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Abstract—This article presents a supervised multi-agent safe1

policy learning (SMAS-PL) method for optimal power manage-2

ment of networked microgrids (MGs) in distribution systems.3

While unconstrained reinforcement learning (RL) algorithms are4

black-box decision models that could fail to satisfy grid oper-5

ational constraints, our proposed method considers AC power6

flow equations and other operational limits. Accordingly, the7

training process employs the gradient information of operational8

constraints to ensure that the optimal control policy functions9

generate safe and feasible decisions. Furthermore, we have10

developed a distributed consensus-based optimization approach11

to train the agents’ policy functions while maintaining MGs’ pri-12

vacy and data ownership boundaries. After training, the learned13

optimal policy functions can be safely used by the MGs to14

dispatch their local resources, without the need to solve a com-15

plex optimization problem from scratch. Numerical experiments16

have been devised to verify the performance of the proposed17

method.18

Index Terms—Safe policy learning, multi-agent framework,19

networked microgrids, power management, policy gradient.20

NOMENCLATURE21

Indices22

i, j Indices of buses, ∀i, j ∈ �I .23

ij Index of branch between bus i and bus j, ∀ij ∈24

�Br.25

k Iteration index in distributed optimization, k ∈26

{1, . . . , kmax}.27

m Constraint index, m ∈ {1, . . . , Mc}.28

n Agent index, n ∈ {1, . . . , N}.29

t′ Episode index in training process, t′ ∈ [t, t+T].30

Parameters31

af
n, bf

n, cf
n Coefficients of the DG quadratic cost function32

for agent n.33
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bm,μn Gradient vector of the constraint return function 34

m w.r.t. the parameters μn. 35

bm,�n Gradient vectors of the constraint return func- 36

tion m w.r.t. the parameters �n. 37

Dn Dimension of multivariate Gaussian distribu- 38

tion function for agent n. 39

dm Upper limit for constraint m. 40

ECap Max. capacity of ESS unit. 41

Hn Fisher information matrix of agent n. 42

gμn Gradient vector of the reward functions w.r.t. 43

the parameters μn. 44

g�n Gradient vector of the reward functions w.r.t. 45

the parameters �n. 46

IM
ij Max. current limit on branch ij. 47

Mc Number of constraints. 48

MG
c Number of global constraints. 49

ML
c Number of local constraints. 50

N Number of MGs. 51

Nn Number of neighboring MGs for agent n. 52

PCh,M Max. ESS charging limits. 53

PDis,M Max. ESS discharging limits. 54

PD, QD Active and reactive load power. 55

PDG,M Max. DG active power capacity. 56

QDG,M Max. DG reactive power capacity. 57

PDG,R Max. DG ramp limit. 58

PPV PV active power output. 59

PPCC,M Max. active power flow at the PCCs. 60

QPCC,M Max. reactive power flow at the PCCs. 61

QPV,M Max. PV reactive power output limit. 62

SOCM Max. SOC limits. 63

SOCm Min. SOC limits. 64

T Length of the moving decision window. 65

VM
i , Vm

i Max. and min. voltage limit on bus i. 66

wn(n′) Weight parameters assigned of agent n to 67

neighboring agent n′. 68

YRe, YIm Real and imaginary parts of the nodal admit- 69

tance matrix Y . 70

ηCh, ηDis Charging and discharging efficiency of ESS. 71

λF Diesel generator fuel price. 72

λR Retail price signals at the PCCs. 73

θμn , θ�n Vector of DNN weights and bias of agent n. 74

μn, �n Mean vector and covariance matrices for con- 75

trol action of agent n. 76

δ, ρ1 Step sizes for updating θ and λ. 77
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ρ2 Penalty factor for constraints violation.78

	t Time step.79

	θn Threshold for parameter updating.80

γ Discount factor.81

τ Tightening multiplier.82

Variables83

an Vector of control actions of agent n.84

Cm(π) Return value of constraint m based on the85

control policy π .86

Fi,n Fuel consumption of DG at bus i of agent n.87

IRe
i , IIm

i Real and imaginary parts of the injected current88

at bus i.89

IRe
ij , IIm

ij Real and imaginary parts of the branch current90

at branch ij.91

Ot Vectors of observation variable.92

PCh, PDis Charging and discharging power of ESS unit.93

PDG, QDG DG active and reactive power outputs94

PPCC Active power flow at the PCC.95

QPCC Reactive power flow at the PCC.96

QESS Reactive power outputs of ESS unit.97

QPV PV inverter reactive power output.98

SOC SOC of the battery system.99

Sn Vectors of system state of agent n.100

VRe
i , VIm

i Real and imaginary parts of the bus voltage101

magnitude at bus i.102

λn Vector of Lagrangian multipliers.103

Functions104

JRn Expected reward function of agent n.105

JCm Expected return function of constraint m.106

πn Multivariate distribution function over control107

actions of agent n.108

	 Kullback Leibler (KL)-divergence function.109

I. INTRODUCTION110

M ICROGRIDS (MGs) are active clusters of distributed111

energy resources (DERs), loads, energy storage system112

(ESS), and other onsite electric components. A smart distribu-113

tion system may consist of multiple MGs and the coordinated114

control of the networked MGs can offer various benefits,115

including higher perpetration of local DERs, improved con-116

trollability, and enhancement of power system resilience and117

reliability [1], [2]. Solving the power management problem of118

networked MGs is a complex task. While previous works in119

this area have provided valuable insight, we have identified120

two shortcomings in the literature:121

(1) Limitations of model-based optimization methods: In the122

existing literature, there are quite a few model-based methods123

for solving the optimal power management problem of net-124

worked MGs, such as centralized decision models [3]–[5] and125

distributed control frameworks [6]–[8]. However, with increas-126

ing number of MGs in distribution networks, these methods127

have to solve large-scale optimization problems with numerous128

nonlinear constraints that incur high computational costs and129

hinder real-time decision making. Furthermore, model-based130

methods are unable to adapt to the continuously evolving131

system conditions, as they need to re-solve the problem at 132

each time step. 133

(2) Potential infeasibility of model-free machine learning 134

methods: To address the limitations of model-based methods, 135

model-free reinforcement learning (RL) techniques have been 136

used to solve the optimal power management problem through 137

repeated interactions between a control agent and its environ- 138

ment. This approach eliminates the need to solve a large-scale 139

optimization problem at each time point and enables the con- 140

trol agent to provide adaptive response to time-varying system 141

states. Existing examples of RL application in power systems 142

include economic dispatch and energy consumption schedul- 143

ing of individual MGs [9]–[11] and multi-area smart control of 144

generation in interconnected power grids [12], [13]. Further, 145

in our previous paper [14], we have proposed a bi-level power 146

management method for networked MGs, where a centralized 147

RL agent determines retail prices in a cooperative business 148

model for each MG under the incomplete information of phys- 149

ical model. Current RL-based solutions employ control agents 150

to train black-box functions to approximate the optimal actions 151

through trial and error. However, the trained black-box func- 152

tions can fail to satisfy critical operational constraints, such 153

as network nodal voltage and capacity limits, since these 154

constraints have not been encoded in the training process. 155

This can lead to unsafe operational states and control action 156

infeasibility. 157

However, incorporating constraints into the training pro- 158

cess of conventional black-box methods is challenging since 159

these methods have generally relied on adding penalty terms 160

to training objective functions for enforcing constraints, which 161

cannot guarantee the safety of control policies as the number 162

of constraints grows. Inspired by recent advances in con- 163

strained policy learning (PL) [15]–[17] and to address the 164

shortcomings in the existing literature, we have cast the power 165

management of networked MGs as a supervised multi-agent 166

safe PL problem (SMAS-PL). The various resources inside 167

each MG and the collaborative behavior of MGs are both 168

controlled to optimize the total cost of operation, while sat- 169

isfying all the local and global constraints. Moreover, we 170

have proposed a multi-agent policy gradient solution strategy, 171

which enables individual MGs learn control policy functions 172

to maximize the social welfare and ensure safety in a dis- 173

tributed way. The proposed method introduces a trade-off 174

between model-free and model-based methods and combines 175

the benefits offered by both sides. The purpose is to leverage 176

the advantages of both model-free and model-based methods, 177

for scalable real-time decision making while also maintain- 178

ing a user-defined level of safety by considering constraints 179

in the training process. Hence, on one hand, MGs’ power 180

management policy functions are modeled using black-box 181

deep neural networks (DNNs); while on the other hand, to 182

ensure decision feasibility, a constrained gradient-based train- 183

ing method is proposed that exploits the derivatives of the 184

constraints and objective functions of the power management 185

problem w.r.t. control actions and learning parameters. The 186

training process employs these gradient factors to provide 187

a convex quadratically constrained linear program (QCLP) 188

approximation to the power management problem at each 189
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episode. This enables the proposed method to be both adapt-190

able to changes in the inputs of the black-box components, and191

feasible with respect to operational constraints, including AC192

power flow. Finally, a distributed consensus-based primal-dual193

optimization method [18] is adopted to decompose the train-194

ing task among MG agents. In summary, compared to existing195

decision making solutions, the main advantages of this article196

are as follows:197

• Compared to the black-box learning-based methods, the198

proposed SMAS-PL leverages the gradient information199

of all the operational constraints to devise a tractable200

QCLP-based training process to promote the safety and201

feasibility of control policies. A backtracking mechanism202

is added into the PL framework to perform a final verifi-203

cation of feasibility before issuing control commands to204

the assets.205

• Compared to conventional centralized training methods,206

the distributed training process in the SMAS-PL offers207

two advantages: it preserves the privacy of MG agents,208

including their control policies parameters and struc-209

tures, operation cost functions, and local asset constraints;210

it also enhances computational efficiency and maintains211

scalability as the number of learning parameters grows212

into a humongous size.213

• The proposed SMAS-PL method does not need to solve a214

complex optimization problem in real-time. The agents’215

policy functions, that are trained offline, can be leveraged216

online to select optimal control actions in response to217

latest system state data.218

The reminder of this article is organized as follows.219

Section II presents the overall framework of the proposed solu-220

tion. Section III introduces the SMAS-PL problem and inte-221

grates problem gradients into the solver. Section IV describes222

the multi-agent consensus-based training algorithm for SMAS-223

PL. Simulation results and conclusions are given in Section V224

and Section VI, respectively.225

II. OVERVIEW OF THE PROPOSED FRAMEWORK226

The general framework of the proposed SMAS-PL method227

is shown in Fig. 1. Note that vectors are denoted in bold let-228

ters throughout this article. The micro-sources within each MG229

are controlled by an agent that adopts a private control policy.230

Here, the control policy for the n’th agent, πn, is a parametric231

probability distribution function, with parameters θn, over the232

agent’s control actions (an,t), including active/reactive power233

dispatching signals for local diesel generators (DGs), ESS and234

solar photo-voltaic (PV) panels. Note that the control policy235

πn is a function of the MG’s state variables (Sn,t), defined236

by the aggregate MG load and solar irradiance. To ensure the237

safety of the control policies, MG agents receive the observed238

variables from the grid, including network nodal voltages Vt239

and injection currents It, to determine gradient factors of the240

problem constraints and objectives w.r.t. to learning param-241

eters, ∇θ J. These gradient factors are then integrated into242

a multi-agent constrained training algorithm, which employs243

local inter-MG communication to satisfy all global and local244

operational constraints through exchanging and processing245

Fig. 1. Structure of the proposed SMAS-PL method for power management
of networked MGs.

dual Lagrangian variables, λ(t). The Lagrangian multipliers 246

embody the interactions among the MGs and capture the 247

impacts of MGs’ decisions on each other. Theoretical anal- 248

ysis and numerical simulations are conducted to show that the 249

proposed SMAS-PL method can minimize the MG agents’ 250

operational cost and satisfy operational constraints. Note that 251

the proposed SMAS-PL is not a purely model-free approach, 252

since the AC power flow equations are used to calculate gra- 253

dient factors and ensure the decision feasibility when training 254

the DNNs. 255

In this article, the MGs are chosen to be collaborative, 256

because the satisfaction of the global constraints (i.e., lim- 257

its on nodal voltages and line flows) for the whole network 258

needs coordination among all MGs. Since global constraints 259

are impacted by the response of all the MGs, we have devised 260

a collaborative policy learning to ensure that grid-wide oper- 261

ation remains safe. Specifically, the consensus-based training 262

method leverages the Lagrange multipliers of the global con- 263

straints to coordinate the policy optimization of the MGs. 264

Thus, each Lagrange multiplier serves as a penalty factor 265

or a shadow price, which enforces safety in the data-driven 266

procedure. 267

III. SAFE POLICY LEARNING FOR POWER MANAGEMENT 268

OF NETWORKED MGS 269

To facilitate the discussion, Section III-A introduces a gen- 270

eral power management formulation that is commonly used in 271

literature [4], [6], [14]. Sections III-B defines each component 272

of the proposed SMAS-PL. In Sections III-C and III-D, we 273

propose a tractable SMAS-PL method, employing the gradi- 274

ent factors of reward function and constraint return functions 275

w.r.t. actions and learning parameters, to solve the power 276

management of networked MGs. 277

A. Power Management Problem Statement 278

Each MG is assumed to have local DGs, ESS, solar PV 279

panels and a number of loads. This optimization problem is 280

solved over a moving look-ahead decision window t′ ∈ [t, t+ 281

T], using the latest estimations of solar and load power at 282

different instants. Here, n is the MG index (n ∈ {1, . . . , N}), 283

i and j define the node numbers (∀i, j ∈ �i), ij defines the 284

branch numbers (∀ij ∈ �Br). 285



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON SMART GRID

1) Problem Objective: The objective function (1), with286

control action vector [PDG, PCh, PDis, QDG, QPV , QESS] ∈287

(xp, xq), minimizes MGs’ total cost of operation, which is288

composed of the income/cost from power transfer with the289

grid and cost of running local DG. Here, λF
n is the DG fuel290

price, λR
n is the electricity price, and PPCC

n,t′ is active power291

transfer between grid and the n’th MG at the point of com-292

mon coupling (PCC). The fuel consumption of DG, Fi,n,t′ , can293

be expressed as a quadratic polynomial function of its power,294

PDG
i,n,t′ , with parameters af

n, bf
n and cf

n.295

min
xp,xq

N∑

n=1

t+T∑

t′=t

(
−λR

n PPCC
n,t′ + λF

i,nFi,n,t′
)

(1)296

Fi,n,t′ = af
n

(
PDG

i,n,t′
)2 + bf

nPDG
i,n,t′ + cf

n. (2)297

2) Global Constraints: These constraints are defined over298

variables that are impacted by control actions of all the MGs,299

including the voltage amplitude limits for the entire nodes,300

[Vm
i , VM

i ], and the maximum permissible branch current flow301

magnitudes IM
ij throughout the distribution grid and the MGs:302

Vm
i ≤ Vi,t′ ≤ VM

i (3)303

−IM
ij ≤ Iij,t′ ≤ IM

ij (4)304

The global constraints (3)-(4) are implicitly determined by305

the AC power flow equations, which will be used to calculate306

the gradient factors of objective (1) and constraints (3)-(16)307

w.r.t. learning parameters as elaborated in Section III-D. Note308

that unlike previous centralized optimization solutions that are309

generally model-based, our strategy is a combination of both310

model-based and model-free approaches. Thus, while power311

flow equations appear explicitly in centralized optimization312

models, our solution only leverage power flow equations in an313

implicit way in the training process to ensure that the learning314

modules are generating feasible outcomes.315

3) Local Constraints: These constraints are defined over the316

local control actions of each MG. Constraints (5)-(6) ensure317

that the DG active/reactive power outputs, PDG
i,n /QDG

i,n , are318

within the DG power capacity PDG,M
i,n /QDG,M

i,n , and (7) enforces319

the maximum DG ramp limit, PDG,R
i,n . PV reactive power out-320

put, QPV
i,n , is constrained by its maximum limit QPV,M

i,n per (8).321

The active power transfer PPCC
n,t′ and the reactive power trans-322

fer QPCC
n,t′ at the PCCs are bounded with the constraints (9)323

and (10), respectively.324

0 ≤ PDG
i,n,t′ ≤ PDG,M

i,n (5)325

0 ≤ QDG
i,n,t′ ≤ QDG,M

i,n (6)326

∣∣∣PDG
i,n,t′ − PDG

i,n,t′−1

∣∣∣ ≤ PDG,R
i,n (7)327

∣∣∣QPV
i,n,t′

∣∣∣ ≤ QPV,M
i,n (8)328

∣∣∣PPCC
n,t′

∣∣∣ ≤ PPCC,M
n (9)329

∣∣∣QPCC
n,t′

∣∣∣ ≤ QPCC,M
n (10)330

The operational ESS constraints are described by (11)-(16),331

where (11) determines the state of charge (SOC) of ESSs,332

SOCi,n. ECap
i,n denotes the maximum capacity of ESSs. To 333

ensure safe ESS operation, the SOC and charging/discharging 334

power of ESS, PCh
i,n , PDis

i,n , are constrained as shown in 335

(12)-(16). Here, [SOCm
i,n, SOCM

i,n], PCh,M
i,n and PDis,M

i,n define 336

the permissible range of SOC, and maximum charging and 337

discharging power, respectively. Constraint (15) indicates that 338

ESSs cannot charge and discharge at the same time instant. 339

And ηCh/ηDis represents the charging/discharging efficiency. 340

The reactive power of ESS, QESS
i,n , is kept within maximum 341

limit, QESS,M
i,n , through constraint (16). 342

SOCi,n,t′ = SOCi,n,t′−1 +	t

(
PCh

i,n,t′ηCh − PDis
i,n,t′/ηDis

)

ECap
i,n

343

(11) 344

SOCm
i,n ≤ SOCi,n,t′ ≤ SOCM

i,n (12) 345

0 ≤ PCh
i,n,t′ ≤ PCh,M

i,n (13) 346

0 ≤ PDis
i,n,t′ ≤ PDis,M

i,n (14) 347

PCh
i,n,t′P

Dis
i,n,t′ = 0 (15) 348

∣∣∣QESS
i,n,t′

∣∣∣ ≤ QESS,M
i,n (16) 349

Note that the distribution system and networked MGs are 350

operated in normal condition, which means the switch opera- 351

tion and the network topology are assumed to be unchanged 352

during the operation period. 353

B. Safe Policy Learning Setup 354

In this section, the optimal power management of networked 355

MGs is transformed into a SMAS-PL problem. The purpose 356

of the SMAS-PL is to provide a framework for control agents 357

to collaboratively find control policies to maximize their total 358

accumulated reward while satisfying all problem constraints. 359

To do this, we have provided formulations to ensure that the 360

outcome of the SMAS-PL also corresponds to the solution of 361

optimal power management of networked MGs (1)-(16). To 362

show this, first we provide a description of the components of 363

the SMAS-PL method: 364

1) Control Agents: The problem consists of N autonomous 365

control agents, where each agent is in charge of dispatching 366

the resources within an individual MG. The MGs are collabo- 367

rative, in the sense that they depend on local communication 368

with each other to optimize their behaviors. 369

2) State Set: The state vector for the n’th MG agent at 370

time t is defined as Sn,t over the time window [t, t + T], as 371

Sn,t = [ÎPV
n,t′ , P̂D

n,t′ ]
t+T
t′=t , where ÎPV

n,t′ and P̂D
n,t′ are the vectors 372

of predicted aggregate internal load power and solar irradi- 373

ance of the n’th MG at time t′, respectively. The prediction 374

errors follow random distributions with zero mean and the 375

standard deviations selected from the beta and Gaussian dis- 376

tributions adopted from [19]–[21]. Note that the parameters of 377

forecasting error distributions are different for different MG 378

agents. 379

3) Action Set: The control action vector for the n’th agent at 380

time t is denoted as an,t ∈ R
Dn and consists of the dispatching 381

decision variables for the n’th MG over the time window [t, t+ 382

T], as an,t = [PDG
n,t′ , PCh

n,t′ , PDis
n,t′ , QDG

n,t′ , QPV
n,t′ , QESS

n,t′ ]
t+T
t′=t . 383
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4) Observation Set: The observation variable vector for the384

agents at time t is denoted as Ot, and includes grid’s nodal385

voltages Vt and current injections It at that time, Ot = [Vt, It].386

Note that the observations are implicitly determined by the387

agents’ control actions, and thus, cannot be predicted indepen-388

dently of the agents’ policies. However, unlike the observation389

variables, the state variables are independent of the agents’390

control actions and can be predicted for the whole decision391

window without the need to consider agents’ policies. In392

the power management problem, nodal sensors or distribution393

grid’s state estimation module will provide the latest values of394

observations.395

5) Control Policy: In this work, the control policies are396

modelled as multivariate Gaussian distributions due to several397

reasons: (i) Gaussian distributions allow for explicit learning of398

both expectations and uncertainties of control policies, which399

are directly represented by the parameters of the distribution.400

Most of other distributions are parameterized by unintuitive401

parameters that make the decision model harder to interpret402

and verify. (ii) The gradients of Gaussian policy functions with403

respect to actions and learning parameters are easy to com-404

pute (see Appendices A and B). (iii) Gaussian policy functions405

have been adopted and suggested by [22] and [23]. Thus, the406

control policy for the n’th agent, denoted as πn, is defined as407

a Dn-dimensional multivariate Gaussian distribution over con-408

trol actions an. The policy function determines the probability409

of the agent’s optimal control action after training, as follows:410

an ∼ πn(an|θn) = 1√
|�n|(2π)Dn

e−
1
2 (an−μn)	�−1

n (an−μn) (17)411

where μn ∈ R
Dn×1 is the mean vector and �n ∈ R

Dn×Dn is412

the covariance matrix of of multivariate Gaussian distribution413

for the n’th agent. The Gaussian policy function explicitly414

determines the expected value and uncertainties of optimal415

control actions for each agent. Each agent’s learning parameter416

vector, θn, consists of two parametric subsets θμn and θ�n ,417

corresponding to the mean vector and the covariance matrix of418

the agent’s policy function. To do this, two DNNs are used for419

each MG agent as parametric learning functions to represent420

control policy components. These DNNs receive the agent’s421

states, Sn, as input to fully quantify the sufficient statistics of422

optimal control policies of MGs, i.e., the mean vector and the423

covariance matrix of the agent’s actions, as follows:424

μn = DNN
(
Sn|θμn

)
(18)425

�n = DNN
(
Sn|θ�n

)
(19)426

The DNNs are maintained, continuously updated, and427

deployed in real-time by local control agents of each MG. Note428

that the proposed SMAS-PL method introduces a trade-off429

between model-free and model-based methods and combines430

the benefits offered by both sides. Thus, the reasons for the431

use of DNN-based distributions for modeling actions are as432

follows: (i) we have leveraged the model information to train433

safe policy functions that guarantee feasibility (i.e., the model-434

based aspect of the solution); (ii) the trained policy functions435

are deployed online for action selection, simply by inserting436

the latest data samples into the DNN-based policy functions437

(i.e., the model-free aspect of the solution).438

6) Reward Function: The reward function for the n’th MG 439

is defined as the discounted negative accumulated operational 440

cost of individual MG over the decision window [t, t + T], 441

Rn,t′ = −[
∑t+T

t′=t(−λR
n PPCC

n,t′ + λF
i,nFi,n,t′)], obtained from the 442

objective functions of the networked MGs power management 443

problem, (1), as follows: 444

JRn(πn) = Eπn

[
t+T∑

t′=t

γ t′Rn,t′

]
,∀n ∈ {1, . . . , N} (20) 445

where, γ ∈ [0, 1) is a discount factor that determines each 446

MG agent’s bias towards rewards received at different time 447

instances. An agent with γ = 0 is a purely-myopic decision 448

maker, which favors immediate reward at the expense of later 449

expected reward values. On the other hand, γ = 1 represents 450

an unbiased agent, which assigns equal weights to the reward 451

received at all time instants. This parameter is user-defined and 452

depends on each MG’s economic priorities. The expectation 453

operation Eπn{} is used to calculate reward with respect to the 454

future expected action-states, which are in turn impacted by 455

the uncertainties of states and observations. 456

7) Constraint Return: The SMAS-PL consists of a total of 457

M constraints, including ML
c local and MG

c global constraints, 458

defined by (3)-(4) and (5)-(16), respectively, and denoted as 459

Cm(π) ≤ dm, m ∈ {1, . . . , Mc}, where Cm(π) represents the 460

return value of m’th constraint under the control policy π and 461

dm is the upper-boundary of the m’th constraint. Note that 462

all constraints in the power management problem have been 463

transformed into this format (equality constraint (15) can be 464

transformed into two inequality constraints). Constraint satis- 465

faction is encoded into the SMAS-PL using the discounted 466

constraint return values of agents’ policies π as: 467

JCm(π) = Eπ

[
t+T∑

t′=t

γ t′Cm,t′

]
≤ dm,∀m ∈ {1, . . . , Mc} (21) 468

where, expectation operation has been leveraged in (21) to 469

handle the state and observation uncertainties. 470

C. Safe Policy Learning Formulation 471

Given the definitions of the components of the SMAS- 472

PL (Section III-B), the power management problem of the 473

networked MGs (1)-(16) is transformed into an iterative 474

SMAS-PL problem, where the control policies of the agents 475

are updated at time t, around their latest values, by maximiz- 476

ing a reward function (22), while satisfying constraint return 477

criteria: 478

π t+1 = arg max
π1,...,πN

N∑

n=1

JRn(πn) (22) 479

s.t. an ∼ πn(Sn) (23) 480

JCm(π) ≤ dm, ∀m (24) 481

	
(
πn, π

t
n

) ≤ δ, ∀n (25) 482

where, π = {π1, . . . , πn} denotes the set of control policies 483

of all agents. In (23), the agent’s policy is a function of the 484

state vector, Sn. In (24), the expected constraint return value 485

are used to ensure the satisfaction of m’th constraint based on 486
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control policies. In (25), 	(·, ·) is the Kullback Leibler (KL)-487

divergence function [15] that serves as a distance measure488

between the previous policy, π t
n, and the updated policy, π t+1

n ,489

and is constrained by a step size, δ. Note that (25) ensures that490

consecutive policies are within close distance from each other.491

The intractable non-convex PL formulation, (22)-(25), can492

be solved in principle using a trust region policy optimization493

(TRPO) method [15]; however, in this article we apply a fur-494

ther approximation to TRPO to transform the problem into a495

tractable convex iterative QCLP, which enables learning the PL496

parameters, θ = {θ1, . . . , θN}, in a more scalable and efficient497

manner. Our solution leverages the linear approximations of498

the objective and constraint returns around the latest parameter499

values θ t:500

θ t+1 = arg max
θ1,...,θN

N∑

n=1

gn
T(θn − θ t

n
)

(26)501

s.t. Jcm

(
θ t)+ bm

T(θ − θ t) ≤ dm, ∀m (27)502

1

2

(
θn − θ t

n
)T

Hn
(
θn − θ t

n
) ≤ δ, ∀n (28)503

where, gn = ∇θ JR and bm = ∇θ JCm are the gradient factors504

of the reward and constraint return functions w.r.t. the learning505

parameters. Constraint (25) is transformed into (28) using the506

Fisher information matrix (FIM) of the policy functions, πn,507

denoted by Hn. The FIM is a positive semi-definite matrix,508

whose (c, d)’th entry for policy functions with a Gaussian509

structure is determined as follows [24]:510

Hn(c, d) = E

[
∂ log πn(an|θn)

∂θn(c)

∂ log πn(an|θn)

∂θn(d)

]
511

= 2

(
∂μH

n

∂θn(c)
�−1

n
∂μn

∂θn(d)

)
512

+ Tr

{
�−1

n
∂�n

∂θn(c)
�−1

n
∂�n

∂θn(d)

}
(29)513

Note that (26)–(28) provides a convexified constrained514

gradient-based method for training the policy functions’515

parameters of the MG agents; using this QCLP-based strategy516

the agents do not need to learn an action-value function explic-517

itly. Instead, the power-flow-based gradient factors, gn and bm,518

have to be determined for the two sets of learning parameters,519

[θμn , θ�n ]. This process is outlined in Section III-D.520

D. Gradient Factor Determination521

To determine gradient factors, the following information are522

used: (i) the observation variables, Ot, including nodal voltage523

V and current injections I; (ii) the latest system states Sn,t524

for each MG agent; (iii) the latest control actions an of each525

MG agent; (iv) the latest learning parameters θn = [θμn , θ�n ];526

(v) network parameters, including the nodal admittance matrix,527

Y . Using information (i)-(v) and chain rule, gn = [gμn , g�n ]528

and bm = [bm,μn , bm,�n ] in (26) and (27) can be written as:529

gμn =
∂JRn

∂an

∂an

∂πn

∂πn

∂μn

∂μn

∂θμn

(30a)530

bm,μn =
∂JCm

∂an

∂an

∂πn

∂πn

∂μn

∂μn

∂θμn

(30b)531

532

g�n =
∂JRn

∂an

∂an

∂πn

∂πn

∂�n

∂�n

∂θ�n

(31a) 533

bm,�n =
∂JCm

∂an

∂an

∂πn

∂πn

∂�n

∂�n

∂θ�n

(31b) 534

where, each gradient factor, gμn , bm,μn , g�n , and bm,�n , con- 535

sists of four elements. All the elements in (30) and (31) can 536

be obtained as follows. 537

1) ∂JRn/∂an and ∂JCm/∂an: The gradients of the expected 538

reward JRn and the expected constraint return JCm w.r.t. con- 539

trol actions an can be obtained using a proposed four-step 540

process, that leverages the current injection-based AC power 541

flow equations. The details of this process are shown in 542

Appendix A. 543

2) ∂an/∂πn: Using the latest values for parameters μn, �n, 544

and actions an, the gradient of control actions w.r.t. πn is 545

obtained from (17), as shown in (32): 546

∂an

∂πn
= −

(
�−1

n (an − μn)√
|�n|(2π)Dn

e−
1
2 A

)−1

(32) 547

where, A = (an−μn)	�−1
n (an−μn). The detailed derivation 548

of (32) can be found in Appendix B. 549

3) ∂πn/∂μn and ∂πn/∂�n: Using the latest values for 550

parameters μn, �n and actions an, the gradients of control 551

policies, w.r.t. μn and �n are determined using (17), as shown 552

in (33) and (34): 553

∂πn

∂μn
= �−1

n (an − μn)√
|�n|(2π)Dn

e−
1
2 A (33) 554

∂πn

∂�n
= −1

2

(
�−1

n −�−1
n (an − μn)(an − μn)	�−1

n

)
√
|�n|(2π)Dn

e−
1
2 A

555

(34) 556

where, the detailed derivations of (33) and (34) are shown in 557

Appendix B. 558

4) ∂μn/∂θμn and ∂�n/∂θ�n : A back-propagation pro- 559

cess [25] is performed on the two DNNs within each MG 560

agent’s control policy function, (18) and (19), to determine 561

the gradients of DNNs’ outputs w.r.t. their parameters. In each 562

iteration, the latest values of state variables are employed as 563

inputs of the DNNs. The back-propagation process exploits 564

chain rule for stage-by-stage spreading of gradient information 565

through layers of the DNNs, starting from the output layer and 566

moving towards the input [25]. To enhance the stability of the 567

back-propagation process, a sample batch approach is adopted, 568

where the gradients obtained from several sampled actions are 569

averaged to ensure robustness against outliers. 570

IV. MULTI-AGENT CONSENSUS-BASED SAFE POLICY 571

LEARNING 572

A. Offline Policy Training 573

Using the gradient factors (30) and (31), the QCLP, 574

(26)–(28), is fully specified and can be solved at each pol- 575

icy update iteration for training the agents’ PL frameworks. 576

However, we have identified two challenges in this problem: 577

(i) the size of the DNN parameters θ can be extremely large, 578
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which results in high computational costs during training; (ii)579

the control policy privacy of the MG agents needs to be580

preserved during training, which implies that the agents might581

not have access to each other’s control policies, cost func-582

tions, and local constraints on assets. Centralized solvers can583

be both time-consuming and lack guarantees for maintaining584

data ownership boundaries.585

In order to address these two challenges, we have developed586

a multi-agent consensus-based constrained training algo-587

rithm [18]. Due to its distributed nature this method is both588

scalable and does not require sharing control policy param-589

eters among agents. Thus, the proposed algorithm is able590

to efficiently solve the QCLP (26)–(28), while relying only591

on local inter-MG communication. The purpose of inter-MG592

interactions is to satisfy global constraints, (3)–(4). To do this,593

the agents repeatedly estimate and communicate dual vari-594

able λn, corresponding to the Lagrangian multiplier of global595

constraints. Furthermore, a local primal-dual gradient step is596

included in the algorithm to move the primal and dual param-597

eters towards their global optimum. The proposed distributed598

algorithm consists of four stages that are performed iteratively,599

as follows:600

Stage I [Initialize (k← 1)]: Gradient factors gn and bm are601

obtained from Section II-D. The previous values of learning602

parameters are input to the QCLP, θ t
n(0)← θ t−1

n . Lagrangian603

multipliers are initialized as zero for each MG agent.604

Stage II (Weighted Averaging Operation): MG agent n605

receives the Lagrangian multiplier λn′ , for global con-606

straints (3)-(4), from its neighbouring MG agents n′ ∈607

{1, . . . , Nn} and combines the received estimates using608

weighted averaging:609

λ̄n(k) =
Nn∑

n′=1

wn
(
n′
)
λn′(k) (35)610

where, wn(n′) is the weight that MG agent n assigns to the611

incoming message of the neighbouring MG agent n′. To guar-612

antee convergence to consensus, the weight matrix, composed613

of the agents’ weight parameters is selected as a doubly614

stochastic matrix [18], i.e., wn(n′) = 1
Nn

. This weight selection615

strategy implies that the MG agents assign equal importance616

to the information received from their neighboring agents.617

Stage III (Primal Gradient Update): The n’th MG agent618

updates its primal parameters θ t
n employing a gradient descent619

operation, using the gradients of the agent’s reward and the620

global constraint returns, m′ ∈ MG
c , and step size ρ1:621

θ̄n(k) = θ t
n(k)− ρ1

(
gn
(
θ t

n(k)
)+ bm′

(
θ t

n(k)
)
λ̄n(k)

)
. (36)622

Stage IV (Projection on Local Constraints): The agent623

projects the local learning parameters to the feasible region624

defined by the gradients of the local constraints (5)-(16):625

θ t
n(k + 1) = arg min

θ

∥∥∥θ̄n(k)− θ

∥∥∥ (37)626

s.t. Jcm

(
θ t

n(0)
)+ bm

T(θ t
n(0)− θ

) ≤ dm, ∀m ∈ ML
c (38)627

1

2

(
θ t

n(0)− θ
)T

Hn
(
θ t

n(0)− θ
) ≤ δ, ∀n. (39)628

Algorithm 1 SMAS-PL Training

1: Select tmax, T, δ, kmax, wn(n′), ρ1, ρ2,	θn

2: Initialize θ
t0
n

3: for t← 1 to tmax do
4: Sn ← [Sn(t), ..., Sn(t + T)]
5: μn ← (18) [Parameter insertion]
6: �n ← (19) [Parameter insertion]
7: an ∼ πn(Sn|θn)← (17) [Action selection]
8: ∂JRn/∂an ← (55)-(56)
9: ∂JCm/∂an ← (59), (57)-(58)

10: ∂an/∂πn ← (32)
11: ∂πn/∂μn ← (33)
12: ∂πn/∂�n ← (34)
13: ∂μn/∂θμn ← DNNμn [Back-propagation]
14: ∂�n/∂θ�n ← DNN�n [Back-propagation]
15: gμn , bm,μn ← (30) [Chain rule]
16: g�n , bm,�n ← (31) [Chain rule]
17: Hn ← (29) [FIM Construction]
18: Initialize λn(k0)

19: for k← 1 to kmax do
20: λ̄n(k)← (35) [Averaging operation]
21: θ̄n(k)← (36) [Primal gradient update]
22: θ t

n(k + 1)← (37)-(39) [Projection on ML]
23: λn(k + 1)← (40) [Dual gradient update]
24: if ‖θ t

n(k + 1)− θ t
n(k)‖ ≤ 	θn then

25: θ t+1
n ← θ t

n(k + 1); Break;
26: end if
27: end for
28: if ‖θ t+1

n − θ t
n‖ ≤ 	θn then

29: Output θ∗
n ← θ t+1

n ; Break;
30: end if
31: end for
32: Output well-trained parameterized policy πn(θ

∗
n )

Stage V (Dual Gradient Update): Each agent’s estimations 629

of dual variables λn for the global constraints, (3) and (4), will 630

be updated using a gradient ascent process over λ̄n: 631

λn(k + 1) = [(λ̄n(k)+ ρ2
(
bm′θ t

n(k + 1)−dm′
) ]+

,∀m′ ∈ MG
c 632

(40) 633

where, ρ2 is a penalty factor for global constraints violation, 634

and the operator [·]+ returns the non-negative part of its input. 635

Stage VI (Stopping Criteria): Check algorithm convergence 636

using the changes of θ t
n(k); stop when the changes in param- 637

eters falls below the threshold value 	θn; otherwise, go back 638

to Stage II. 639

The overall flowchart of the SMAS-PL training process 640

using the proposed distributed training technique is shown in 641

Algorithm 1. The calculations of Steps 8 and 9 can be found 642

in Appendix A. 643

B. Online Action Selection 644

The trained policy functions are used by the MG agents for 645

online action selection. This process can be simply represented 646

as sampling from the learned Gaussian policy functions (17). 647
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Fig. 2. Flowchart of the backtracking strategy.

First, the agents receive the latest values of the states, includ-648

ing the predicted solar irradiance and aggregate internal load649

power of MGs. These values are inserted into the trained650

DNNs (18) and (19) to obtain the mean and covariance matri-651

ces of the policy functions. Finally, samples are generated652

from the multivariate Gaussian distributions. These samples653

are averaged and passed to the local controllers of each654

controllable asset as a reference signal.655

C. Backtracking Strategy656

Due to convex approximations in the formulations657

(26)–(28), it is possible for few global constraints to be658

marginally violated in practice. To ensure feasibility, we can659

add a backtracking strategy into the proposed solution. This660

closed-loop backtracking strategy consists of two components,661

as shown in Fig. 2.662

Component 1 [Power Flow Engine (PFE)]: The PFE663

receives the control actions from MG agents and runs a sim-664

ple power flow program to obtain the status of all constraints.665

If no constraint is violated, the control signals are passed to666

controllable assets. If some constraints are violated, then the667

PFE will engage the backtracking process.668

Component 2 (Backtracking Module): The backtracking669

module tightens the upper-bound limit (dm) (only) for the con-670

straints that have been violated. The parameters of the trained671

DNNs will be re-updated according to update rules (35)–(40)672

and with the modified upper-bounds. The purpose of tight-673

ening the upper-bound is to provide a safety margin. In this674

article the tightening process is performed using a user-defined675

coefficient multiplier, 0 < τ < 1, as follows:676

d∗m = τdm. (41)677

V. SIMULATION RESULTS678

The proposed method is tested on a modified 33-bus dis-679

tribution network [26], which consists of five MGs as shown680

in Fig. 3(a). Each MG is modeled as a modified IEEE 13-bus681

network [26] at a low voltage level as shown in Fig. 3(b).682

When calculating the gradient factors, a single-phase AC683

power flow model is used for the sake of brevity. In the case684

study, the base power value is 100 kVA and base voltage values685

Fig. 3. Test system under study.

TABLE I
SELECTED COST FUNCTION PARAMETERS

in the 33-bus distribution network and 13-bus MG networks 686

are 12.66 kV and 4.16 kV, respectively. 687

The input data for load demands and PV generations have 688

15-minute time resolution are obtained from smart meter 689

database [27] to provide realistic numerical experiments. The 690

assumption in this article is that smart meters are installed 691

throughout the network and the agents have access to a diverse 692

data. The training and testing datasets are selected through 693

uniform randomization to ensure that the proposed solver func- 694

tions reasonably. Here, 1-month of the randomly selected data 695

is used for testing and 11-month of the data is used for training. 696

The energy price for the transferred power at the MG PCCs 697

and the fuel price for the local DGs are adopted from [28] 698

and [29], respectively. The quadratic polynomial parameters of 699

DG fuel consumption are adopted from [30]. Table I presents 700

selected parameters for operational cost calculation in simula- 701

tions. The average capacities for DGs in MGs are 60 kWh. The 702

average capacities for ESSs in MGs are 20 kWh, the maximum 703

charging/discharging rate is 4kW and the charging/discharging 704

efficiencies are 95% and 90%, respectively. 705

All the case studies are simulated using a PC with Intel Core 706

i7-4790 3.6 GHz CPU and 16 GB RAM hardware. The sim- 707

ulations are performed in MATLAB [31] and OpenDSS [32] 708

to obtain the gradient factors, update the learning parameters, 709

solve the distributed training problem, and validate the results. 710

In training, each episode is a learning update iteration based 711

on the data that comes from one moving decision window. The 712

length of the moving window is 4 samples with a 15-minute 713

time step, which gives us a 1-hour window. The activation 714

functions of each layer (including the output layer) of the 715
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TABLE II
SELECTED DNN HYPERPARAMETERS AND USER-DEFINED COEFFICIENTS

feedforward networks are hyperbolic tangent-sigmoid (tansig).716

After various numerical tests, the parameters θμ and θ� of717

the neural networks are initialized using uniform distributions718

defined over the intervals (0, 0.2) and (−0.03, 0.03), respec-719

tively. In our simulations, we have observed that τ = 0.9 is720

sufficient for ensuring feasibility for those constraints that have721

been marginally violated after one-to-two rounds of backtrack-722

ing. Table II summarizes selected DNN hyperparameters and723

other user-defined coefficients in simulations. The hyperpa-724

rameters were optimized using a randomly-selected validation725

set (2 months worth of data) and Bayesian optimization with726

uninformative priors in MATLAB environment.727

Further, to demonstrate the effectiveness of SMAS-PL,728

three benchmark methods have been considered, including729

an optimization-based method, an on-policy method and730

an off-policy method. The first benchmark method is an731

optimization-based method, which leverages YALMIP tool-732

box to solve the optimal power management of networked733

MGs using IBM ILOF CPLEX 12.9. The second one is the734

unconstrained policy gradient learning (U-PL) method, which735

leverages the same algorithm as the proposed SMAS-PL, how-736

ever, certain constraints are removed during the training process737

of U-PL. By comparing the SMAS-PL and the U-PL, we can738

show the effectiveness of the SMAS-PL when handling different739

local and global constraints. The U-PL can be considered as an740

on-policy benchmark. We also consider an off-policy bench-741

mark method, namely the deep Q-network (DQN). In [23],742

[33], DQN uses deep neural networks (DNNs) to approximate743

the Q-function and provide Q-value estimation for discretized744

control actions. To include the constraints in DQN, we have745

followed the suggestion in [23], [34] and added penalty terms746

to the reward function of the benchmark DQN to discour-747

age constraint violation. The penalty coefficients for global748

and local constraints are manually tuned based on the DQN749

performance. However, since the benchmark DQN was not750

originally designed for continuous actions, we have first dis-751

cretized the agents’ action space with a step size of 33% of752

the constraint upper limit. For example, if the upper limit of a753

diesel generation (DG) power output is 60 kW, then, the power754

output action of DG has been discretized as (0, 20, 40, 60) kW.755

Fig. 4. Aggregated power of local demand, local generation and power
transfer for MG1-MG5.

Similar discretization has been applied to the actions of PV 756

inverters and ESSs. The inputs of the DNN are the system 757

states, and the outputs of the DNN are estimations for the 758

Q-value function for each discrete action. The DNN is param- 759

eterized as a function approximator to represent the Q-value 760

function. The temporal difference (TD) learning algorithm is 761

used to train the DNN by minimizing the mean-squared TD 762

error. The discount factor and learning rate in DQN are set to 763

the same values as those of SMAS-PL. The exploration factor 764

is set to 0.1 in the ε-greedy action selection of DQN. The 765

structure of DNN in the benchmark DQN has been obtained 766

using cross-validation. The dimensions of the input and output 767

layers have been extended by the number of MG agents and the 768

number of discrete actions. Note that the benchmark U-PL is 769

implemented in a multi-agent framework, while the benchmark 770

DQN is implemented in a centralized way. 771

A. System Operation Outcomes 772

In the case study, action selection is performed by sampling 773

100 times from the trained policy functions (distributions). 774

Then the dispatching action is obtained by averaging the 775

selected samples. A trade-off is involved in choosing the 776

number of action samples: if this number is too large, then 777

the selected actions will converge to the policy mean, which 778

implies that model uncertainties are ignored. This could result 779

in erroneous and sub-optimal solutions in case the learned 780

model is over-fitting (i.e., when the estimated mean has large 781

errors). On the other hand, if the number of samples is too 782

small, then the outcomes can deviate from the learned mean 783

value, which can also result in low-quality outcomes. The 784

average outcomes are shown in Fig. 4, Fig. 5 and Table III. 785

The aggregate MG demand, aggregate MG generation, and 786

aggregate power transfer through PCCs of MGs over a day 787

are shown in Fig. 4. It can be seen that the main MG 788

demands are supplied by the local generation within MGs 789

due to low DG fuel prices and renewable outputs. While 790

most MGs are exporting power to the upstream distribu- 791

tion grid, MG4 is importing power to satisfy the heavy local 792

load that cannot be fully supplied internally. In all cases 793

the power balance is maintained within the MGs. The ESS 794

SOCs for each MG are shown in Fig. 5, where can be seen 795

that ESSs charge during off-peak period and discharge dur- 796

ing peak time to provide optimal power balancing support 797

for MGs. Table III presents comparisons between the bench- 798

mark optimization-based method, the benchmark DQN and 799
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Fig. 5. ESS dispatching results for MG1-MG5.

TABLE III
COMPARISON BETWEEN CENTRALIZED SOLVER, DQN AND SMAS-PL

METHOD

the proposed SMAS-PL, including the average daily cost of800

operation over numerous scenarios, average online decision801

time, and MG privacy maintenance.802

In general, the SMAS-PL method has three fundamental803

advantages over centralized optimization method: 1) Even804

though the offline training process in our method takes a805

long time (around 35 minutes per agent), the average online806

decision time for the proposed SMAS-PL is about only807

1.4 seconds per agent, which is much shorter than the aver-808

age time 145.5 seconds for the centralized optimization solver.809

Thus, the real-time response of the trained policy function is810

almost 100 times faster than that of the OPF solver. The rea-811

son for this is that the OPF solver needs to find the optimal812

solution of a complex optimization problem in real-time, while813

our approach simply samples from multivariate Gaussian dis-814

tributions that embody optimal control policies. Furthermore,815

we have observed that the computational cost of the central-816

ized OPF solver rises almost quadratically with the size of the817

system; beyond a certain point the commercial solver is not818

able to provide solutions in a reasonable time. On the other819

hand, our SMAS-PL retains an almost constant online deci-820

sion time, while the cost of offline training increases almost821

linearly. 2) The proposed PL method takes advantage of a822

multi-agent (distributed) framework to train the policy func-823

tion of each MG agent; in practice, this distributed framework824

can be implemented using parallel computation techniques,825

which also enhances the scalability of the proposed SMAS-PL826

method compared to centralized solvers. 3) Due to its dis-827

tributed nature, the proposed SMAS-PL method maintains the828

privacy and data ownership boundaries of individual MGs.829

During the training process, the MG agents do not need to830

share control policy parameters, policy functions, cost func-831

tions, and local asset constraints with each other. The only832

variables that are shared among MG agents are the Lagrangian833

multipliers corresponding to global network constraints. These834

multipliers do not have a physical meaning and thus, do not835

contain sensitive information.836

Fig. 6. Convergence of learning parameters θμ and θ� for MG1-MG5.

Based on the comparison between the centralized solver and 837

our proposed method, there is still a 1.14% difference between 838

the solutions from the centralized solver and the SMAS-PL 839

method, which might be caused by the following reasons: 840

(i) Unlike the centralized solver, which has access to the full 841

systemic model information, and thus, can guarantee at least a 842

local optimal solution, the proposed SMAS-PL method lacks a 843

guarantee of optimality. Also, in order to obtain a high-quality 844

solution, the SMAS-PL needs to first approximate the original 845

problem with a convex surrogate, which despite enhancing the 846

problem tractability, comes at the expense of loss of accuracy 847

and a reduction in performance. (ii) The proposed backtracking 848

mechanism is a heuristic strategy, which is aimed at obtaining 849

a feasible solution that might come at the expense of a loss 850

in the reward. (iii) To obtain a consensus-based solution, the 851

SMAS-PL needs a reliable inter-agent communication infras- 852

tructure, which could be costly. (iv) In case of changes in 853

system structure, the SMAS-PL will need an offline re-training 854

phase to adapt to new system conditions. This could take some 855

time, during which the agents will experience a temporary 856

decline in their payoffs. The comparison between DQN and 857

SMAS-PL is discussed in Section V-B. 858

B. Algorithm Performance 859

Fig. 6(a) and Fig. 6(b) show the convergence of a selected 860

group of learning parameters, θμ and θ� during the training 861

process, for each MG agent. As can be seen, the changes in 862

θμ are relatively larger than that of θ� . This is due to the 863

higher levels of sensitivity of MG agents’ objective functions 864

to the mean values of the control actions compared with their 865

variance levels. 866

In Fig. 7, the average hourly rewards under SMAS-PL, 867

U-PL, and DQN are compared with each other. Note that 868

here, the moving average rewards and the episodic rewards 869

of different methods are depicted by dark and light curves. 870

It can be observed that SMAS-PL and U-PL both outper- 871

form DQN in term of the total reward. The reason for this is 872
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Fig. 7. Comparison of the average hourly rewards with different methods.

that the SMAS-PL and U-PL leverage the proposed iterative873

and distributed technique to adaptively tune the Lagrangian874

multipliers through information exchange between MG agents;875

on the other hand, the DQN needs to manually design penalty876

coefficients for constraint violations, which either offers inad-877

equate penalization of the constraint violations or excessive878

punishment for the constraints. Also, SMAS-PL and U-PL879

have continuous action spaces, while DQN employs action dis-880

cretization, which hinders accurate exploration of action space.881

After the NNs are fully trained, the SMAS-PL samples the882

actions from the learned multivariate Gaussian distributions883

that embody optimal control policies, while the benchmark884

DQN selects the control actions that have the highest estimated885

Q-values for the given state according to the trained DNN.886

Based on the results in Table III, the decision time for the887

SMAS-PL is around 1.4 seconds per agent, while the decision888

time for the benchmark DQN is approximately 10.3 seconds.889

Thus, the decision time for the proposed SMAS-PL is faster890

than the benchmark DQN, because the multi-agent framework891

enables the SMAS-PL to sample decision actions in parallel892

for each MG agent, while the benchmark DQN selects the893

control actions for all the MGs together in a centralized way.894

Two cases are considered in implementing U-PL: (i) no DG895

capacity constraints for MG1 and MG2; (ii) no DG capacity896

constraints for MG1-MG5. In cases (i) and (ii) of the U-PL,897

the agents obtain a higher reward compared to the SMAS-898

PL due to the constraint omission; however, this comes at the899

expense of decision infeasibility. In case of the SMAS-PL,900

these operational constraints are satisfied, which also leads901

to a drop in total reward, as expected. This shows that our902

proposed constrained PL decision model can ensure the feasi-903

bility of the control actions w.r.t. the constraints of the power904

management problem. Note that even though the proposed905

SMAS-PL framework is similar to the TRPO [15], the TRPO906

has theoretical guarantees for monotonic increase in return,907

while such guarantees do not exist for the approximate QCLP908

formulation in the proposed SMAS-PL. However, compared909

to TRPO our solution offers a simpler, more efficient, and910

tractable alternative, with fewer learning parameters.911

Furthermore, Fig. 8 shows the constraint values during the912

training iterations for a 1-hour time window, for the two cases913

with and without DG capacity constraints in MG1, where the914

dark blue and red curves represent averaged constraint val-915

ues, and the light blue and red areas represent the variations916

around the average curves for the SMAS-PL and U-PL, respec-917

tively. During the training process, the U-PL violates the upper918

Fig. 8. Comparison of constraint values w/ and w/o DG capacity constraints
in MG1.

Fig. 9. The performance of the iterative distributed training method in one
episode (no binding global constraints).

Fig. 10. Selected global branch current constraint return values for MG
agents.

boundary for DG generation limit (i.e., local constraint case 919

study); on the other hand, the SMAS-PL solver satisfies the 920

DG generation capacity constraints, which implies that the 921

local constraints can be safely maintained. Therefore, com- 922

pared to U-PL, the proposed SMAS-PL has shown to be able 923

to generate control actions that not only improve the reward 924

function but also satisfy the constraints. 925

One example of the distributed training convergence pro- 926

cess is shown in Fig. 9 for a policy gradient update step. As 927

can be seen, the Lagrangian multipliers λn reach zero over 928

iterations of the proposed multi-agent algorithm, which indi- 929

cates that all the global constraints, including nodal voltage 930

and branch current limits, are satisfied and feasible solutions 931

are obtained. This also means that the bus voltage and line 932

current constraints are not binding for this case. 933

Another example is given to demonstrate the effectiveness 934

of the SMAS-PL in handling binding global constraints. This 935

case shows a line flow constraint in the grid under the proposed 936

SMAS-PL and a U-PL baseline; as is observed in Fig. 10, 937

the U-PL has generated infeasible decisions that violate the 938

constraint, while our approach has prevented the flow to go 939
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Fig. 11. MG agents’ consensus on λn for the selected global constraint.

Fig. 12. Impact of backtracking on algorithm performance.

above its upper bound. Further, as can be seen in Fig. 11,940

the Lagrangian multipliers for this binding constraint reach a941

non-zero constant number over iterations. This also shows the942

agents’ estimations of Lagrange multipliers for a global line943

flow constraint; as can be seen, using the proposed SMAS-944

PL the agents are capable of reaching consensus on the value945

of the multiplier without having any access to each other’s946

policy functions, which corroborates the performance of our947

proposed method under incomplete information.948

To validate the tightening parameter levels (τ ), we have949

studied the impact of different τ values on the reward. Here,950

at episode 400, the value of τ is decreased from 1 to (0.95,951

0.9, 0.85). The average rewards for different drops in τ are952

compared in Fig. 12. It can be observed that for values of τ953

close to 1 (i.e., τ = 0.95 and τ = 0.9) the reward values are954

very close to each other. However, as τ deviates from unity955

and reaches τ = 0.85, the reward drops significantly. In our956

simulation, we have observed that τ = 0.9 is sufficient for957

ensuring feasibility for those few constraints that have been958

marginally violated in certain operation scenarios after one-959

to-two rounds of backtracking. Note that this threshold needs960

to be fine-tuned for specific grids.961

To simulate the impact of bad network parameter data on962

training model performance, we have added random errors963

(with a 10% variance) to the network resistance (R) and reac-964

tance (X) parameters during the training process. The bad965

network data will lead to errors in gradient factors (42)-(59)966

(see Appendix A). To validate the SMAS-PL under network967

data imperfection, we have compared the average reward968

obtained with perfect knowledge of network parameters and969

under bad network parameter information. It can be observed970

in Fig. 13, even though the learning process with bad network971

data shows more volatility and needs more time to reach972

Fig. 13. Analysing the impact of bad network data on decision model
outcomes.

convergence, the model still reaches reward values close to 973

the ideal case. However, due to the information imperfection, 974

a loss of reward is inevitable. 975

VI. CONCLUSION 976

Conventional model-based optimization methods suffer 977

from high computational costs when solving large-scale multi- 978

MG power management problems. On the other hand, the 979

conventional model-free methods are black-box tools, which 980

may fail to satisfy the operational constraints. Motivated by 981

these challenges, in this article, a SMAS-PL method has 982

been proposed for power management of networked MGs. 983

Our proposed method exploits the gradients of the decision 984

problem to learn control policies that achieve both optimality 985

and feasibility. Furthermore, to enhance computational effi- 986

ciency and maintain the policy privacy of the control agents, 987

a distributed consensus-based training process is implemented 988

to update the agents’ policy functions over time using local 989

communication. 990

Note that the current case study has been conducted over 991

a balanced single-phase distribution system. However, our 992

proposed SMAS-PL is not limited to single-phase distribu- 993

tion systems and can be potentially extended to unbalanced 994

three-phase systems. One solution to this challenge could be 995

using a single policy function for the resources connected to 996

all phases (note that theoretically-speaking our method is not 997

limited by the number of phases). However, this brute-force 998

solution may lack scalability. Another solution extension to a 999

multi-phase system cannot be fully addressed by having three 1000

separate policy functions per phase. A more efficient and scal- 1001

able extension to unbalanced systems remains the subject of 1002

our future research. 1003

APPENDIX A 1004

CALCULATION OF ∂JRn/∂an AND ∂JCm/∂an 1005

The major difficulty in determining ∂JRn/∂an and ∂JCm/∂an 1006

pertains to the agents’ reward functions and global constraint 1007

returns, (1)-(4), which are only implicitly related to the con- 1008

trol actions. Since the reward and all the global constraint 1009

returns are functions of the observation variables, V and I, the 1010

gradients of these variables w.r.t. control actions are obtained 1011

and used to quantify ∂JRn/∂an and ∂JCm/∂an. To do this, 1012

a four-step process is proposed that leverages the current 1013

injection-based AC power flow equations: 1014
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TABLE IV
PARTIAL DERIVATIONS OF IRe AND IIm W.R.T.

an = [PDG
n , PCh

n , PDis
n , QDG

n , QPV
n , QESS

n ]

Step 1 - First, the gradients of real and imaginary parts1015

of nodal current injection w.r.t. control actions are derived1016

(denoted as ∂IRe/∂an and ∂IIm/∂an, respectively.) To achieve1017

this, the nodal power balance and nodal current injection1018

relationships in the network are employed [35]:1019

IRe
i,t′ =

pi,n,t′VRe
i,t′ + qi,n,t′VIm

i,t′

V2
i,t′

(42)1020

IIm
i,t′ =

pi,n,t′VIm
i,t′ − qi,n,t′VRe

i,t′

V2
i,t′

(43)1021

pi,n,t′ = PD
i,n,t′ − PDG

i,n,t′ − PPV
i,n,t′ + PCh

i,n,t′ − PDis
i,n,t′ (44)1022

qi,n,t′ = QD
i,n,t′ − QDG

i,n,t′ − QPV
i,n,t′ + QESS

i,n,t′ (45)1023

where, IRe
i , IIm

i and VRe
i , VIm

i denote the real and imaginary1024

parts of nodal voltage and current injection at node i. Using1025

these equations, ∂IRe/∂an and ∂IIm/∂an are derived and1026

shown in Table IV. Note that the entries of this table can be1027

calculated using the real and imaginary parts of nodal voltages,1028

which in practice are either measured or estimated [35].1029

Step 2 - Using ∂IRe/∂an and ∂IIm/∂an from Step 11030

(Table IV), ∂VRe/∂a and ∂VIm/∂a are obtained employing the1031

network-wide relationship between nodal voltages and current1032

injections:1033

⎡

⎣
∂VRe

∂an

∂VIm

∂an

⎤

⎦ =
[

Y11 Y12

Y21 Y22

]−1
[

∂IRe

∂an
∂IIm

∂an

]
(46)1034

where, the modified network bus admittance sub-matrices are1035

determined as follows:1036

Y11 = YRe − Y(Re,Re)
D , Y12 = −YIm − Y(Re,Im)

D (47)1037

Y21 = YIm − Y(Im,Re)
D , Y22 = YRe − Y(Im,Im)

D (48)1038

here, YRe and YIm are the real and imaginary parts of the orig-1039

inal bus admittance matrix. The elements in diagonal matrices1040

Y(Re,Re)
D , Y(Re,Im)

D , Y(Im,Re)
D and Y(Im,Im)

D are calculated using the1041

following equations [35]:1042

Y(Re,Re)
D (i, i) = pi,n,t′

V2
i,t′
−

2VRe
i,t′
(

pi,n,t′VRe
i,t′ + qi,n,t′VIm

i,t′
)

V4
i,t′

(49)1043

Y(Re,Im)
D (i, i) = qi,n,t′

V2
i,t′
−

2VIm
i,t′
(

pi,n,t′VRe
i,t′ + qi,n,t′VIm

i,t′
)

V4
i,t′

(50)1044

Y(Im,Re)
D (i, i) = −qi,n,t′

V2
i,t′
−

2VRe
i,t′
(

pi,n,t′VIm
i,t′ − qi,n,t′VRe

i,t′
)

V4
i,t′

(51) 1045

Y(Im,Im)
D (i, i) = pi,n,t′

V2
i,t′
−

2VIm
i,t′
(

pi,n,t′VIm
i,t′ − qi,n,t′VRe

i,t′
)

V4
i,t′

. (52) 1046

Step 3 - Noting that the current flow constraint returns and 1047

the rewards are also functions of branch current flows, the gra- 1048

dients of branch current flows are required to obtain ∂JRn/∂an 1049

and ∂JCm/∂an. Using the branch current flow equations, these 1050

gradients are determined as a function of the derivatives of 1051

nodal voltages and current injections, as follows: 1052

∂IRe
ij,t′

∂an,t′
= yIm

ij

(
∂VIm

i,t′

∂an,t′
− ∂VIm

j,t′

∂an,t′

)
− yRe

ij

(
∂VRe

i,t′

∂an,t′
− ∂VRe

j,t′

∂an,t′

)
1053

(53) 1054

∂IIm
ij,t′

∂an,t′
= yIm

ij

(
∂VRe

i,t′

∂an,t′
− ∂VRe

j,t′

∂an,t′

)
+ yRe

ij

(
∂VIm

i,t′

∂an,t′
− ∂VIm

j,t′

∂an,t′

)
1055

(54) 1056

where, IRe
ij and IIm

ij are the real and imaginary parts of branch 1057

currents, yRe
ij and yIm

ij are the real and imaginary parts of branch 1058

admittance. 1059

Step 4 - Finally, using the derivatives obtained from Steps 1060

1, 2, and 3, ∂JRn/∂an and ∂JCm/∂an are determined through 1061

straightforward algebraic manipulations. As an example, the 1062

gradient of reward function w.r.t. PDG
n,t′ is calculated as: 1063

∂JRn

∂PDG
n,t′
=

t+T∑

t′=t

(
λF

i,n

(
2af + bf

)− λR
n

∂PPCC
n,t′

∂PDG
n,t′

)
(55) 1064

where, ∂PPCC
n,t′ /∂PDG

n,t′ is obtained using the outcomes of Steps 1065

2 and 3, as follows: 1066

∂PPCC
n,t′

∂PDG
n,t′
= ∂VRe

i,t′

∂PDG
n,t′

IRe
ij,t′ + VRe

i,t′
∂IRe

ij,t′

∂PDG
n,t′

1067

+ ∂VIm
i,t′

∂PDG
n,t′

IIm
ij,t′ + VIm

i,t′
∂IIm

ij,t′

∂PDG
n,t′

(56) 1068

Furthermore, ∂JCm/∂an for the global constraints (3) and (4) 1069

can be calculated using the outcomes of Steps 2 and 3: 1070

∂Vi,t′

∂an,t′
= VRe

i,t′

Vi,t′

∂VRe
i,t′

∂an,t′
+ VIm

i,t′

Vi,t′

∂VIm
i,t′

∂an,t′
(57) 1071

∂Iij,t′

∂an,t′
= IRe

ij,t′

Iij,t′

∂IRe
ij,t′

∂an,t′
+ IIm

ij,t′

Iij,t′

∂IIm
ij,t′

∂an,t′
(58) 1072

As can be seen in (5)-(16), the local constraint returns are 1073

trivial functions of the control actions. For example, the con- 1074

straint return value for (5) is JC5,t′ = PDG
n,t′ which induces a 1075

simple gradient element w.r.t. control action PDG
n,t′ : 1076

∂JC5,t′

∂PDG
n,t′
= 1 (59) 1077

The gradients of constraint returns w.r.t. control actions for 1078

the remaining local constraints, (6)-(16), can be obtained in a 1079

similar way. 1080
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APPENDIX B1081

DERIVATION OF ∂an/∂πn , ∂πn/∂μn AND ∂πn/∂�n1082

∂an/∂πn, ∂πn/∂μn and ∂πn/∂�n are obtained using the1083

probability density function of (D-dimensional) multivariate1084

Gaussian distribution [36], which has the following general1085

formulation:1086

f (x;μ, �) = 1√
|�|(2π)D

e−
1
2 (x−μ)	�−1(x−μ) (60)1087

where x is a random vector. To derive the gradients, first, the1088

log-likelihood function of this multivariate Gaussian distribu-1089

tion (60) is obtained as follows:1090

L = ln(f ) = ln
1√

|�|(2π)D
− 1

2
(x− μ)	�−1(x− μ) (61)1091

The derivative of L w.r.t. mean vector μ and covariance1092

matrix � can be written as follows:1093

∂L

∂μ
= −1

2

∂(x− μ)	�−1(x− μ)

∂μ
1094

= −1

2

(
−2�−1(x− μ)

)
= �−1(x− μ) (62)1095

∂L

∂�
= −1

2

(
∂ ln(|�|)

∂�
+ ∂(x− μ)	�−1(x− μ)

∂�

)
1096

= −1

2

(
�−1 −�−1(x− μ)(x− μ)	�−1

)
(63)1097

Thus, using (62) and (63), the derivatives of the function f1098

w.r.t. μ and � can be shown in (64) and (65), respectively:1099

∂f

∂μ
= �−1(x− μ)√
|�|(2π)D

e−
1
2 A (64)1100

∂f

∂�
= −1

2

(
�−1 −�−1(x− μ)(x− μ)	�−1

)
√
|�|(2π)D

e−
1
2 A (65)1101

where A = (x− μ)	�−1(x− μ). Similarly, the derivative of1102

the function f w.r.t. x is shown as follows:1103

∂f

∂x
= −�−1(x− μ)√

|�|(2π)D
e−

1
2 A. (66)1104
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