C. Backtracking Strategy

Due to convex approximations in the formulations
(26)—(28), it is possible for few global constraints to be
marginally violated in practice. To ensure feasibility, we can
add a backtracking strategy into the proposed solution. This
closed-loop backtracking strategy consists of two components,
as shown in Fig. 2.

Component 1 [Power Flow Engine (PFE)]: The PFE
receives the control actions from MG agents and runs a sim-
ple power flow program to obtain the status of all constraints.
If no constraint is violated, the control signals are passed to
controllable assets. If some constraints are violated, then the
PFE will engage the backtracking process.

Component 2 (Backtracking Module): The backtracking
module tightens the upper-bound limit (d,) (only) for the con-
straints that have been violated. The parameters of the trained
DNNs will be re-updated according to update rules (35)—(40)
and with the modified upper-bounds. The purpose of tight-
ening the upper-bound is to provide a safety margin. In this
article the tightening process is performed using a user-defined
coefficient multiplier, 0 < 7 < 1, as follows:

4 = tdy. 41)

V. SIMULATION RESULTS

The proposed method is tested on a modified 33-bus dis-
tribution network [26], which consists of five MGs as shown
in Fig. 3(a). Each MG is modeled as a modified IEEE 13-bus
network [26] at a low voltage level as shown in Fig. 3(b).
When calculating the gradient factors, a single-phase AC
power flow model is used for the sake of brevity. In the case
study, the base power value is 100 kVA and base voltage values
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Main grid

HO-e

S—o
N s
(D

“ﬂ—!b—% <

Sh—o 8,4

33-Bus Network
I

(b) 13-bus system for MGs
Fig. 3. Test system under study.

TABLE I
SELECTED COST FUNCTION PARAMETERS

Description Notion Value
Average electricity price ($/kW h) A\ 0.046
Average DG fuel price ($/L) pY 0.57
Fuel cons. quadratic function parameter (L/kW?2) af 0.0001773
Fuel cons. quadratic function parameter (L/kW) bf 0.1709
Fuel cons. quadratic function parameter (L) of 14.67

in the 33-bus distribution network and 13-bus MG networks
are 12.66 kV and 4.16 kV, respectively.

The input data for load demands and PV generations have
15-minute time resolution are obtained from smart meter
database [27] to provide realistic numerical experiments. The
assumption in this article is that smart meters are installed
throughout the network and the agents have access to a diverse
data. The training and testing datasets are selected through
uniform randomization to ensure that the proposed solver func-
tions reasonably. Here, 1-month of the randomly selected data
is used for testing and 11-month of the data is used for training.
The energy price for the transferred power at the MG PCCs
and the fuel price for the local DGs are adopted from [28]
and [29], respectively. The quadratic polynomial parameters of
DG fuel consumption are adopted from [30]. Table I presents
selected parameters for operational cost calculation in simula-
tions. The average capacities for DGs in MGs are 60 kWh. The
average capacities for ESSs in MGs are 20 kWh, the maximum
charging/discharging rate is 4kW and the charging/discharging
efficiencies are 95% and 90%, respectively.

All the case studies are simulated using a PC with Intel Core
i7-4790 3.6 GHz CPU and 16 GB RAM hardware. The sim-
ulations are performed in MATLAB [31] and OpenDSS [32]
to obtain the gradient factors, update the learning parameters,
solve the distributed training problem, and validate the results.
In training, each episode is a learning update iteration based
on the data that comes from one moving decision window. The
length of the moving window is 4 samples with a 15-minute
time step, which gives us a 1-hour window. The activation
functions of each layer (including the output layer) of the
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TABLE 11
SELECTED DNN HYPERPARAMETERS AND USER-DEFINED COEFFICIENTS

Description Notion Value
Length of the decision window in episode T 4
Discount factor 0 0.99
Step size for updating 0 6 1x 1073
Maximum iteration kmar 200
Weight assigned to received information W, 0.2
Step size for primal gradient update 1 0.01
Step size for dual gradient update P2 0.01
Threshold for parameter updating AB 1x107%
Tightening multiplier T 0.9
Number of hidden layer - 3
Number of neurons per hidden layer - 10
Size of minibatches - 128
Activation function of DNNs - tansig

76 feedforward networks are hyperbolic tangent-sigmoid (tansig).
77 After various numerical tests, the parameters 6, and 65 of
78 the neural networks are initialized using uniform distributions
719 defined over the intervals (0, 0.2) and (—0.03, 0.03), respec-
720 tively. In our simulations, we have observed that T = 0.9 is
721 sufficient for ensuring feasibility for those constraints that have
722 been marginally violated after one-to-two rounds of backtrack-
723 ing. Table II summarizes selected DNN hyperparameters and
724 other user-defined coefficients in simulations. The hyperpa-
725 rameters were optimized using a randomly-selected validation
726 set (2 months worth of data) and Bayesian optimization with
727 uninformative priors in MATLAB environment.

728 Further, to demonstrate the effectiveness of SMAS-PL,
720 three benchmark methods have been considered, including
730 an optimization-based method, an on-policy method and
731 an off-policy method. The first benchmark method is an
732 optimization-based method, which leverages YALMIP tool-
733 box to solve the optimal power management of networked
73 MGs using IBM ILOF CPLEX 12.9. The second one is the
735 unconstrained policy gradient learning (U-PL) method, which
736 leverages the same algorithm as the proposed SMAS-PL, how-
737 ever, certain constraints are removed during the training process
738 of U-PL. By comparing the SMAS-PL and the U-PL, we can
739 show the effectiveness of the SMAS-PL when handling different
740 local and global constraints. The U-PL can be considered as an
741 on-policy benchmark. We also consider an off-policy bench-
742 mark method, namely the deep Q-network (DQN). In [23],
73 [33], DQN uses deep neural networks (DNNs) to approximate
744 the Q-function and provide Q-value estimation for discretized
75 control actions. To include the constraints in DQN, we have
76 followed the suggestion in [23], [34] and added penalty terms
77 to the reward function of the benchmark DQN to discour-
78 age constraint violation. The penalty coefficients for global
79 and local constraints are manually tuned based on the DQN
750 performance. However, since the benchmark DQN was not
1 originally designed for continuous actions, we have first dis-
752 cretized the agents’ action space with a step size of 33% of
753 the constraint upper limit. For example, if the upper limit of a
754 diesel generation (DG) power output is 60 kW, then, the power
755 output action of DG has been discretized as (0, 20, 40, 60) kW.

7

a

Il Demand [llLocal Generation []Power transfer

15F : : : -
0 L = L = L = L = L
NG, G, G, G, mG,

Fig. 4.  Aggregated power of local demand, local generation and power
transfer for MG|-MGs.

o

Aggregated Power (p.u.)
o

Similar discretization has been applied to the actions of PV
inverters and ESSs. The inputs of the DNN are the system
states, and the outputs of the DNN are estimations for the
Q-value function for each discrete action. The DNN is param-
eterized as a function approximator to represent the Q-value
function. The temporal difference (TD) learning algorithm is
used to train the DNN by minimizing the mean-squared TD
error. The discount factor and learning rate in DQN are set to
the same values as those of SMAS-PL. The exploration factor
is set to 0.1 in the e-greedy action selection of DQN. The
structure of DNN in the benchmark DQN has been obtained
using cross-validation. The dimensions of the input and output
layers have been extended by the number of MG agents and the
number of discrete actions. Note that the benchmark U-PL is
implemented in a multi-agent framework, while the benchmark
DQN is implemented in a centralized way.

A. System Operation Outcomes

In the case study, action selection is performed by sampling
100 times from the trained policy functions (distributions).
Then the dispatching action is obtained by averaging the
selected samples. A trade-off is involved in choosing the
number of action samples: if this number is too large, then
the selected actions will converge to the policy mean, which
implies that model uncertainties are ignored. This could result
in erroneous and sub-optimal solutions in case the learned
model is over-fitting (i.e., when the estimated mean has large
errors). On the other hand, if the number of samples is too
small, then the outcomes can deviate from the learned mean
value, which can also result in low-quality outcomes. The
average outcomes are shown in Fig. 4, Fig. 5 and Table III.
The aggregate MG demand, aggregate MG generation, and
aggregate power transfer through PCCs of MGs over a day
are shown in Fig. 4. It can be seen that the main MG
demands are supplied by the local generation within MGs
due to low DG fuel prices and renewable outputs. While
most MGs are exporting power to the upstream distribu-
tion grid, MG4 is importing power to satisfy the heavy local
load that cannot be fully supplied internally. In all cases
the power balance is maintained within the MGs. The ESS
SOCs for each MG are shown in Fig. 5, where can be seen
that ESSs charge during off-peak period and discharge dur-
ing peak time to provide optimal power balancing support
for MGs. Table III presents comparisons between the bench-
mark optimization-based method, the benchmark DQN and
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TABLE III
COMPARISON BETWEEN CENTRALIZED SOLVER, DQN AND SMAS-PL
METHOD
Cen. solver DQN SMAS-PL
Average daily cost ($) 1356.60 1928.4 1372.11
Average time (second) 145.50 10.30 1.40 (per agent)
MG privacy maintenance No No Yes

the proposed SMAS-PL, including the average daily cost of
operation over numerous scenarios, average online decision
time, and MG privacy maintenance.

In general, the SMAS-PL method has three fundamental
advantages over centralized optimization method: 1) Even
though the offline training process in our method takes a
long time (around 35 minutes per agent), the average online
so7 decision time for the proposed SMAS-PL is about only
1.4 seconds per agent, which is much shorter than the aver-
age time 145.5 seconds for the centralized optimization solver.
Thus, the real-time response of the trained policy function is
almost 100 times faster than that of the OPF solver. The rea-
son for this is that the OPF solver needs to find the optimal
solution of a complex optimization problem in real-time, while
our approach simply samples from multivariate Gaussian dis-
tributions that embody optimal control policies. Furthermore,
we have observed that the computational cost of the central-
ized OPF solver rises almost quadratically with the size of the
system; beyond a certain point the commercial solver is not
able to provide solutions in a reasonable time. On the other
hand, our SMAS-PL retains an almost constant online deci-
sion time, while the cost of offline training increases almost
linearly. 2) The proposed PL method takes advantage of a
multi-agent (distributed) framework to train the policy func-
tion of each MG agent; in practice, this distributed framework
can be implemented using parallel computation techniques,
which also enhances the scalability of the proposed SMAS-PL
method compared to centralized solvers. 3) Due to its dis-
tributed nature, the proposed SMAS-PL method maintains the
privacy and data ownership boundaries of individual MGs.
During the training process, the MG agents do not need to
share control policy parameters, policy functions, cost func-
tions, and local asset constraints with each other. The only
variables that are shared among MG agents are the Lagrangian
multipliers corresponding to global network constraints. These
multipliers do not have a physical meaning and thus, do not
contain sensitive information.
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0 50 100 150 200 250 300
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(a) Selected 6,,’s during training process

[ MG,---Me, MG, MG, - MG]
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(b) Selected 6y ’s during training process

Fig. 6. Convergence of learning parameters 6, and 0y for MG1-MGs.

Based on the comparison between the centralized solver and
our proposed method, there is still a 1.14% difference between
the solutions from the centralized solver and the SMAS-PL
method, which might be caused by the following reasons:
(i) Unlike the centralized solver, which has access to the full

systemic model information, and thus, can guarantee at least a
local optimal solution, the proposed SMAS-PL method lacks a

guarantee of optimality. Also, in order to obtain a high-quality
solution, the SMAS-PL needs to first approximate the original
problem with a convex surrogate, which despite enhancing the
problem tractability, comes at the expense of loss of accuracy
and a reduction in performance. (ii) The proposed backtracking
mechanism is a heuristic strategy, which is aimed at obtaining
a feasible solution that might come at the expense of a loss
in the reward. (iii) To obtain a consensus-based solution, the
SMAS-PL needs a reliable inter-agent communication infras-
tructure, which could be costly. (iv) In case of changes in
system structure, the SMAS-PL will need an offline re-training
phase to adapt to new system conditions. This could take some
time, during which the agents will experience a temporary
decline in their payoffs. The comparison between DQN and
SMAS-PL is discussed in Section V-B.

B. Algorithm Performance

Fig. 6(a) and Fig. 6(b) show the convergence of a selected
group of learning parameters, 8, and 0y during the training
process, for each MG agent. As can be seen, the changes in

0, are relatively larger than that of fy. This is due to the

higher levels of sensitivity of MG agents’ objective functions

to the mean values of the control actions compared with their

variance levels.

In Fig. 7, the average hourly rewards under SMAS-PL,

U-PL, and DQN are compared with each other. Note that

here, the moving average rewards and the episodic rewards
of different methods are depicted by dark and light curves.
It can be observed that SMAS-PL and U-PL both outper-
form DQN in term of the total reward. The reason for this is
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—A— SMAS-PL
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Fig. 7. Comparison of the average hourly rewards with different methods.

that the SMAS-PL and U-PL leverage the proposed iterative
and distributed technique to adaptively tune the Lagrangian
multipliers through information exchange between MG agents;
on the other hand, the DQN needs to manually design penalty
coefficients for constraint violations, which either offers inad-
equate penalization of the constraint violations or excessive
punishment for the constraints. Also, SMAS-PL and U-PL
have continuous action spaces, while DQN employs action dis-
cretization, which hinders accurate exploration of action space.
After the NNs are fully trained, the SMAS-PL samples the
actions from the learned multivariate Gaussian distributions
that embody optimal control policies, while the benchmark
DQN selects the control actions that have the highest estimated
Q-values for the given state according to the trained DNN.
Based on the results in Table III, the decision time for the
SMAS-PL is around 1.4 seconds per agent, while the decision
time for the benchmark DQN is approximately 10.3 seconds.
Thus, the decision time for the proposed SMAS-PL is faster
than the benchmark DQN, because the multi-agent framework
enables the SMAS-PL to sample decision actions in parallel
for each MG agent, while the benchmark DQN selects the
control actions for all the MGs together in a centralized way.
Two cases are considered in implementing U-PL: (i) no DG
capacity constraints for MG and MG»; (ii) no DG capacity
constraints for MG{-MGs. In cases (i) and (ii) of the U-PL,
the agents obtain a higher reward compared to the SMAS-
PL due to the constraint omission; however, this comes at the
expense of decision infeasibility. In case of the SMAS-PL,
these operational constraints are satisfied, which also leads
to a drop in total reward, as expected. This shows that our
proposed constrained PL decision model can ensure the feasi-
bility of the control actions w.r.t. the constraints of the power
management problem. Note that even though the proposed
SMAS-PL framework is similar to the TRPO [15], the TRPO
has theoretical guarantees for monotonic increase in return,
while such guarantees do not exist for the approximate QCLP
formulation in the proposed SMAS-PL. However, compared
to TRPO our solution offers a simpler, more efficient, and
tractable alternative, with fewer learning parameters.
Furthermore, Fig. 8 shows the constraint values during the
training iterations for a 1-hour time window, for the two cases
with and without DG capacity constraints in MGy, where the
dark blue and red curves represent averaged constraint val-
ues, and the light blue and red areas represent the variations
around the average curves for the SMAS-PL and U-PL, respec-
tively. During the training process, the U-PL violates the upper

-
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Fig. 8. Comparison of constraint values w/ and w/o DG capacity constraints

in MGj.
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Fig. 9. The performance of the iterative distributed training method in one
episode (no binding global constraints).
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agents.

Selected global branch current constraint return values for MG

boundary for DG generation limit (i.e., local constraint case
study); on the other hand, the SMAS-PL solver satisfies the
DG generation capacity constraints, which implies that the
local constraints can be safely maintained. Therefore, com-
pared to U-PL, the proposed SMAS-PL has shown to be able
to generate control actions that not only improve the reward
function but also satisfy the constraints.

One example of the distributed training convergence pro-
cess is shown in Fig. 9 for a policy gradient update step. As
can be seen, the Lagrangian multipliers A, reach zero over
iterations of the proposed multi-agent algorithm, which indi-
cates that all the global constraints, including nodal voltage
and branch current limits, are satisfied and feasible solutions
are obtained. This also means that the bus voltage and line
current constraints are not binding for this case.

Another example is given to demonstrate the effectiveness
of the SMAS-PL in handling binding global constraints. This
case shows a line flow constraint in the grid under the proposed
SMAS-PL and a U-PL baseline; as is observed in Fig. 10,
the U-PL has generated infeasible decisions that violate the
constraint, while our approach has prevented the flow to go
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Fig. 12. Impact of backtracking on algorithm performance.

above its upper bound. Further, as can be seen in Fig. 11,
the Lagrangian multipliers for this binding constraint reach a
non-zero constant number over iterations. This also shows the
agents’ estimations of Lagrange multipliers for a global line
flow constraint; as can be seen, using the proposed SMAS-
PL the agents are capable of reaching consensus on the value
of the multiplier without having any access to each other’s
policy functions, which corroborates the performance of our
proposed method under incomplete information.

To validate the tightening parameter levels (r), we have
studied the impact of different 7 values on the reward. Here,
at episode 400, the value of t is decreased from 1 to (0.95,
0.9, 0.85). The average rewards for different drops in t are
compared in Fig. 12. It can be observed that for values of t
close to 1 (i.e., T = 0.95 and t = 0.9) the reward values are
very close to each other. However, as t deviates from unity
and reaches 7 = 0.85, the reward drops significantly. In our
simulation, we have observed that T = 0.9 is sufficient for
ensuring feasibility for those few constraints that have been
marginally violated in certain operation scenarios after one-
to-two rounds of backtracking. Note that this threshold needs
to be fine-tuned for specific grids.

To simulate the impact of bad network parameter data on
training model performance, we have added random errors
(with a 10% variance) to the network resistance (R) and reac-
tance (X) parameters during the training process. The bad
network data will lead to errors in gradient factors (42)-(59)
(see Appendix A). To validate the SMAS-PL under network
data imperfection, we have compared the average reward
obtained with perfect knowledge of network parameters and
under bad network parameter information. It can be observed
in Fig. 13, even though the learning process with bad network
data shows more volatility and needs more time to reach
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Fig. 13.  Analysing the impact of bad network data on decision model
outcomes.

convergence, the model still reaches reward values close to
the ideal case. However, due to the information imperfection,
a loss of reward is inevitable.

973
974

975

VI. CONCLUSION

976

Conventional model-based optimization methods suffer
from high computational costs when solving large-scale multi-
MG power management problems. On the other hand, the
conventional model-free methods are black-box tools, which
may fail to satisfy the operational constraints. Motivated by se
these challenges, in this article, a SMAS-PL method has
been proposed for power management of networked MGs.
Our proposed method exploits the gradients of the decision
problem to learn control policies that achieve both optimality
and feasibility. Furthermore, to enhance computational effi-
ciency and maintain the policy privacy of the control agents,
a distributed consensus-based training process is implemented
to update the agents’ policy functions over time using local
communication.

Note that the current case study has been conducted over oo
a balanced single-phase distribution system. However, our
proposed SMAS-PL is not limited to single-phase distribu-
tion systems and can be potentially extended to unbalanced
three-phase systems. One solution to this challenge could be
using a single policy function for the resources connected to
all phases (note that theoretically-speaking our method is not
limited by the number of phases). However, this brute-force
solution may lack scalability. Another solution extension to a
multi-phase system cannot be fully addressed by having three 1000
separate policy functions per phase. A more efficient and scal- 1001
able extension to unbalanced systems remains the subject of 1002
our future research.
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1003

APPENDIX A
CALCULATION OF 9dJg,/da, AND dJc

m

1004

/0ay
The major difficulty in determining dJg, /da, and dJc,, /day 100
pertains to the agents’ reward functions and global constraint 107
returns, (1)-(4), which are only implicitly related to the con- 1o0s
trol actions. Since the reward and all the global constraint 1o0s
returns are functions of the observation variables, V and I, the 1010
gradients of these variables w.r.t. control actions are obtained 1ot
and used to quantify dJg,/da, and 0Jc,/da,. To do this, 1o
a four-step process is proposed that leverages the current 103
injection-based AC power flow equations:
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TABLE IV
PARTIAL DERIVATIONS OF IR¢ AND I w.R.T.
ap = [PnDG’ Pfh, P?ls, Q?G, Qﬁ'v7 QESS]

an DG Ch Dis DG PV ESS

_ Pn,t’ Pn,t/ Pn,t’ Qn,t’ Qn,t/ Qn,t’
e Vie Vo Ve vip VD Vi
it V2, V2, V2, v2, V2, vZ,
lft 1,1:1, 'LIt 1;% i ;% 17%1

™ ™ ™ < e o

Ijm 7‘/1',.}’ Vi,,t’ 7‘/1:,# 7Vi,t' 7‘/7',,!,’ Vi,r,'
wt V’i?t,' ViZ.t’ V’i?‘t,’ Vi2t' Vv’?f,’ Vi2t'

Step 1 - First, the gradients of real and imaginary parts
of nodal current injection w.r.t. control actions are derived
(denoted as 3I%¢/da,, and dI'™ /day, respectively.) To achieve
this, the nodal power balance and nodal current injection
relationships in the network are employed [35]:

Pin,t V'Re + Ginyr Vll’rg

it

Re
Ii,t/ V2 42)
it
1 R
m Pint Vi,’;} —4Yint Vi,ﬁ
Il‘,l’ = V2 (43)
it
— DG PV Ch is
Ping =iy =Ly — Pi,n,t/ +Pi,n,t/ —Yint (44)
D DG PV ESS
dint = Qi,n,t’ - Qi,n,t’ - Qi,n,t’ + Qi,n,t’ (45)

where, IlRe,I{m and Vl-Re, ViI’” denote the real and imaginary
parts of nodal voltage and current injection at node i. Using
these equations, 9I%¢/da, and 3I'™/da, are derived and
shown in Table IV. Note that the entries of this table can be
calculated using the real and imaginary parts of nodal voltages,
which in practice are either measured or estimated [35].

Step 2 - Using 0I%¢/da, and I /da, from Step 1
(Table IV), dVR¢ /3a and dV'™ /9a are obtained employing the
network-wide relationship between nodal voltages and current
injections:

AR

oV Yl 1 Y12 -1 ﬂ

day _ aa, (46)
avim | = | y21  y22 rim

dan dan

where, the modified network bus admittance sub-matrices are
determined as follows:

Re,Re Re,Im
Im,Re Im,Im 4
]721 Ylm )7( ) )722 )IRE ]7( ) ( 8)

here, YR¢ and Y/ are the real and imaginary parts of the orig-
inal bus admittance matrix. The elements in diagonal matrices
YéRe‘Re), Yl()Re’lm), ng’Re) and ng’lm) are calculated using the
following equations [35]:

2VE (Pint VIS + i V)

(Re,Re) _ Pinr _ !

Yy NG ) = =5 7 (49)
Vi,z’ Vi,z’
" (pin s VR + Giy VI
yiRem i iy = Lent 2 pins V5 + ain V1) (50)

V2 v4

it it
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Re Im Re
2Vi,t’ (Pi,n,t’ Vi,t/ —d4inyr Vi,t/)

(Im,Re) ,. . in,t
YD (l, l) = — 5 ”) (51) 1045
Vi,t/ Vi,t/
1 1 R
Umdm),. ~ _ Dint ZVi,rtrf(pi»”vf’Vi,r? - qi»”vf’vi,te’>
Yy (i,i) = V2 — e (52) 1046

it it

Step 3 - Noting that the current flow constraint returns and 1047
the rewards are also functions of branch current flows, the gra- 104
dients of branch current flows are required to obtain dJg, /0@y 104
and dJc,,/da,. Using the branch current flow equations, these 1050
gradients are determined as a function of the derivatives of 1os1

nodal voltages and current injections, as follows: 1052

Re Im Im Re Re

alijaf/ _ Jm aViJ/ avjvt[ Re BVM, an’t/
dany 2V \vany  Oany )V \ v, 9 o

Ay, ¢ ap,t ay,p Ay, ¢ ay,¢
(53) 1054

Im Re Re Im Im

alij,t’ _Im aVi,t’ an,t’ Re BVM, aVj,t’
da,r 0 \oay, 0 il o, , 7 1098

an,¢ an,v an,t ap,¢ A ¢
(54) 1056

where, If;e and Ig” are the real and imaginary parts of branch 1s7
currents, yff.e and i;" are the real and imaginary parts of branch 1oss
admittance.

Step 4 - Finally, using the derivatives obtained from Steps 1060
1, 2, and 3, dJg,/0a, and dJc, /da, are determined through o1
straightforward algebraic manipulations. As an example, the 12

1059

gradient of reward function w.r.t. Pfl)? is calculated as: 1063
t+T PCC
3]Rn F R 8Pn’l,
9 PPG = Z )\'i,n(zaf + bf) =M 5pPG (55) 1064
n,t' =t nt

where, 3P5 f,c/ 8P€? is obtained using the outcomes of Steps 1oss

2 and 3, as follows: 1066

R
P’ _ Vit ke L yre i
- ij,t’ it 1067
apPG — §pDPG Ut it pDG
nt 7 n,t
avim arm
LU gIm Im it
+ aPDGIlf/.,t’ + Vi,t’ 9 pDG (56) 1068
n,t' n,t'

Furthermore, 0Jc,, /da, for the global constraints (3) and (4) 10ee

can be calculated using the outcomes of Steps 2 and 3: 1070

oV Vi OVE VIV vy
— = — — 4+ — - (57) 10m
aan,t’ Vi aan,t’ Vi aan,t’
Re Re Im Im
ys _ lox Yye \ ur Oy (58) wr
dan,p lijy day,y  ILjy Oany

As can be seen in (5)-(16), the local constraint returns are 1os
trivial functions of the control actions. For example, the con- 1074
straint return value for (5) is Jos, = PnD? which induces a 1075

simple gradient element w.r.t. control action Pf?:

aJCSJ’
() e

n,t’

1076

=1 (59) 1077

The gradients of constraint returns w.r.t. control actions for 1o7s
the remaining local constraints, (6)-(16), can be obtained in a 1079

similar way. 1080



APPENDIX B
DERIVATION OF da,, /0, 07,/dfy AND 01, /0%,

1081

1082

1083 0@y /0m,, 0m,/0M, and 0m,/d0%, are obtained using the
1084 probability density function of (D-dimensional) multivariate
10es Gaussian distribution [36], which has the following general

1085 formulation:
1

VIZI@2m)P

1088 Where x is a random vector. To derive the gradients, first, the
1080 log-likelihood function of this multivariate Gaussian distribu-
1000 tion (60) is obtained as follows:

e 2w T2 )

fp, ) = (60)

1087

1
—@—-m' T @ —p) 61

1
VIZI@n)P 2
The derivative of L w.r.t. mean vector g and covariance
1003 matrix X can be written as follows:

L=1In(f)=In

1091

1092

aL lax—p) ' = tx—p)
1094 ﬁ = —5 o
005 - —1(—22—1(x - [L)) =y —p) (62)
2
oL 1{9m(Z)  dx—mw) = x—p)
o ax — 2\ oz FpS
1007 - —%(2—1 — z—l(x—u)(x—u)Tx—l) (63)

Thus, using (62) and (63), the derivatives of the function f
w.rt. o and ¥ can be shown in (64) and (65), respectively:

1098

1099

of _T'a—mw 14
1100 —_ = 64)
i Smien? (
¥ 1 -Te-pe-miET) L o
1101 32 = 2 |E|(27T)D e

1102

where A = (x — u) ' £ 7' (x — p). Similarly, the derivative of

103 the function f w.r.t. x is shown as follows:
>l — 1

1104 % = —Me_fA. (66)

ox - JiZien”
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