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Abstract—This paper considers the co-operation of distributed4
generators (DGs), battery energy storage systems (BESSs) and5
voltage regulating devices for integrated peak shaving and voltage6
regulation in distribution grids through a co-optimization frame-7
work, which aims to minimize the operational costs while fulfilling8
the operational constraints of network and devices. To account for9
the uncertainties of load demand and generation, we then convert10
the co-optimization model into a two-stage stochastic program11
where state-of-charge (SoC) trajectories of BESSs and operation12
of voltage regulating devices are optimized at the first stage for13
day-ahead scheduling, while the reactive powers of DGs and BESSs14
are left at the second stage for potential intra-day scheduling to15
handle short-term voltage issues. The proposed co-optimization16
scheme is validated on the IEEE 37-node test feeder and compared17
with other practices.18

Index Terms—Battery energy storage system (BESS), co-19
optimization, distributed generator (DG), peak shaving, two-stage20
stochastic programming, voltage regulation.21

NOMENCLATURE22

A. Sets23

N := {0, 1, . . ., n} Set of buses24

N+
i Set of children buses of bus i25

E ⊆ N ×N Set of branches26

T := {1, . . ., 24} Set of time intervals27

Φi,Φij Phase sets of bus i and branch (i, j)28

Ξ Set of scenarios29

B. Parameters30

ΔT Time resolution [h]31

Vn Nominal bus voltage32

λele Predicted electricity price [$/kWh]33

λbat Battery degradation cost [$/kWh]34

λcell Battery cell price [$/kWh]35

λtap Adjustment cost of on-load tap changer36

[$/time]37

λcap Switching cost of capacitor bank [$/time]38
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V min, V max Min./max. voltage magnitude limits 39

Imax
ij Max. current limit of branch (i, j) 40

ΔTapij Tap ratio change per step 41

Δqci,ϕ Capacity per bank at bus i, phase ϕ 42

ΔKmax
ij,ϕ Tap change limit per time step 43

ΔKtot
ij,ϕ Total tap change limit over T 44

Kmin
ij,ϕ,K

max
ij,ϕ Min./max. tap position at branch (i, j) 45

Bmax
i,ϕ Number of capacitor banks at bus i, 46

phase ϕ 47

ΔBtot
i,ϕ Allowable changes of capacitor banks at 48

bus i, phase ϕ 49

Peak Peak load limit 50

S
tr

Transformer capacity 51

S
g
i,ϕ DG capacity at bus at bus i, phase ϕ 52

pgi,ϕ,t Available power of DG 53

SoCmin, SoCmax Min./max. operation limits of SoC 54

S
b
i,ϕ BESS power rating at bus i, phase ϕ 55

Ei,ϕ BESS energy rating at bus i, phase ϕ 56

ηch, ηdc BESS charging/discharging efficiency 57

Ir Max. solar irradiance level 58

zij ∈ C|Φij |×|Φij | Impedance matrix of branch (i, j) 59

C. Variables 60

sbi,ϕ Complex power injection from BESS at 61

bus i, phase ϕ; sbi := [sbi,ϕ]ϕ∈Φi
62

sci,ϕ Complex power injection from capacitor 63

banks at bus i, phase ϕ; sci := [sci,ϕ]ϕ∈Φi
64

sgi,ϕ Complex DG power injection at bus i, 65

phase ϕ; sgi := [sgi,ϕ]ϕ∈Φi
66

sdi,ϕ Complex load consumption at bus i, phase 67

ϕ; sdi := [sdi,ϕ]ϕ∈Φi
68

vi ∈ H|Φi|×|Φi| Complex voltage matrix at bus i 69

Iij ∈ C|Φij |×1 Complex line current from buses i to j 70

Kij,ϕ Tap position at branch (i, j) 71

Bi,ϕ Number of capacitor banks connected at 72

bus i 73

K+
ij,ϕ,K

−
ij,ϕ Auxiliary variables regarding tap changer 74

on branch (i, j), phase ϕ 75

B+
i,ϕ, B

−
i,ϕ Auxiliary variables regarding capacitor 76

banks at bus i, phase ϕ 77

bdci,ϕ, b
ch
i,ϕ Charging/discharging power of BESS at 78

bus i, phase ϕ 79

μi,ϕ,t Indicator of charging/discharging status 80

of BESS at bus i, phase ϕ 81

Sij ∈ C|Φij |×|Φij | Complex power flow from buses i to j 82
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lij ∈ C|Φij |×|Φij | Squared current matrix83

Λij,t ∈ C|Φij |×1 Approximate diagonal entries of Sij84

SoCi,ϕ SoC of battery at bus i, phase ϕ85

C Overall operational cost86

Cele Electricity purchase cost87

Cbat Operational cost of BESS degradation88

Ctap Operational cost of tap changers89

Ccap Operational cost of capacitor banks90

Ir Solar irradiance level91

D. Operators92

(·)∗ Element-wise conjugate operator93

(·)T Transpose operator94

(·)H Complex-conjugate transpose operator95

Re{·}, Im{·} Real and imaginary parts of a complex96

number97

Tr(·) Trace of a matrix98

Eξ{·} Expectation operator99

(·)t Variable at time t100

I. INTRODUCTION101

A. Background and Motivation102

IN RECENT decades, a variety of government policy-based103

incentives have supported the growth of distributed genera-104

tors (DGs) such as wind, photovoltaic (PV), fuel cells, biomass,105

etc. Indeed, DGs bring technical, economic and environmental106

benefits; however, they may in turn incur new operational stress,107

e.g., power quality and network congestion issues [1]. Battery108

energy storage system (BESS) is arguably the most promising109

solution to aid the integration of renewables since it can be110

deployed in a modular and distributed fashion [2], [3]. Clearly,111

with a high penetration of renewable-based DGs, the real load112

profile may significantly deviate from the forecast, which will113

affect the utility companies’ bidding behaviors in the wholesale114

electricity market. Correspondingly, the feeder voltage profile115

will vary with the net load. Hence, in a nutshell, while the116

ongoing deployment of renewables and BESSs poses challenges117

to energy management of distribution systems, it facilitates the118

revolution to exploit renewables in a cost-effective way at the119

same time.120

Peak shaving and voltage/reactive power (volt/var) regulation121

are the two fundamental functionalities in distribution manage-122

ment systems. Peak shaving is a process of flattening the load123

profile by shifting peak load demand to off-peak periods via124

energy storage and/or demand side management [7]. It benefits125

the entire power systems including power plants, system oper-126

ators as well as end-users. Particularly, for system operators,127

effective peak shaving can postpone the expensive upgrades128

for transmission and distribution systems. The primary goal129

of volt/var regulation is, as the name suggests, maintaining the130

feeder voltages within a feasible range (e.g., 0.95–1.05 p.u. in131

ANSI Standard C84.1 [8]) by scheduling the voltage regulating132

devices, e.g., on-load tap changers (OLTCs), step-voltage regu-133

lators (SVRs) and capacitor banks [9]. Moreover, the advanced134

four-quadrant inverter-interfaced DGs and BESSs are capable of135

providing fast and continuous volt/var support locally [4], [5], 136

which can alleviate the work loads on the legacy devices [6]. 137

Thanks to the conventional separate operation of peak shaving 138

and volt/var regulation [9], a substantial body of studies have 139

solely investigated either peak shaving or volt/var regulation for 140

a long time; see [7] and [10], [11] for surveys on these two isolate 141

topics, respectively. However, the practical operation reveals the 142

fact that they interact with each other due to the physical nature 143

of power network: i) reshaping the load profile also reshapes the 144

voltage profile, especially for some low-voltage feeders with 145

high R/X ratios; and ii) regulating voltages can lower the peak 146

load via reducing line losses and load demand [12]. 147

In light of this, the co-operation of peak shaving and voltage 148

regulation becomes appealing since it can maximize the usage of 149

DGs and storage, thereby unlocking additional benefits in terms 150

of operational cost, power quality, supply reliability as well as 151

network reinforcement, which cannot be well accomplished by 152

the traditional separate architectures. 153

B. Literature Review 154

A few studies have addressed the co-operation between peak 155

shaving and volt/var regulation, especially for the planning of 156

DGs and BESSs considering the operation conditions. Several 157

rule-based control algorithms have been proposed in [13]–[15]. 158

However, they rely on the heuristic design without providing 159

system-wide optimality guarantees. 160

Several studies have bridged the methodology gap by develop- 161

ing optimization frameworks. In [16], the authors investigate the 162

potential of BESSs in deferring upgrades needed to host a higher 163

penetration of PV, where an optimal power flow (OPF) problem 164

is formulated with the aim of mitigating voltage deviation and 165

reducing peak load restricted by limited capital and operation 166

and maintenance costs of BESSs. In [17], an optimization model 167

that minimizes BESS cost, voltage deviation, voltage unbalance 168

and peak demand charge together, is built. It should be noted that 169

the weight allocation on multiple heterogeneous objectives as 170

in [16], [17] is usually tricky. A short-term scheduling scheme of 171

BESSs is proposed in [18] to address peak shaving, volt/var regu- 172

lation and reliability enhancement simultaneously, by solving an 173

OPF program using Tabu search. In [19], a bi-level scheduling 174

strategy is developed, consisting of the bidding in day-ahead 175

market (DAM) to minimize the overall costs in supplying the net 176

load and a real-time dispatch to compensate for the energy gap. 177

However, [16]–[19] mainly focus on the operation of BESSs, 178

neglecting the coordination with voltage regulating devices. 179

To address such issue, [20]–[22] further have the legacy volt- 180

age regulating devices participate in the co-operation. In [20], 181

a two-stage optimal dispatch framework is proposed for dis- 182

tribution grids with distributed wind, where the peak shaving 183

and volt/var regulation are implemented in a successive coordi- 184

nated fashion instead of the so-called co-optimization in a strict 185

sense. The authors in [21] develop an integrated framework 186

for conservation voltage reduction and demand response to 187

reduce the energy bills of customers. In [22], a model predictive 188

control scheme is proposed to minimize network losses or en- 189

ergy purchase cost whilst maintaining voltages within limits by 190
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co-optimizing the operation of OLTCs, PV inverters and BESSs191

in two different timescales (1 h and 15-min). Besides, [20]–[22]192

address the prediction uncertainties of DGs and load by leverag-193

ing the scenario-based stochastic programming techniques with194

one-stage [20], [21] or two-stage models [22]. However, only195

balanced feeders are considered.196

C. Contributions197

In spirit, this work is close to [19]–[21] which consider a198

day-ahead multi-step scheduling of DGs and BESSs to enhance199

utilities’ bidding strategies in the DAM. However, we contribute200

in the following distinct ways:201

1) Firstly, we, for the first time, propose a comprehensive202

co-optimization framework for an integrated peak shav-203

ing and volt/var regulation by scheduling DGs, BESSs204

and voltage regulating devices. This framework aims to205

minimize the overall operational costs including energy206

purchase, battery degradation, as well as wear and tear207

of tap changers and capacitor banks, while satisfying the208

operational constraints. The unbalanced case is especially209

addressed by generalizing the linear multi-phase branch210

flow model to incorporate tap changers, rendering the211

problem computationally tractable.212

2) Secondly, to account for the forecast uncertainties of re-213

newables and load while relieving the conservative be-214

havior of a robust decision, we propose to reformulate215

the problem into a two-stage stochastic program. It is216

noteworthy that, with this two-stage model, only the SoC217

trajectories of BESSs and voltage regulating devices will218

be actually implemented in day-ahead operation whereas219

the reactive powers of DGs and BESSs are left for a220

re-scheduling.221

3) Lastly, we demonstrate the proposed co-optimization un-222

locks additional revenue in comparison to the successive223

optimization method and also demonstrate that only rely-224

ing on cost reduction does not necessarily lower the peak225

load. This implies that an explicit peak load limit should226

be imposed in the co-optimization.227

The rest of this paper is organized as follows. Section II228

presents the deterministic formulation of the co-optimization229

problem. In Section III, the optimization problem is reformu-230

lated as a two-stage stochastic program accounting for uncer-231

tainties. Section IV presents the numerical results, followed by232

conclusions.233

II. PROBLEM FORMULATION234

This section presents the problem formulation of the co-235

optimization framework for day-ahead cooperative peak shaving236

and volt/var regulation over the time horizon of 24 h with 1-h237

time resolution compatible with the DAM. Fig. 1 presents the238

overview of the proposed framework.239

A. Objective Function240

The co-optimization framework aims to minimize the241

overall operational costs including energy purchase, battery242

Fig. 1. Schematic diagram of the proposed day-ahead co-optimization frame-
work for cooperative peak shaving and volt/var regulation. Though the intra-day
dispatch is not explicitly addressed in this work, the proposed two-stage stochas-
tic programming methodology remains its potential in the second stage.

degradation, as well as wear-and-tear of tap changers and capac- 243

itor banks during T , which is mathematically given as follows: 244

1) Electricity Purchase Cost:

Cele :=
∑
t∈T

λele,t

(
Re {Tr(S01,t)}

+
∑

(i,j)∈E
Re{Tr(zij lij,t)}

)
ΔT (1)

where the first part is the feed-in power flow from the substation 245

(that does not include the line losses) and the second term 246

represents the total line losses. 247

2) Battery Degradation Cost:

Cbat :=
∑
t∈T

∑
i∈N

∑
ϕ∈Φi

λbat

∣∣Re{sbi,ϕ,t

}∣∣ΔT. (2)

3) Operational Cost of Tap Changer:

Ctap :=
∑
t∈T

∑
(i,j)∈E

∑
ϕ∈Φij

λtap |Kij,ϕ,t −Kij,ϕ,t−1| . (3)

4) Operational Cost of Capacitor Bank:

Ccap :=
∑
t∈T

∑
i∈N

∑
ϕ∈Φi

λcap |Bi,ϕ,t −Bi,ϕ,t−1| . (4)

Accordingly, the overall cost function is given by, 248

C := Cele + Cbat + Ctap + Ccap. (5)

B. Constraints 249

1) Multi-Phase Power Flow: The convex relaxation tech- 250

niques, e.g., second-order cone programming (SOCP) relax- 251

ation [24], [25] and semidefinite programming (SDP) relax- 252

ation [26], [27], are usually leveraged to convexify the nonlin- 253

ear power flow equations. Some applications can be observed 254

in the existing works related to our topic. For example, the 255

works [21] and [22] use the SOCP relaxation to convexify the 256

OPF programs but it cannot be easily extended to unbalanced 257

cases due to the mutual impedance of feeders [28]. The SDP 258

relaxation is applicable to unbalanced systems; however, it may 259

be computationally expensive, especially in the presence of 260
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discrete variables. Moreover, the exactness of relaxation may261

not be guaranteed. Thus, to make the optimization problem262

computationally tractable, we generalize the linear multi-phase263

branch flow model [27] to incorporate a tap changer, which is264

as, for any branch (i, j) ∈ E,265

Λij,t = sdj,t − sgj,t − sbj,t − scj,t +
∑

k∈N+
j

Λ
Φj

jk,t, t ∈ T (6)

Sij,t = (aaH)Φijdiag (Λij,t) , t ∈ T (7)

v
Φij

i,t = vj,t − kij,tv
Φij

0 + Sij,tz
H
ij + zijS

H
ij,t, t ∈ T (8)

where a := [1, e−i2π/3, ei2π/3]T ; kij,t := [kij,ϕϕ′,t]ϕ,ϕ′∈Φij
266

with the entries being,267

kij,ϕϕ′,t = (Kij,ϕ,t +Kij,ϕ′,t)ΔTapij , ϕ, ϕ′ ∈ Φij . (9)

It is understood that kij,t = diag(1, 1, 1) always holds for each268

branch without a tap changer.269

Besides, to estimate the line losses, the line current can be270

approximately captured as, for any (i, j) ∈ E,271

Λij,t = Vndiag(a
ΦijIHij,t), t ∈ T (10)

lij,t = Iij,tI
H
ij,t, t ∈ T. (11)

The linear approximation represented by (6)–(11) is based on272

the assumption that the network is not too severely unbalanced273

and operates around the nominal voltage. This is widely believed274

to hold in practice if it is with effective voltage regulation.275

2) Network Operation Security: The operational limits of276

bus voltage and line current are as follows:277

(V min)2 ≤ diag(vi,t) ≤ (V max)2, i ∈ N, t ∈ T (12)

diag(lij,t) ≤ (Imax
ij )2, (i, j) ∈ E, t ∈ T. (13)

3) Peak Load Demand: Additionally, we consider a hard278

constraint of net peak load during a day,279

Re {Tr(S01,t)}+
∑

(i,j)∈E
Re{Tr(zij lij,t)} ≤ Peak, t ∈ T.

(14)

Imposing an explicit constraint is of great significance for effec-280

tive peak shaving because only relying on cost reduction does281

not necessarily lower the peak load. This will be demonstrated282

later. Keep in mind that a very low peak limit could render the283

problem infeasible due to the limited BESS capacity. In this284

paper, an easy-to-implement way is leveraged to determine the285

peak limit value—we gradually lower the peak limit until the286

problem becomes infeasible. In this way, the maximum peak287

shaving potential can be known.288

4) Substation Transformer: The transformer capacity limit289

is expressed as,290 ∥∥∥∥∥
[
Re{Tr(S01,t)}
Im{Tr(S01,t)}

]∥∥∥∥∥
2

≤ S
tr
, t ∈ T (15)

where to reduce the computation complexity, line losses are291

neglected here since this constraint generally is not truly binding292

considering the feed from DGs and a slight overloading of293

transformer is allowed for a short period.294

5) Tap Changer: The operational constraints of tap changer 295

over branch are given by, for any (i, j) ∈ E and ϕ ∈ Φij , 296

Kmin
ij,ϕ ≤ Kij,ϕ,t ≤ Kmax

ij,ϕ , Kij,ϕ,t ∈ Z, t ∈ T (16)

|Kij,ϕ,t −Kij,ϕ,t−1| ≤ ΔKmax
ij,ϕ , t ∈ T (17)∑

t∈T
|Kij,ϕ,t −Kij,ϕ,t−1| ≤ ΔKtot

ij,ϕ (18)

where (16) denotes the tap position limits; (17) constrains the 297

tap change during a sampling time interval; and (18) constrains 298

the total operation times of tap changers during T . 299

6) Capacitor Bank: The operational constraints of capacitor 300

banks are given as, for any bus i ∈ N and ϕ ∈ Φi, 301

Re{sci,ϕ,t} = 0, t ∈ T (19)

Im{sci,ϕ,t} = Bi,ϕ,tΔqci,ϕ, t ∈ T (20)

0 ≤ Bi,ϕ,t ≤ Bmax
i,ϕ , Bi,ϕ,t ∈ Z, t ∈ T (21)∑

t∈T
|Bi,ϕ,t −Bi,ϕ,t−1| ≤ ΔBtot

i,ϕ (22)

where (20) denotes the total reactive power injected by capacitor 302

banks; (21) constrains the maximum number of capacitor banks; 303

(22) constrains the maximum switching times of capacitor banks 304

during T . 305

7) Battery Energy Storage: In this paper, we consider the 306

lithium-ion battery—one of the most popular options today. If 307

we limit the battery operation within certain depth of discharge 308

region to avoid the overcharge and over-discharge, there is a 309

constant marginal cost for the cycle depth increase. In this way, 310

the battery degradation cost can be prorated with respect to 311

charged and discharged energy into a per-kWh cost [29], 312

λbat =
λcell

2M(SoCmax − SoCmin)
(23)

where M is the number of cycles that the battery could be 313

operated within [SoCmin, SoCmax]. 314

The model and operational constraints of a BESS at ϕ ∈ Φi 315

of bus i ∈ N can be expressed as, 316

Re{sbi,ϕ,t} = bdci,ϕ,t − bchi,ϕ,t, t ∈ T (24)

0 ≤ bchi,ϕ,t ≤ μi,ϕ,t · Sb
i,ϕ, t ∈ T (25)

0 ≤ bdci,ϕ,t ≤ (1− μi,ϕ,t) · Sb
i,ϕ, t ∈ T (26)

μi,ϕ,t ∈ {0, 1}, t ∈ T (27)

SoCi,ϕ,t = SoCi,ϕ,t−1 +

(
bchi,ϕ,tη

ch − bdci,ϕ,t

ηdc

)
ΔT

Ei,ϕ

, t ∈ T

(28)

SoCmin ≤ SoCi,ϕ,t ≤ SoCmax, t ∈ T (29)

SoCi,ϕ,0 = SoCi,ϕ,24 (30)∥∥∥∥∥
[
Re{sbi,ϕ,t}
Im{sbi,ϕ,t}

]∥∥∥∥∥
2

≤ S
b
i,ϕ, t ∈ T. (31)

Constraints (24)–(27) represent the real power model of a 317

BESS. Constraint (28) represents the physical model of SoC of 318
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a BESS while (29)–(30) represent its operational constraints. As319

shown in (30), the SoC levels at the beginning and the end of320

a day should be equal so that the framework can periodically321

operate. (31) constrains the apparent power of BESS converter322

that restricts the real and reactive power in a coupling way.323

8) Inverter-Based DG: A four-quadrant inverter-interfaced324

DG at ϕ ∈ Φi of bus i ∈ N is modeled by,325

Re
{
sgi,ϕ,t

}
= pgi,ϕ,t, t ∈ T (32)∥∥∥∥∥

[
Re{sgi,ϕ,t}
Im{sgi,ϕ,t}

]∥∥∥∥∥
2

≤ S
g
i,ϕ, t ∈ T (33)

where it is assumed that the PV system operates with the maxi-326

mum power tracking mode (track pgi,ϕ,t).
1327

Clearly, for each bus i that does not have capacitor banks,328

BESS or DG installation, we have sci,t = 0, sgi,t = 0 or sbi,t = 0,329

respectively.330

C. Reformulation and Compact Expression331

The objectives (2)–(4) and constraints (18) and (22) contain332

the sum of absolute terms with respect to the tap position333

and capacitor banks, which are not tractable for off-the-shelf334

solvers. Thus, we reformulate them by introducing the auxiliary335

variables K+
ij,ϕ,K

−
ij,ϕ B+

i,ϕ and B−
i,ϕ [similar reformulation has336

been given in (24)–(27) for BESSs]. Then, constraint (18) can337

be equivalently rewritten as,338

Kij,ϕ,t −Kij,ϕ,t−1 = K+
ij,ϕ,t −K−

ij,ϕ,t, t ∈ T (34)∑
t∈T

(
K+

ij,ϕ,t +K−
ij,ϕ,t

) ≤ ΔKtot
ij,ϕ (35)

K+
ij,ϕ,t ≥ 0,K−

ij,ϕ,t ≥ 0,K+
ij,ϕ,t,K

−
ij,ϕ,t ∈ Z, t ∈ T.

(36)

Similarly, constraint (22) becomes,339

Bi,ϕ,t −Bi,ϕ,t−1 = B+
i,ϕ,t −B−

i,ϕ,t, t ∈ T (37)∑
t∈T

(
B+

i,ϕ,t +B−
i,ϕ,t

) ≤ ΔBtot
i,ϕ (38)

B+
i,ϕ,t ≥ 0, B−

i,ϕ,t ≥ 0, B+
i,ϕ,t, B

−
i,ϕ,t ∈ Z, t ∈ T. (39)

Correspondingly, the cost functions Ctap, Ccap as well as340

Cbat can be rewritten as,341

Ctap =
∑
t∈T

∑
(i,j)∈E

∑
ϕ∈Φij

λtap

(
K+

ij,ϕ,t +K−
ij,ϕ,t

)
(40)

Ccap =
∑
t∈T

∑
i∈N

∑
ϕ∈Φi

λcap

(
B+

i,ϕ,t +B−
i,ϕ,t

)
(41)

Cbat =
∑
t∈T

∑
i∈N

∑
ϕ∈Φi

λbat

(
bchi,ϕ,t + bdci,ϕ,t

)
ΔT. (42)

Finally, the optimization problem is abstractly expressed as,342

(DP): minimize
u∈U

C(u) (43a)

1To allow for real power curtailment, one can replace “=” by “≤” in (32).

subject to g(u) ≤ 0 :

⎧⎨
⎩

(12)–(17),(21)
(25)–(27),(29),(31)

(33),(35),(36),(38),(39)
(43b)

h(u) = 0 :

⎧⎨
⎩

(1),(5),(6)–(11),(19)
(20),(24),(28),(30),(32)

(34),(37),(40)–(42)
(43c)

where u is the compact decision vector of all the decisions; U is 343

the Cartesian product of real, complex and integer number sets, 344

which characterizes u in an element-wise manner. 345

So far, the deterministic problem formulation (DP) has been 346

given in (43), which is inherently a mixed-integer second-order 347

cone program (MISOCP) that can be handled by off-the-shelf 348

solvers, e.g., CPLEX, MOSEK, etc. 349

III. STOCHASTIC PROGRAMMING FORMULATION 350

The day-ahead operation scheduling establishes on the load, 351

renewable generation and electricity price, etc. However, due 352

to various uncertainties, e.g. stochastic nature of the load and 353

renewables, it is difficult to forecast them with very high accu- 354

racy. Therefore, we consider the forecast uncertainties of load 355

and renewables by converting the deterministic optimization 356

program DP into a two-stage stochastic program, while allowing 357

for re-dispatching reactive power resources. 358

A. Scenario Generation and Reduction 359

The load consumption prediction error is calculated based on a 360

truncated normal distribution [30]. The solar power generation 361

is dependent on the incident solar irradiance, while the irra- 362

diance significantly depends on the cloud coverage condition. 363

Therefore, the solar irradiance prediction error is modeled by 364

introducing a correction factor to the prediction Ir with a clear 365

weather, following a normal distribution that depends on the 366

given cloud coverage level [31], 367

Ir = Ir(1− ε), ε = [Norm(με, σε)]
1
0 (44)

where [·]10 denotes the projection onto the set [0,1]. 368

Based on the known probability distributions, Monte-Carlo 369

simulation is conducted to create a required number of scenarios 370

for solar irradiance and load. They are then reduced to a given 371

number of scenarios by the backward reduction method, of 372

which more details can be referred to [32]. 373

B. Two-Stage Stochastic Programming Formulation 374

Firstly, we split u ∈ U into two groups, i.e., u := {x, y} and 375

U := X × Y where 376
� x represents the decision variables associated with the 377

charging/discharging of BESSs, operation of tap changers 378

and operation of capacitor banks themselves. 379
� y consists of all the remaining variables. 380

Correspondingly, the cost function and constraints in DP can 381

be reconstructed as, 382

C(u) ⇒ C1(x) + C2(y) (45)

h(u) ⇒ h1(x) = 0 ∩ h2(x, y) = 0 (46)
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g(u) ⇒ g1(x) ≤ 0 ∩ g2(x, y) ≤ 0 (47)

u ∈ U ⇒ x ∈ X ∩ y ∈ Y (48)

where C1(x) corresponds to Cbat + Ctap + Ccap while C2(y)383

corresponds to Cele.384

Then, define a realization of stochastic scenario as ξ :=385

{pgi,ϕ,t, s
d
i,ϕ,t}i∈N,t∈T , a two-stage stochastic counterpart of DP386

can be formulated as,387

(SP): minimize
x∈X

C1(x) + Eξ

{
minimize

y∈Y
C2(y; ξ)

}
(49a)

subject to h1(x) = 0 (49b)

g1(x) ≤ 0 (49c)

h2(x, y; ξ) = 0 (49d)

g2(x, y; ξ) = 0 (49e)

where x corresponds to the first-stage (here-and-now) decisions388

before the realization of ξ and y corresponds to the second-stage389

(wait-and-see) corrective actions under a given realization of ξ.390

The independent control variables at the first stage include the391

charging/discharging power of BESSs Re{sbi,ϕ,t}, the operation392

trajectories of tap changers Kij,t and the operation trajectories393

of capacitor banks sci,t. The second-stage control variables are394

the reactive powers of BESSs and DGs, i.e., Im{sbi,ϕ,t} and395

Im{sgi,ϕ,t}.396

C. Deterministic Equivalent397

Representing the uncertainties through a finite scenario set398

Ξ := {ξ1, . . ., ξ|Ξ|}with the probability distribution ρ1, . . ., ρ|Ξ|,399

the approximate deterministic equivalent problem of SP in the400

extensive form can be given as,401

(SP-d): minimize
x∈X ,yk∈Y

C1(x) +

|Ξ|∑
k=1

ρkC2(yk; ξk) (50a)

subject to h1(x) = 0 (50b)

g1(x) ≤ 0 (50c)

h2(x, yk; ξk) = 0, k = 1, . . ., |Ξ| (50d)

g2(x, yk; ξk) = 0, k = 1, . . ., |Ξ| (50e)

which is inherently an extensive MISOCP program that can be402

also directly handled by conic programming solvers.403

D. Robustness404

In practice, the prior probability distributions regarding load405

and solar may be inaccurate. Interestingly, the proposed two-406

stage stochastic co-optimization framework is robust against it in407

the sense that the reactive power capabilities of DGs are consid-408

ered in the day-ahead co-optimization, but the reactive powers of409

DGs are not directly dispatched in a day-ahead manner. Instead,410

DGs will be re-dispatched according to the intra-day operational411

status of distribution networks (with more accurate load and PV412

data). In this way, the undesired operational status (e.g., voltage413

Fig. 2. Single-line diagram of IEEE 37-node test feeder. The original feeder
is modified to include two phase-wise PV panels at Buses 20 and 30 with the
rated capacities of 200 kVA and 300 kVA per phase. Two phase-wise BESSs
with 500 kW/1500 kWh and 300 kVA/900 kWh power/energy ratings per phase
at Buses 20 and 30, respectively. Besides, a capacitor bank with a rated capacity
of 50 kVAr/unit and 100 kVAr in total per phase is installed at Bus 36.

violations) induced by the inaccurate modeling of uncertainties 414

can be corrected/compensated. 415

IV. NUMERICAL RESULTS 416

The proposed co-optimization methodologies are tested on 417

the modified IEEE 37-node test feeder (see Fig. 2) [33]. The 418

SVR has an operation range of [0.9,1.1] p.u. with ±16 tap po- 419

sitions (i.e., Kmin = −16,Kmax = 16 and ΔTap = 0.2/32). 420

The Lithium Manganese Oxide battery is considered for the 421

simulation with a cell price of 0.5$/Wh and M = 10 000 cycles 422

when the depth of discharge is 60% [29]. The SoC limits are 423

set as SoCmin = 0.2 and SoCmax = 0.8. The per-unit costs 424

associated with operation of the tap changer and capacitor banks 425

are set as 1.40 $/time and 0.24 $/time, which can be adjusted 426

as per the switching risk assessment of utilities [34]. The daily 427

load profile of a real distribution feeder in Iowa, U.S. and a solar 428

generation time series generated by a testbed [35] are used as 429
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Fig. 3. Load and solar generation profiles (1-h resolution). The thick lines
represent the predicted profiles while others are generated stochastic scenarios.

Fig. 4. Day-ahead locational marginal price in central Iowa at July 3 rd 2017
obtained from historical MISO market dataset.

the predictions of load and maximum available solar genera-430

tion (see Fig. 3). The locational marginal price obtained from431

historical MISO market dataset [36] is used as the forecasted432

electricity price in DAM (Fig. 4). For uncertainty modeling, as433

discussed before, it is assumed that the random load prediction434

error follows the truncated normal distribution where the mean435

value is the forecasted load, the standard deviation is 5% and436

the truncation bound is set as ±15%, respectively; the solar437

irradiance correction factor follows the normal distribution with438

mean value με = 10% and standard deviation σε = 5%. These439

parameters can be tuned per the given real data.440

A. Co-Optimization v.s. Successive Optimization441

In this section, we perform a comparison between the pro-442

posed co-optimization (cooperative peak shaving and volt/var443

regulation) and the successive coordinated optimization pro-444

posed in [20] to demonstrate the unlocked additional benefits445

by the proposed co-operation. For the successive optimization,446

the peak shaving and the volt/var optimization are performed in447

a successive way; for the benchmark, the distribution system op-448

erates without peak shaving and volt/var regulation. For the sake449

of clarity, this comparison is performed on a deterministic case.450

To better illustrate the effectiveness of the proposed method, the451

benchmark load demand in [33] is scaled up by four. As shown in452

Fig. 5, the operational costs with different optimization strategies453

Fig. 5. Operational cost with different operation strategies.

Fig. 6. Peak load performance with different operation strategies. To conduct
a fair comparison (same peak load), the successive optimization strategy with a
peak limit (without line losses) of 5700 MW is first tested and then the resultant
actual peak load after voltage regulation (6100 MW, including line losses) is set
as the peak limit in the co-optimization.

Fig. 7. Voltage performance with different operation strategies. (a) Bench-
mark; (b) successive optimization; (c) co-optimization. Each line represents a
phase-wise voltage magnitude of a bus. The thick lines highlight the lowest and
highest bus voltages within a day.

are compared. It shows that the co-optimization strategy reduces 454

the operational cost compared to the successive optimization 455

one with the same peak load and voltage limits. As seen from 456

Fig. 6, to achieve peak shaving, the load during peak times 457

will be shifted to 12:00 AM–06:00 AM with relatively low 458

prices by scheduling the BESSs. Utilities will thus purchase 459

more electricity for this period. Besides, as shown in Figs. 7 (b) 460

and (c), the voltage profiles with the two optimization methods 461

are effectively regulated within the limits [0.95,1.05] p.u. But 462

by comparison, the co-optimization results in smoother voltage 463

variations. The benchmark has the lower operational costs be- 464

cause it does not include any operational costs of BESSs and 465



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON POWER SYSTEMS

Fig. 8. Peak load performance with different operation strategies where in
Case A, the co-optimization strategy is carried out with a peak load limit of
5800 MW; in Case B, the peak load limit is relaxed; and in Case C, the peak
load limit and the operational costs of BESSs are both relaxed.

voltage regulating devices but most bus voltages significantly466

violate the lower limit while the peak load stays high.467

B. Merit of an Explicit Peak Load Constraint468

In this subsection, we examine the necessity of a hard and469

explicit peak load limit constraint in the co-optimization. As470

shown in Fig. 8, only relying on the cost reduction (Case B)471

does not effectively lower the peak load because the imposed472

operational cost of BESSs is more expensive than cost savings473

by leveraging the ToU price, though it does reduce the overall474

operational costs of the system. Without considering BESS costs475

in the optimization, it is observed that the peak load can be476

slightly reduced. But, consider that if we have sufficient available477

load shifting capability, there will be a trend that all the load478

will be shifted/aggregated to the periods with the lowest price.479

Therefore, there will be a new (and higher) peak at 04:00 AM.480

This demonstrates the necessity of an explicit constraint on peak481

load in the optimization problem.482

C. Deterministic Optimization v.s. Stochastic Optimization483

The comparison between the deterministic co-optimization484

and (single-stage and two-stage) stochastic co-optimization485

methods is carried out to demonstrate the value of stochastic486

programming. 1000 random scenarios of load and solar power487

time-series are generated as shown in Fig. 3 and are then reduced488

to 15 representative scenarios, which strives for a balance be-489

tween performance and computational complexity. 100 new ran-490

dom scenarios are generated to test the performance of different491

methods under uncertainties. The deterministic co-optimization492

solves (43). The single-stage stochastic co-optimization solvesx493

and y in one stage (same solution for all scenarios) based on the494

reduced scenario set. The two-stage stochastic co-optimization495

solves (50) based on the reduced scenario set, which only yields496

x; and then in the tests, it allows solving y again with fixed497

x to simulate the intra-day re-dispatch under a given test sce-498

nario. Fig. 9 compares the voltage performance among different499

optimization methods. We record the highest and lowest value500

voltage magnitude of all buses after 100 random Monte-Carlo501

simulations. It can be observed that some voltage buses (espe-502

cially for Phase C) with the DP violate the lower limit under503

some scenarios since it does not consider the uncertainties from504

load and solar in the optimization. The single-stage stochastic505

Fig. 9. Voltage performance (min./max. magnitude) with (a) deterministic
optimization, (b) singe-stage stochastic optimization and (c) two-stage stochastic
optimization where the maximum and minimum values of all (phase-wise) bus
voltages during a day among the 100 test scenarios are presented.

optimization strategy schedules all the controllable devices in 506

one stage together considering the uncertain prediction errors 507

and thus, it alleviates the voltage violations in Phase C but there 508

are still several bus voltages lower than 0.95 p.u. In comparison, 509

the two-stage stochastic optimization framework regulates all 510

the bus voltages within the ANSI limit since it considers the 511

uncertainties and allows a re-scheduling of reactive powers of 512

BESSs and solar inverters, thereby exhibiting better robustness. 513

This justifies the necessity of the intra-day re-scheduling of 514

available controllable devices. Fig. 10 gives the comparison in 515

terms of peak shaving performance. It can be observed that, with 516

the deterministic optimization, the peak load violates 6000 kW 517

in most of scenarios with the highest peak of 6856.4 kW; the 518

single-stage stochastic optimization alleviates the violation with 519

the highest peak of 6450.1 kW. By contrast, the two-stage opti- 520

mization can effectively regulate the peak load (maximum peak 521

load 6087.5 kW). The rationale behind this can be elaborated 522

as follows. Obviously, since the deterministic optimization does 523

not take into account any uncertainties in the decision making, 524

it has no robustness against it. The stochastic optimization 525

also violates the peak limit because the reduced scenario space 526

cannot cover all the possible scenarios but it performs better 527

than the deterministic optimization. The single-stage stochastic 528

optimization model considers the uncertainties but does not 529

allow different reactive power outputs from DGs and BESSs 530

under different scenarios. In comparison, given the two-stage 531

model allows for re-dispatching reactive power outputs of DGs 532

and BESSs at the second stage (so-called “wait-and-see”), the 533

network losses can be further reduced under different scenarios 534
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Fig. 10. Peak load performance with deterministic, one-stage stochastic and
two-stage stochastic optimization. (a) deterministic; (b) one-stage stochastic
optimization; (c) two-stage stochastic optimization. Each line represents the
real power load of distribution system under a given stochastic scenario. The
thick line represents the scenario with the highest peak load.

so that a lower peak load can be achieved. This validates the merit535

of stochastic optimization and the necessity of re-dispatch.536

V. CONCLUSION537

This paper addresses the day-ahead cooperative operation538

of peak shaving and voltage regulation in an unbalanced dis-539

tribution through a joint optimization framework. We then540

consider the uncertainties of load and solar by converting the541

co-optimization model into a two-stage stochastic program. The542

numerical results show that the proposed co-optimization frame-543

work brings more cost benefits than the successive optimization544

method while effectively regulating the voltages and peak load545

within the limits. Furthermore, due to the consideration of un-546

certainties and the enabled re-dispatch, the proposed two-stage547

stochastic programming method facilitates robust operations.548

Besides, we also verify the necessity of an explicit peak load549

constraint in the optimization for effective peak shaving.550

For large-scale networks with a number of stochastic scenar-551

ios, the efficiency of centralized solution may be challenged.552

Therefore, the distributed solution framework is required for553

better scalability. We leave it for future work.554
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