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Abstract—Customer-level rooftop photovoltaic (PV) has been7
widely integrated into distribution systems. In most cases, PVs8
are installed behind-the-meter (BTM), and only the net demand is9
recorded. Therefore, the native demand and PV generation are un-10
known to utilities. Separating native demand and solar generation11
from net demand is critical for improving grid-edge observability.12
In this paper, a novel approach is proposed for disaggregating13
customer-level BTM PV generation using low-resolution but widely14
available hourly smart meter data. The proposed approach exploits15
the strong correlation between monthly nocturnal and diurnal16
native demands and the high similarity among PV generation17
profiles. First, a joint probability density function (PDF) of monthly18
nocturnal and diurnal native demands is constructed for customers19
without PVs, using Gaussian mixture modeling (GMM). Deviation20
from the constructed PDF is utilized to probabilistically assess21
the monthly solar generation of customers with PVs. Then, to22
identify hourly BTM solar generation for these customers, their23
estimated monthly solar generation is decomposed into an hourly24
timescale; to do this, we have proposed a maximum likelihood25
estimation (MLE)-based technique that utilizes hourly typical solar26
exemplars. Leveraging the strong monthly native demand correla-27
tion and high PV generation similarity enhances our approach’s28
robustness against the volatility of customers’ hourly load and29
enables highly-accurate disaggregation. The proposed approach30
has been verified using real native demand and PV generation data.31

Index Terms—Rooftop photovoltaic, distribution system,32
Gaussian mixture model, maximum likelihood estimation.33

I. INTRODUCTION34

IN PRACTICE, customer-level rooftop PVs are integrated35

into distribution systems at behind-the-meter (BTM), where36

only the net demand is recorded. The measured net demand37

equals native demand minus the PV generation, which are38
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unknown to utilities separately. The native demand refers to 39

the original demand consumed by home appliances. The in- 40

visibility of native demand and BTM solar generation poses 41

challenges in distribution network design [1], [2], operation and 42

expansion [3]–[5], load/PV generation forecasting [6], [7], and 43

demand response [8], [9]. Thus, disaggregating PV generation 44

from net demand is of significance to utilities. 45

Previous works regarding PV generation disaggregation can 46

be classified into two categories based on the scale of solar 47

power: Class I - Customer-level approaches: Customer-level 48

BTM PV generation disaggregation can provide more fine- 49

grained spatial granularity to utilities. Thus, the separated PV 50

generation and native demand for individual customers can 51

be aggregated to obtain the estimate at any higher levels, i.e., 52

service transformer, feeder, or substation. In [10], customer PV 53

generation is estimated by combining a PV performance model 54

with a clear sky model, and using meteorological/geographical 55

data. In [11], a non-intrusive load monitoring (NILM) approach 56

is proposed to disaggregate customers’ PV generation from 57

their net demand using measurements with 1-second resolution. 58

In [9], [12], a data-driven method is proposed for estimating 59

the capacity and power output of residential rooftop PVs using 60

customers’ net load curve features. In [13], [14], a physical 61

PV performance model is combined with a statistical load 62

estimation model, along with weather data to identify key PV 63

array parameters. The disadvantages of previous customer-level 64

approaches are as follows: dependency on the availability of 65

accurate native demand exemplars, unavailability of PV model 66

parameters, requiring high-resolution sensors and weather data. 67

These obstacles make the previous methods susceptible to the 68

uncertainties of customer behavior and rooftop solar power 69

generators, which result in a decline in disaggregation accuracy. 70

Class II - System-level approaches: Many previous works 71

have proposed methods to disaggregate solar power from net 72

demand at transformer, feeder, or regional levels. In [15], a 73

data-driven approach is presented for separating the aggregate 74

solar power of groups of customers using their service trans- 75

former measurements. In [16], an exemplar-based disaggregator 76

is proposed to separate the output power of an unobservable solar 77

farm from the feeder-level μPMU measurements, using power 78

measurements of nearby observable PV plants and irradiance 79

data. In [6], a regional-scale equivalent PV station model is 80
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proposed to represent the total generation of small-scale PVs.81

The model parameters are optimized using known solar power82

data. In [17], a data-driven approach is proposed to estimate the83

total rooftop PV generation in a region by installing temporary84

sensors to measure representative solar arrays. Furthermore,85

previously in [18], we developed a game-theoretic data-driven86

approach for disaggregating the PV generation of sizeable87

groups of customers using solar and load exemplars. However,88

Class II approaches lack sufficient accuracy for performing89

customer-level PV disaggregation.90

Considering the shortcomings of previous approaches, we91

propose a novel customer-level solar power disaggregation92

technique. Our basic idea is to first estimate each customer’s93

monthly BTM PV generation and then decompose it into hourly94

solar power using solar exemplars. Note that in geographically95

bounded distribution systems, solar exemplars can be easily96

constructed from observable PVs due to the strong spatial corre-97

lation in weather data. Merely having solar exemplars is not suf-98

ficient to estimate the unknown PV generation; the relationship99

between the solar exemplar and unknown PV generation needs100

to be identified. One promising solution is to construct native101

demand exemplars. However, accurate customer-level native102

demand exemplar at the hourly timescale cannot be obtained due103

to high load uncertainties. To tackle this problem, we exploit an104

observation from our real smart meter data that the monthly105

nocturnal and diurnal native demands are highly correlated.106

Note that this high correlation applies to customers both with107

and without PVs. Then, identifying the relationship between108

the solar exemplar and unknown PV generation comes down to109

making the known monthly nocturnal native demand and the110

estimated monthly diurnal native demand optimally conform111

to the observed correlation. In other words, to avoid directly112

identifying the relationship at the hourly timescale, we first113

identify it at the monthly timescale and then extend the identified114

relationship to the hourly timescale.115

More specifically, the first step is to construct the joint proba-116

bility density function (PDF) of monthly nocturnal and diurnal117

native demands for customers without PVs. This will be done118

using a Gaussian Mixture Model (GMM) technique [19], which119

has demonstrated significant flexibility in forming smooth ap-120

proximations to arbitrarily-shaped PDFs. The constructed joint121

PDF captures the monthly load characteristics of customers122

without PVs; hence, this joint PDF serves as a benchmark123

for evaluating the deviations caused by monthly BTM solar124

generation for customers with unobservable PVs. The second125

step is to project the obtained customer-level monthly solar126

estimations onto hourly values; to do this, the monthly BTM127

solar generations are represented as a linear weighted summation128

of solar exemplars with hourly resolution. The weights are129

optimized using a constrained maximum likelihood estimation130

(MLE) process, and will be leveraged to disaggregate the hourly131

net demand of customers with BTM PV generators. To enhance132

the robustness of MLE against anomalous data, a penalty term is133

integrated into the weight identification process. Throughout the134

paper, vectors are denoted using bold italic letters, and matrices135

are denoted as bold non-italic letters.136

Fig. 1. Overall structure of the proposed customer-level BTM PV generation
disaggregation method.

The main contributions of our paper are summarized as fol- 137

lows: (1) Our approach takes full advantage of the strong similar- 138

ity among small-scale rooftop PV generations. This similarity is 139

due to the fact that the PVs installed within a spatially-bounded 140

distribution system are subject to nearly identical meteorological 141

inputs. (2) The proposed technique utilizes the significant corre- 142

lation between monthly nocturnal and diurnal native demands. 143

In this way, our approach avoids the direct use of hourly native 144

demand, which is highly volatile at the customer level [20], [21]. 145

(3) Our approach innovatively leverages a soft margin to mitigate 146

the impact of anomalous data samples of solar exemplars. The 147

introduction of this penalty term enhances the robustness of our 148

approach against abnormal measurements. 149

The rest of the paper is organized as follows: Section II 150

introduces the overall framework for customer-level BTM PV 151

generation disaggregation and describes smart meter dataset. 152

Section III presents the process for constructing joint PDF 153

of monthly diurnal and nocturnal native demands. Section IV 154

describes the procedure of formulating and solving MLE to 155

perform disaggregation. In Section V, case studies are analyzed. 156

Section VI discusses the relevant applications of the disaggre- 157

gated estimates and Section VII concludes the paper. 158

II. OVERALL DISAGGREGATION FRAMEWORK AND 159

DATASET DESCRIPTION 160

A. Overall Framework 161

In distribution systems, residential customers can be typically 162

categorized into three types: (I) CP is the set of customers 163

without PVs whose native demand is recorded by smart meters. 164

(II)CG denotes the small group of customers with PVs whose PV 165

generation and native demand are both observable separately. 166

(III) CN represents the set of customers with PVs whose net 167

demand is recorded by smart meter, while their native demand 168

and PV generation are not separately visible. Our goal is to 169

disaggregate PV generation and native demand from the net 170

demand of individual customers in CN . 171

The overall process is illustrated in Fig. 1: First, the known 172

monthly nocturnal and diurnal native demands of customers in 173

CP are employed to construct a joint PDF using GMM modeling 174

technique. This joint PDF is constructed based on a sizeable 175

number of customers without PVs. Then, for each customer 176

in CN , the unknown PV generation is optimally estimated by 177

performing MLE, and using the constructed joint PDF, known 178

monthly net demand and solar exemplars. 179
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Fig. 2. Observations from real smart meter data.

B. Dataset Description180

The hourly native demand data used in this paper are from a181

Midwest U.S. utility [22], and the hourly PV generation data are182

from a public dataset [23]. The time range of solar power is one183

year, and the time range of native demand of customers without184

PVs is three years. The test system consists of 1120 customers,185

of which 480 are residential customers without PVs and 237 are186

residential customers with PVs. Net demand data is obtained by187

aggregating customers’ PV generation and native demand data.188

III. STATISTICAL MODELING OF MONTHLY NATIVE DEMAND189

A. Findings From Real Smart Meter Data190

One key finding which sets the foundation for the proposed191

disaggregation approach is that the correlation between noctur-192

nal native demand and the diurnal native demand increases as193

the observation timescale increases. This finding is illustrated194

in Fig. 2, where, Ph,d, Pd,d, Pw,d, and Pm,d denote the di-195

urnal native demands measured on hourly, daily, weekly, and196

monthly basis, respectively. Ph,n, Pd,n, Pw,n, and Pm,n denote197

the nocturnal native demands at the corresponding timescales,198

respectively. P ′m,d denotes the monthly diurnal net demand of199

customers with PVs. Numerically, the correlation coefficients200

corresponding to Fig. 2(a)–2(d) are 0.56, 0.77, 0.89, and 0.91,201

respectively. In our paper, we employ the strong correlation of202

monthly native demand to perform disaggregation. The impor-203

tance of this correlation is that it can be leveraged to reveal the204

monthly BTM generation of customers with PVs. For instance,205

consider two customers, one with PV and one without PV. These206

two customers can have statistically-similar monthly nocturnal 207

net demand, however, their monthly diurnal net demand will 208

be significantly different from a statistical perspective due to 209

BTM PV generation at daytime. Specifically, Fig. 2(e) shows the 210

nocturnal-diurnal net demand distribution for customers with 211

PV which is significantly different from Fig. 2(d). Thus, the 212

distribution shown in Fig. 2(d), which represents the behavior of 213

customers without PV, can be used as a benchmark to determine 214

whether a customer has BTM PV generation and estimate the 215

monthly solar power. These findings have inspired us to con- 216

struct a joint distribution of monthly nocturnal and diurnal native 217

demands of customers without PVs to evaluate the deviation 218

caused by the BTM PV generation of customers with PVs. These 219

deviations correspond to monthly BTM solar generation. 220

B. Constructing the Nocturnal-Diurnal Native Demand PDF 221

We use a parametric PDF estimation technique known as 222

GMM to construct the joint distribution of known monthly 223

nocturnal and diurnal native demands of customers without PVs. 224

A GMM is a linear combination of Gaussian components, and 225

has demonstrated high flexibility and robustness in modeling 226

arbitrary distributions [24]. Since utilities have access to a large 227

amount of native demand data, the constructed GMM-based 228

joint PDF is able to probabilistically describes the quantitative 229

relationship between the monthly nocturnal native demand and 230

monthly diurnal native demand for customers without PVs. The 231

native demand of customers with PVs also follow this joint 232

PDF, while their observed monthly net demand can deviate from 233

the joint distribution. Compared with empirical histograms, the 234

GMM-based PDF only has a limited number of parameters, 235

therefore, it can be conveniently leveraged for estimating the 236

BTM PV generation of the customers with PVs. In our problem, 237

the GMM approximation model can be described as follows: 238

f(Pm,n, Pm,d|ΛΛΛ) =
S∑

k=1

θkgk(Pm,n, Pm,d|μμμk,ΣΣΣk), (1)

where, f(·, ·) denotes the approximated joint PDF, Pm,n and 239

Pm,d denote the monthly nocturnal and diurnal native demands 240

of customers without PVs (i.e., customers belonging to CP ), re- 241

spectively.ΛΛΛ denotes the parameter collection, {S, θk,μμμk,ΣΣΣk}, 242

which needs to be learned based on known native demand 243

data. S denotes the total number of Gaussian components. 244

θk’s are the weights corresponding to the bi-variate Gaussian 245

components gk(ZZZ|μμμk,ΣΣΣk) with ZZZ = [Pm,n, Pm,d], which sat- 246

isfy
∑S

k=1 θk = 1 and 0 ≤ θk ≤ 1. The bi-variate Gaussian 247

component is defined as 248

gk(ZZZ|μμμk,ΣΣΣk) =
1

(2π)|ΣΣΣk|1/2

exp

{
−1

2
(ZZZ −μμμk)

�ΣΣΣ−1k (ZZZ −μμμk)

}
, (2)

where,μμμk andΣΣΣk are the Gaussian component mean vector and 249

covariance matrix, respectively. 250

To learnΛΛΛ, first, a dataset is constructed based on smart meter 251

measurements of customers in CP . In practice, Pm,n and Pm,d 252
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of customers in CP are known to utilities and can be obtained253

from hourly smart meter readings in each month:254

Pm,n =
∑
t∈In

Ph(t), (3a)

Pm,d =
∑
t∈Id

Ph(t), (3b)

where, Ph(t) denotes the native demand reading at the t’th255

hour, In and Id denote the sets of nighttime and daytime hours,256

respectively. Then, we can obtain the matrix of monthly demands257

by concatenating all customers’ monthly native demand pairs:258

Z = [Z(1), . . . ,Z(Nc)]
T (4)

where, Nc denotes the total number of customers, and Z(j)259

denotes a matrix of monthly nocturnal and diurnal native demand260

pairs of the j’th customer which is organized as follows:261

Z(j) =

⎡
⎢⎢⎢⎢⎣

Pm,n(j, 1) Pm,d(j, 1)

Pm,n(j, 2) Pm,d(j, 2)
...

...

Pm,n(j,Nm) Pm,d(j,Nm)

⎤
⎥⎥⎥⎥⎦

T

(5)

where, Nm is the total number of months. Then, we can262

obtain a dataset of observed monthly demand samples,263

{ZZZ(1), . . . ,ZZZ(N ′)}, through partitioning Z by rows, where,264

N ′ = Nc ×Nm.265

Thus, the problem of GMM approximation boils down to266

finding optimal parameter collection ΛΛΛ∗ that best fits the ob-267

tained dataset of monthly native demands, Z, by assuming that268

the data samples are drawn independently from the underly-269

ing distribution. The most well-established idea for learning270

GMM parameters is to solve an optimization problem [19], [25],271

whereby the objective function can be formulated to maximize272

data likelihood, as follows:273

max
ΛΛΛ

N ′∏
i′=1

f (ZZZ(i′)|ΛΛΛ) , (6)

By taking the logarithm of objective function, (6) is rewritten as274

follows:275

max
ΛΛΛ

N ′∑
i′=1

ln {f(ZZZ(i′)|ΛΛΛ)} . (7)

The optimization problem in (7) is solved using the expectation-276

maximization algorithm [19].277

Based on the identified optimal GMM parameter collection278

from (7), ΛΛΛ∗, the joint PDF of monthly nocturnal and diurnal279

native demands can be specifically written as280

f(Pm,n, Pm,d) =

S∗∑
k=1

θ∗kg
∗
k(Pm,n, Pm,d), (8)

where,281

Fig. 3. Detailed structure of the proposed solar disaggregation approach for
each customer.

g∗k(Pm,n, Pm,d) =
1

2πσ∗Pm,n,k
σ∗Pm,d,k

√
1− ρ∗k

2

exp

{
− 1

2(1− ρ∗k
2)

[
(Pm,n − μ∗Pm,n,k

)2

σ∗Pm,n,k
2 +

(Pm,d − μ∗Pm,d,k
)2

σ∗Pm,d,k
2

−
2ρ∗k(Pm,n − μ∗Pm,n,k

)(Pm,d − μ∗Pm,d,k
)

σ∗Pm,n,k
σ∗Pm,d,k

]}
, (9)

where, S∗ and θ∗k are the learned number of mixture Gaus- 282

sian components and mixture weights, respectively. μ∗Pm,n,k
, 283

μ∗Pm,d,k
, σ∗Pm,n,k

, σ∗Pm,d,k
, and ρ∗k denote the learned mean, vari- 284

ance, and correlation of Pm,n and Pm,d for the k’th component, 285

respectively. 286

Using GMM and the learned parameters, the joint distribution 287

of monthly nocturnal and diurnal native demands is optimally 288

represented. This joint distribution can serve as a benchmark for 289

detecting and examining the discrepancy caused by BTM PV 290

generation. 291

IV. CUSTOMER-LEVEL SOLAR DISAGGREGATION VIA MLE 292

In this section, we disaggregate solar generation from net 293

demand for each customer with BTM PV using the constructed 294

joint PDF, along with the measured net demand and solar exem- 295

plars. The detailed disaggregation process for each customer in 296

CN is illustrated in Fig. 3. 297

A. MLE for Optimizing Solar Exemplar Weights 298

In a geographically bounded distribution system, it can be 299

assumed that different PV arrays are subject to nearly identical 300

meteorological inputs. Under this condition, the signature of an 301
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individual PV’s generation profile is primarily determined by302

PV array’s maximum power output and azimuth. The maximum303

power output determines the magnitude of generation curve [9],304

and the azimuth determines the “skewness” of generation pro-305

file [15]. Using the solar power curve of a south-facing PV array306

as a benchmark, the solar power curve of an east-facing PV307

array is left-skewed. A west-facing PV array has a right-skewed308

solar power curve. Therefore, the unknown BTM PV generation309

can be reliably represented using known generation profiles of310

BTM PVs (belonging to CG) with typical orientations that serve311

as exemplars:312

Gm,d =

N∑
i=1

ωiG
E
m,i = ωωωTGGGE

m, (10)

where, N is the total number of solar exemplars, ωωω =313

[ω1, . . . , ωN ]T denotes an unknown weight vector to be opti-314

mized, and GGGE
m = [GE

m,1, . . . , G
E
m,N ]T denotes the PV gener-315

ation vector of solar exemplars, where, GE
m,i is obtained by316

converting the known hourly diurnal PV generation into monthly317

diurnal solar power exemplars:318

GE
m,i =

∑
t∈Id

GE
h,i(t), (11)

where, GE
h,i(t) is the PV generation of the i’th exemplar at319

the t’th hour. Therefore, disaggregating BTM PV generation320

of each customer in CN comes down to finding optimal coeffi-321

cients assigned to known solar exemplars. To do this, first, we322

represent the unknown monthly diurnal native demand using the323

known monthly net demand and monthly PV generation of solar324

exemplars:325

Pm,d = P ′m,d −ωωωTGGGE
m. (12)

where, P ′m,d is the known monthly net demand which can be326

obtained as follows:327

P ′m,d =
∑
t∈Id

P ′h(t), (13)

where, P ′h(t) denotes the recorded net demand at the t’th hour.328

Since the monthly nocturnal and diurnal native demands of329

customers with PVs probabilistically follow the constructed330

GMM-based joint PDF, by substituting (12) into (8), we can331

represent the distribution function for customers with BTM PVs332

as follows:333

f
(
Pm,n, P

′
m,d −ωωωTGGGE

m

)
. (14)

Note that (10)–(14) apply to each month, and we do not add the334

dimension of month into these equations for the sake of concise-335

ness. Then, the exemplar weight optimization is formulated as336

an MLE problem over all months, as described as follows:337

ωωω∗ = max
ωωω

{
M∏
t′=1

f(Pm,n(t
′), P ′m,d(t

′),GGGE
m(t′)|ωωω)

}
, (15)

where, M is the total number of months.338

Algorithm 1: Disaggregating BTM PV Generation and Na-
tive Demand from Net Demand for Each Customer.

1: Classify residential customers into three types: CP ,
CG, and CN

2: procedure Data Conversion
3: For customers in CP :
4: Pm,n ←

∑
t∈In Ph(t), Pm,d ←

∑
t∈Id Ph(t)

5: For customers in CG:
6: GE

m,i ←
∑

t∈Id G
E
h,i(t) i = 1, . . . , N

7: For customers in CN :
8: Pm,n ←

∑
t∈In P ′h(t), P

′
m,d ←

∑
t∈Id P

′
h(t)

9: end procedure
10: procedure Construct Nocturnal-Diurnal Native

Demand PDF
11: For customers in CP :
12: ΛΛΛ← {θk,μμμk,ΣΣΣk} k = 1, . . . , S

13: ΛΛΛ∗ ← max
ΛΛΛ

∑N ′
i′=1 ln{f(Pm,n, Pm,d|ΛΛΛ)}

14: end procedure
15: procedure Perform MLE for Optimizing Weights
16: For customers in CN :
17: Pm,d ← P ′m,d −ωωωT(GGGE

m)
18: Solve optimization in (16) to obtain ωωω∗

19: end procedure
20: procedure Estimate Hourly BTM PV Generation and

Native Demand
21: For customers in CN :
22: Ĝ̂ĜGh ← (ωωω∗)TGE

h , P̂̂P̂Ph ← PPP ′h − Ĝ̂ĜGh

23: end procedure

Further, the optimization solution should be subject to multi- 339

ple constraints to enforce the identified PV generation to be non- 340

positive and the estimated native demand to be non-negative. Fi- 341

nally, by taking logarithm of (15) and introducing the constraints, 342

the complete optimization problem is elaborated as follows: 343

max
ωωω

{
M∑
t′=1

ln
[
f(Pm,n(t

′), P ′m,d(t
′),GGGE

m(t′)|ωωω)]
}
− 1

2
λ||βββ||22,

(16a)
344

s.t. (ωωωTGE
h )

T ≤ 000, (16b)
345

PPP ′h − (ωωωTGE
h )

T ≥ βββ, (16c)
346

βββ ≤ 000, (16d)

where, GE
h = [GGGE

h (1), . . . ,GGG
E
h (Nh)] denotes a matrix of 347

hourly PV generation solar exemplars’ time series, GGGE
h (τ) = 348

[GE
h,1(τ), . . . , G

E
h,N (τ)]T, τ = 1, . . . , Nh denotes the vector of 349

solar exemplars’ generation readings at the τ ’th hour, Nh de- 350

notes the total number of hourly demand readings, PPP ′h denotes 351

the time-series hourly net demand readings and 000 represents a 352

zero vector. In addition to maximizing the likelihood function 353

shown in (15), a l2-norm penalty term, − 1
2λ||βββ||22, is added 354

into the objective function, where, λ ≥ 0 is a tuning parameter 355

and βββ is a vector with non-positive elements. Constraint (16b) 356
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ensures that the estimated hourly PV generation is non-positive.357

Constraints (16c) and (16d) ensure that the estimated time-series358

native demand is larger than a non-positive vector whose l2-norm359

is penalized in the objective function. This penalty term is360

based on the following consideration: In practice, it is common361

for the solar generation to have data quality problems. For362

example, PV arrays can stop running due to solar panel failures,363

and the recorded anomalous samples are usually smaller than364

the unrecorded expected values. For the customers whose PV365

generation is supposed to be disaggregated from the known366

net demand, the unwanted PV failure does not cause signifi-367

cant disaggregation error. This is because the relatively smaller368

anomalous PV generation samples cause an unwanted rise in the369

net demand readings only for a limited number of samples. These370

larger net demand readings can still give us positive estimated371

native demand values, since the native demand is estimated372

by subtracting the disaggregated BTM PV generation from373

net demand. In comparison, the anomalous readings of solar374

exemplars can cause a negative estimated native demand, which375

brings significant estimation errors. This is because removing376

a zero or near-zero PV generation from a negative net demand377

measurement gives us a negative estimated native demand value.378

Thus strictly constraining the estimated native demand to be379

non-negative can cause unwanted errors. Therefore, we have380

leveraged a soft margin to penalize the effect of anomalous data.381

Since the purpose of introducing the penalty term is to allow for382

a small number of negative native demand estimates, the value383

of tuning parameter, λ, should be chosen in a way to ensure384

that the number of negative native demand estimates is close385

to the number of solar exemplars’ anomalous data samples. The386

MLE problem in (16) is solved via numerical optimization using387

interior-point methods.388

B. Estimating Hourly PV Generation and Native Demand389

By solving the optimization (16), we can obtain the optimized390

weight vector, ωωω∗, which is utilized to estimate the unknown391

hourly BTM PV generation of customers with PVs:392

Ĝ̂ĜGh = (ωωω∗)TGE
h . (17)

Further, the hourly native demand can be estimated by sub-393

tracting the disaggregated BTM PV generation from known net394

demand readings:395

P̂̂P̂Ph = PPP ′h − Ĝ̂ĜGh. (18)

An algorithmic overview of the aforementioned steps of BTM396

PV generation disaggregation is summarized in Algorithm 1.397

V. CASE STUDY398

In this section, the proposed customer-level rooftop BTM399

solar power separation approach is verified using real smart400

meter and PV generation data described in Section II.401

A. Assessing Statistical Behavior of Customers402

The empirical histogram and the GMM-based estimation of403

f(Pm,n, Pm,d) are shown in Fig. 4(a) and Fig. 4(b), respectively.404

Fig. 4. Joint PDF estimation of monthly nocturnal and diurnal native demands.

Comparing these two figures, it can be seen that GMM is able 405

to accurately model the joint distribution of monthly nocturnal 406

and diurnal native demands using smooth parametric Gaussian 407

density functions. Also note that the joint PDF surface is quite 408

narrow, i.e., the data is highly concentrated around the linear 409

representative of nocturnal and diurnal demands. This corrobo- 410

rates the high correlation between monthly nocturnal and diurnal 411

native demands observed in Fig. 2(d). 412

B. BTM PV Generation Disaggregation Validation 413

Using the constructed GMM-based joint PDF, along with the 414

known monthly net demand of customers with PVs and PV 415

generation of solar exemplars, we can solve the MLE prob- 416

lem described in (16). When selecting solar exemplars, it is 417

demonstrated that on average, three exemplars can sufficiently 418

represent the PV generation profiles, and introducing additional 419

solar exemplars does not bring further disaggregation accuracy 420

improvement [18]. Thus, we have selected three typical solar 421

power curves from CG corresponding to PVs facing east, south 422

and west, respectively. Fig. 5 shows disaggregated PV genera- 423

tion and native demand curves of one customer over two weeks, 424

along with corresponding actual profiles. In Fig. 5(a), it can be 425

seen that the disaggregated curve closely fits the actual profile, 426

regardless of the solar volatility on some days. This shows the 427

accurate diaggregation capability of our proposed method and 428

also corroborates our observation that PV generation profiles 429
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Fig. 5. Two-week disaggregated PV generation and native demand curves, along with corresponding actual curves.

Fig. 6. Visualizing the distinguishability of time-series PV generation curves
of solar exemplars.

with similar PV array orientations are highly correlated. Fig. 5(b)430

shows the disaggregated and actual native demand profiles. It431

can be observed that despite the uncertain and volatile pattern432

of native demand, the disaggregated curve can still fit the real433

profile.434

It is of importance to examine the representative feature of435

typical solar exemplars. In (10), the unknown BTM PV gen-436

eration is represented using known generation profiles of solar437

exemplars. Therefore, these PV generation profiles which serve438

as exemplars should be distinguishable, otherwise, multiple439

solutions of weights with the same losses can be derived in the440

MLE optimization process. We have employed a dimensionality441

reduction technique known as t-SNE to visualize the dissimi-442

larities among PV generation profiles of solar exemplars [26].443

Note that each time point is treated as one dimension in our444

problem. The dimensions of hourly and monthly PV generation445

time series are reduced for convenient visualization, as shown in446

Fig. 6. Fig. 6(a) shows the reduced two-dimensional solar power447

exemplars based on the hourly PV generation of PVs facing east,448

south and west. As can be seen, the solar exemplars are demon- 449

strated to be distinct. Similarly, the monthly PV generation of 450

solar exemplars also demonstrate distinguishable features, as 451

shown in Fig. 6(b). This is consistent with our observation that 452

solar generation profiles are primarily determined by PV panel 453

orientations in geographically bounded distribution systems. 454

It is of significance to test whether the proposed approach 455

can track the appropriate exemplars (east, south or west) in the 456

disaggregation process. Fig. 7(a) shows PV generation curves of 457

the three exemplars facing east, south and west. We can see that 458

PVs with different orientations show distinct profile skewness. 459

Fig. 7(b) shows the disaggregated and real PV generation curves 460

of a PV facing east, along with the optimized weights assigned 461

to the three solar exemplars. It can be seen that the weight 462

corresponding to the first exemplar (i.e., PV facing east) is 463

much larger compared to the other two weights, which validates 464

the tracking ability of our proposed approach. This verification 465

can also be observed in Fig. 7(c) and 7(d), which show the 466

weights, disaggregated and actual PV generation curves of PVs 467

facing south and west, respectively. In all cases, our method 468

has accurately detected the correct underlying BTM PV panel 469

orientations. 470

The proposed customer-level BTM solar separation approach 471

is applied to all 237 customers with PVs, and the disaggregation 472

accuracy for each customer is evaluated in terms of mean abso- 473

lute percentage error (MAPE), which is calculated as follows: 474

MAPE =
100%

N ′h
·
N ′h∑
t=1

∣∣∣∣∣ Ôh(t)−Oh(t)

1
N ′h

∑N ′h
t=1 |Oh(t)|

∣∣∣∣∣ (19)

where, N ′h denotes the total number of non-zero PV generation 475

observations for an individual customer, Oh can be Ph or Gh. 476

Fig. 8 shows the distribution of disaggregation error for all 477
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Fig. 7. The proposed approach can correctly track proper solar exemplars to
perform disaggregation.

Fig. 8. Empirical distribution of MAPE of disaggregated estimates.

customers in terms of MAPE. As can be seen, majority of478

the MAPEs are less than 20%. This effectively demonstrates479

the generalization ability of our proposed method. Table I sum-480

marises the empirical cumulative distribution function (CDF) of481

disaggregation MAPE. As can be seen, for the disaggregated482

hourly PV generation, 80% of the MAPEs are less than 13.5%.483

TABLE I
EMPIRICAL CDF OF DISAGGREGATION MAPE

Fig. 9. Empirical distribution of RMSE of disaggregated estimates.

TABLE II
EMPIRICAL CDF OF DISAGGREGATION RMSE

Fig. 10. A solar exemplar with an anomalous sample due to PV failure.

Regarding the disaggregated hourly native demand, 80% of 484

the MAPEs are less than 14.9%. This effectively verifies the 485

disaggregation accuracy of our proposed approach. 486

The disaggregation accuracy for each customer is also evalu- 487

ated using RMSE, which is computed as follows: 488

RMSE =

√
Σ

N ′h
t=1(Ôh(t)−Oh(t))2

N ′h
. (20)

Fig. 9 shows the empirical distributions of the RMSE of disag- 489

gregated estimates based on all customers’ computed RMSEs. 490

It can be seen that most PV generation and native demand 491

RMSEs are less than 0.5 and 1.5, respectively. Also, the 492

empirical CDF of disaggregation RMSE is calculated for a 493

comprehensive examination, as shown in Table II. 494

C. Testing the Robustness of the Proposed Approach 495

It is common for a practical metering system to have a small 496

number of anomalous measurements in solar exemplars, as 497

shown in Fig. 10, where the unrecorded expected generation is 498

denoted as a red circle. The typical reason for anomalous solar 499

power data samples is PV failure, which causes the recorded data 500
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Fig. 11. The introduction of penalty term significantly improves disaggrega-
tion accuracy and robustness.

samples to be smaller than the unrecorded expected values. As501

previously elaborated in Section IV, a penalty term is included502

in (16) to mitigate the effect of solar exemplar’s anomalous503

samples. Therefore, it is crucial to test the usefulness of the504

penalization mechanism. Note that the results in Section V-B505

are obtained using (16) with a penalty term. Thus, to conduct a506

performance comparison, we alter (16) to obtain a new optimiza-507

tion formulation with the penalty term omitted, as expressed as508

follows:509

max
ωωω

M∑
t′=1

ln
[
f(Pm,n(t

′), P ′m,d(t
′),GGGE

m(t′)|ωωω)] , (21a)

510

s.t. (ωωωTGE
h )

T ≤ 000, (21b)
511

PPP ′h − (ωωωTGE
h )

T ≥ 000. (21c)

Then, using the solar exemplar with an anomalous sample in512

Fig. 10, we utilize (16) and (21) to perform disaggregation,513

respectively. Fig. 11 compares three-day disaggregated PV514

generation and native demand curves based on (16) and (21),515

respectively. The actual solar power and native demand curves516

are also plotted as benchmarks. In Fig. 11(a), it can be seen that517

the disaggregated PV generation curve using (16) can closely fit518

the actual curve except for at the hour that the solar exemplar’s519

anomalous sample appears. In comparison, the disaggregated520

PV generation curve using (21) significantly deviates from the521

actual benchmark. Regarding the disaggregated native demand,522

we can draw the same conclusion by observing Fig. 11(b).523

The overestimation of PV generation and native demand using524

(21) is due to the constraint that forces the estimated native525

demand to be strictly non-negative, as shown in Fig. 11(b). In526

contrast, our approach presented in (16) allows a negative native527

demand estimate to mitigate the anomalous samples’ impact. To528

sum up, the introduction of penalty into the MLE optimization529

Fig. 12. Empirical distributions of MAPE of disaggregated estimates ob-
tained using the Bi-Modeling method.

Fig. 13. Empirical distributions of RMSE of disaggregated estimates ob-
tained using the Bi-Modeling method.

significantly enhances the robustness of our proposed approach 530

against anomalous data. 531

D. Performance Comparison 532

It is vital to compare the performance of our proposed ap- 533

proach with other methods. Since the proposed approach in [14] 534

has been demonstrated to have a relatively better performance 535

than previous methods, we first apply the proposed approach 536

in [14] to conduct PV generation disaggregation using our 537

dataset and then compare its performance with our approach. 538

The approach to be compared is denoted as Bi-Modeling, which 539

employs a statistical model and a physical model to repre- 540

sent the native load and the PV generation, respectively. The 541

Bi-Modeling method utilizes the observable net load series 542

and weather data to optimize model parameters iteratively. A 543

threshold is set to evaluate whether the two models reach a 544

consensus. The results obtained by applying the Bi-Modeling 545

method to our dataset are shown in Figs. 12 and 13. It can 546

be seen that our approach has a better performance than the 547

Bi-Modeling method in terms of the MAPE and RMSE of 548

PV generation by comparing Fig. 12(a) and 13(a) with Fig. 8(a) 549

and 9(a), respectively. In terms of native demand disaggregation 550

error comparisons (obtained from Fig. 8(b), Fig. 9(b), Fig. 12(b), 551

and Fig. 13(b)), the results are inconclusive. Further results in 552

terms of average MAPE and RMSE are examined as shown 553

in Table III, and it can be seen that our approach demonstrates 554

smaller disaggregation errors. Note that no single method alone 555

is best in all situations. 556

VI. APPLICATION DISCUSSION 557

It is essential to discuss how the disaggregated PV and native 558

demand can be used in practice. These estimates target static 559

applications since the sampling rates of widely available smart 560

meter data are 1-hour, 30-min, or 15-min. To further explain the 561
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TABLE III
AVERAGE MAPE AND RMSE OF ESTIMATES

usefulness of our approach, we primarily focus on three specific562

applications:563

A. Native Load Monitoring and Forecasting564

Since small-scale rooftop PVs can be disconnected or other-565

wise absent without prior knowledge, utilities usually adopt a566

conservative approach in distribution system studies and do not567

treat small PVs as reliable sources [3]. As a result, utilities use568

the native load for conducting conservative scenario analysis569

instead of the net load. Therefore, it is crucial for utilities to570

monitor the actual native load. In most cases, small-scale rooftop571

PVs are installed BTM, and only the net load is recorded. Thus,572

it is necessary to disaggregate the unknown native load and PV573

generation from the known net load. Our proposed approach can574

directly provide utilities the estimated native load, which can be575

further utilized for system operation and design.576

The disaggregated estimates can also be used for native load577

forecasting. As the PV penetration level increases, the native578

load can be seriously masked by PV generation. Under this579

condition, it is necessary to separate the native load from the580

net load first and then perform native load forecasting. For581

this application, our proposed approach can provide native load582

estimates to train native load forecasting models.583

B. Demand Response584

Due to the existence of BTM PVs, the native demand is585

masked by PV generation. However, the majority of demand586

response schemes are designed for native load controlling [9].587

Under this condition, the unknown native demand hinders utili-588

ties from applying demand response schemes efficiently because589

of the invisibility of the real power consumption. Therefore, the590

native demand of individual customers needs to be separated591

from the net demand, as our proposed approach fulfills.592

C. Service Restoration593

Another application is relevant to service restoration. When594

restoring cold loads, more power will be drawn by air-595

conditioning appliances than in normal operation. This power596

increase is caused by the simultaneous restarting of a large597

number of appliances and can be several times larger than the598

normal load. Thus, this abnormal load should be estimated for599

developing optimal service restoration tactics. One typical way600

of estimating the abnormal load is to multiply the normal native601

load before outage by a ratio from a look-up table [3], [27]. To do602

this, we need to separate the normal native load from the net load.603

Leveraging the disaggregated native load estimate obtained from 604

our approach can be used in optimizing restoration strategies. 605

VII. CONCLUSION 606

This paper presents a novel robust approach to disaggregate 607

invisible customer-level BTM PV generation and native demand 608

from net demand using smart meter data and solar exemplars. 609

The proposed method employs a limited number of observ- 610

able solar power exemplars to represent the invisible BTM PV 611

generation. Also, the proposed approach innovatively leverages 612

the significant correlation between nocturnal and diurnal native 613

demands at the timescale of monthly to alleviate the hourly 614

native demand’s volatility. In addition, a penalty term is innova- 615

tively integrated into the estimation problem to tackle anomalous 616

samples of solar exemplars due to PV failures. The numerical 617

experiments verify that the approach is able to perform disag- 618

gregation with excellent accuracy and robustness, which further 619

improves utilities’ situational awareness of grid-edge resources. 620

The key findings of the paper are summarized as follows: (1) 621

Using real BTM PV generation and native demand data, we have 622

observed that the hourly generation series of a PV can be suffi- 623

ciently represented using solar power outputs of PVs with similar 624

orientations. In comparison, the hourly customer-level native 625

demand shows higher volatility. (2) Despite the uncertainty of 626

hourly native demand, the monthly nocturnal and diurnal native 627

demands are highly correlated. This has inspired us to first 628

estimate the monthly PV generation, then decompose it into 629

hourly solar power. (3) The anomalous data of PV generation 630

is common in practice, and can cause significant disaggregation 631

error. This has motivated us to introduce a penalty term into MLE 632

to reduce the impact of solar exemplars’ anomalous samples. 633
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