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Abstract— The emerging of microgrids in distribution systems 

has significantly enhanced the resilience of power grids. Howev-
er, the operators of a distribution system and microgrids therein 
can be different and have accessibility to different devices. To 
model the operation of such a grid, this paper proposes a bilevel 
formulation and probes into the voltage regulation operation, 
considering the interaction between different systems. The pro-
posed bilevel formulation considers the cooperation of active 
energy resources (AER), transformer tap-changers, and capaci-
tor banks that are controlled by different operators. To facilitate 
the solution time of the target bilevel optimization, the lower-level 
problems with different objectives are modeled using deep neural 
networks (DNNs) which are then converted into a set of con-
straints. Hence, the bilevel problem can be reformed to a sin-
gle-level problem. Lastly, the proposed solution procedures are 
validated using a customized joint system constructed by the 
IEEE 123-bus system and a real distribution system in Iowa. 
According to the numerical validation results, the solution time of 
the proposed nonlinear activation function based DNN model is 
69 times faster than other methods in solving voltage regulation 
with a bilevel structure. 
 

Index Terms—Bilevel optimization, deep neural network, mul-
tiphase distribution system, voltage control  
 

I. INTRODUCTION 
URSUING more flexible distribution systems is always one 
objective of utilities and researchers. Nowadays, the flexi-

bility of distribution systems mainly comes from controllable 
devices such as voltage regulators, controllable capacitor 
banks, and active energy resources (AERs). Besides, the 
management model of distribution systems starts to step from 
a centralized one to hierarchical or decentralized structures. 
Such evolution in the management model inevitably breaks 
the availability of global information and the controllability of 
active devices. To accommodate such paradigm shifts, various 
management problems have been formulated as bilevel or 
even higher-level optimization problems [1]-[3].  
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Among all possible operational schemes at the distribution 
level, voltage regulation problems can be considered as the 
most critical one for distribution system operators since volt-
age deviations are directly related to the power qualities 
[4]-[5] and end-user experience. Various progress has been 
made during the past decade related to voltage regulation 
problems [6]-[8]. In [5]-[8], full load models, power electron-
ics links, and system uncertainties have been considered and 
integrated into voltage regulation problems and solved effec-
tively. For multi-zone systems or the system with 
self-operated microgrids, the management objectives and the 
targets of each entity can be different. Voltage regulation 
problems for such hierarchical structures will be naturally 
modeled as bilevel/multilevel optimization problems in which 
suboptimization problems are inserted in an optimization for-
mulation. However, this type of voltage regulation (or volt-var 
control) problem is seldomly studied in the literature due to its 
complexity.  

The multilevel optimization problem is naturally an ex-
tremely complicated problem. Computing a multilevel prob-
lem as well as validating the solution optimality of such prob-
lem are NP-hard tasks [9]. Although bilevel problems are the 
simplest problem among the multilevel optimization family, 
solving bilevel problems is still time-consuming when consid-
ering the nonlinearity and discreteness of transformer taps and 
capacitor banks.  

A bilevel formulation of a voltage regulation problem is 
proposed in [4] to tackle bilevel voltage regulation problems at 
the distribution level. The objective functions of both levels 
regulate the voltage profile of the entire system. Besides, the 
interactions between upper and lower-level problems have 
been decoupled. 

Apart from ignoring the coupling between each level, there 
are two tracks to handle bilevel optimization problems, and 
heuristic searching methods are favorable for solving highly 
nonlinear tasks. Another way is to reformulate a multilevel 
problem into a single-level problem, and the common analytic 
reformulation strategies are the Karush–Kuhn–Tucker (KKT) 
condition and primal-dual approaches [10]-[11]. However, the 
major drawback of the KKT and primal-dual modeling ap-
proaches is that they preserve the nonlinearity of the original 
lower-level problem, and the optimality of the lower-level 
problem cannot be guaranteed when problems are nonlinear 
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and nonconvex. Besides, the KKT complementary condition 
may introduce additional integer variables [12], which com-
plicates the original formulation. 

Different from analytic and heuristic searching approaches, 
this paper aims at applying data-driven approaches for model-
ing the lower-level problems and converting bilevel problems 
to single-level problems. The data-driven based modeling 
methods are widely applied to power system applications 
[13]-[15]. Among all existing data-driven approaches, deep 
neural network (DNN) is the most effective way to model 
systems with high nonlinearity. 

To explore the possibility of deploying DNN in solving bi-
level voltage regulation problems, this paper performs a com-
prehensive study on DNN structures considering different 
types of activation functions. Regarding the training data gen-
eration, effective relaxation methods are proposed, which can 
significantly reduce the size and complexity of DNNs. The 
proposed method is validated using a joint distribution system 
between the IEEE 123-bus system and an actual Iowa distri-
bution network. Finally, the proposed DNN based approaches 
are compared with a heuristic searching method to highlight 
their effectiveness. The comparison between centralized oper-
ation and bilevel operation in voltage regulation is also dis-
cussed in the numerical case study section. 

The contributions of this paper can be concluded as (1) the 
DNN based data-driven approach is first introduced to solve 
the bilevel voltage regulation problem at the distribution level; 
(2) both mixed integer model and smooth nonlinear model of 
DNN are studied and compared for modeling lower-level 
problems; (3) the proposed methods are compared with a heu-
ristic searching method in a distribution system with 
self-operated microgrids to show the effectiveness of the da-
ta-driven modeling approaches. 

 
Fig. 1.  Example system with a hierarchical structure. 

 

II. VOLTAGE REGULATION PROBLEM FORMULATION 
Voltage regulation problems can be generally classified as 

either global regulation problems or local regulation problems. 
The global regulation problem is equivalent to the centralized 
regulation problem, in which the system operator controls all 
controllable devices to regulate the voltages of the entire sys-
tem. For example, the operator in Fig. 1 can control both 
DERs in the host system and the microgrid (MG) to regulate 
voltages at all four buses. In a local regulation problem (de-
centralized), different operators only manage their systems. 
For example, the operator in the host system controls DER 1 
to regulate voltages at buses 1 and 2. Meanwhile, the mi-
crogrid operator uses DER 2 to regulate the voltage at buses 3 
and 4. In a system operated under local regulation, if the host 
system wishes to consider the operations of the subsystems 
(the microgrid in this case), a bilevel problem will be formu-
lated. The operational performances under different control or 

management structures are further demonstrated in Section V. 
Global voltage regulation problems can be solved or real-

ized using centralized or distributed algorithms [16], [17]. 
Ideally, it is also possible to solve or achieve local regulation 
using distributed algorithms. However, the existing distributed 
algorithms still cannot directly be applied to solve the voltage 
regulation problem with bilevel operation structures [17]-[18]. 

The main focus of this paper is to address the voltage regu-
lation problem for the distribution systems with bilevel opera-
tion scenarios from the host system perspective. The target 
control frequencies are daily or hourly. A generalized system 
structure of a distribution system with a bilevel operation 
structure is shown in Fig. 2, where different operators only 
manage their own systems. The host system can be a utili-
ty-owned distribution network with most customers. The low-
er-level systems can be microgrids, smart communities, uni-
versity campuses.  

 
Fig. 2.  One-line diagram of bilevel operated system. 
 

Considering the system shown in Fig. 2, this paper investi-
gates the scenario that the operator cannot manage the con-
trollable devices in other levels. For example, the operator in 
the host system cannot dispatch the AERs in lower-level sys-
tems. Under this condition, the terminal voltage and the power 
exchanges become the only connection between the host sys-
tem and subsystems during the operation. A practical example 
system can be found in [19], in which the microgrid of Illinois 
Institute of Technology (IIT) is attached to a distribution sys-
tem feeder, and the microgrid can control its AERs.  

A. Bilevel Optimization Structure 
The mathematical model of the problem presented in Fig. 2 

can be formulated as a bilevel optimization problem as 
 min

𝒙
𝐹(𝒙,𝜶),… ,𝜶+) (1a) 

 s.t.  
 𝑮(𝒙, 𝜶),… , 𝜶+) ≤ 𝟎 (1b) 
 𝜶0 = 𝑂0(𝒙, 𝒚)∎,… , 𝒚+∎)							∀𝑖 ∈ 𝒩 (1c) 
 𝒚0∎ = argmin

𝒚=
𝑓0(𝜷0, 𝒚0)				∀𝑖 ∈ 𝒩 (1d) 

 𝒈0(𝜷0, 𝒚0) ≤ 𝟎												∀𝑖 ∈ 𝒩 (1e) 
 𝜷0 = 𝑜0(𝒙, 𝜶),… , 𝜶+)								∀𝑖 ∈ 𝒩 (1f) 
where x, yi, and 𝒚0∎ are vectors; i is the index of the subsys-
tems (or lower-level systems), 𝒩 is the set that contains all 
index i, and the size of 𝒩 is N; the upper-level problem is 
defined by (1a)-(1b) and the lower-level problem is defined by 
(1d)-(1e); 𝐹(∙) and 𝑮(∙) are the cost and constraints of the 
upper-level problem, 𝑓0(∙)  and 𝒈0(∙)  are the cost and con-
straints of the ith lower-level problem; 𝑜0(∙) and 𝑂0(∙) are the 
boundary constraints that connect the upper and lower systems; 
𝒚0∎ is the solution to the ith lower-level problem. 

In the context of the voltage regulation problem, the deci-
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sion variable x is the host system owned transformer tap posi-
tions, capacitor banks, and AERs. The decision variable yi is 
the subsystem owned transformer tap positions, capacitor 
banks, and AERs. The boundary variable 𝜶0 is the power in-
jection from the host system to subsystem i and 𝜷0 is the ter-
minal voltage of the subsystem i; see Fig. 2. According to (1c) 
and (1f), 𝜶0  and 𝜷0  couple the upper and lower-level prob-
lems. 

B. Objectives of Bilevel Problem 
In this paper, the objective function of the host system is 

fixed to minimize the voltage deviation through transformer 
tap positions 𝒕D , controllable capacitor banks 𝒕E , and dis-
patchable power 𝒔G from the AERs. Mathematically, we have  
 𝐹(𝒙, {𝜶0}0+) =J 𝑤LM𝑈L − 𝑈PLQ

R

L
 (2) 

where 𝒙 = [𝒕D, 𝒕E, 𝒔G] ; {𝜶0}0+ = [𝜶),… , 𝜶+]  represents the 
power injections from all subsystems; 𝑤L  is the weight as-
signed to each node and controlled by the operator; 𝑈L and 𝑈PL 
are the voltage amplitude and voltage reference of node 𝜏 in 
the host distribution system. 

Remark that this paper aims at finding an optimal voltage 
regulation solution for host systems (or utility). Hence, the 
optimal value of the decision variable 𝒙 is the target, and the 
objective function of the host system does not consider the 
voltages inside each subsystem. 

For the lower-level problem, this paper models two possible 
operation objectives of subsystems. The first one is voltage 
regulation, and the second one is line loss minimization. We 
can model the operation objectives as 
 𝑓0GM𝑼W,0, 𝒚0Q =J 𝓌Y,0M𝒰Y,0 − 𝒰[Y,0Q

R

Y
 (3a) 

 𝑓0\M𝑼W,0, 𝒚0Q = 𝓮0D𝓰0𝓮0 + 𝓯0D𝓰0𝓯0 (3b) 
where 𝒚𝒊 = b𝓽D,0, 𝓽E,0, 𝓼G,0e , and 𝓽D,0 , 𝓽E,0 , 𝓼G,0  are the tap 
changers, capacitor banks, and the AERs in the subsystem i; 
𝓌Y,0 is the weight assigned to node j in subsystem i; 𝒰Y,0 and 
𝒰[Y,0 are the voltage amplitude and voltage reference of node j 
in subsystem i; 𝑼W,0 is the voltage amplitudes of the bus that 
connects the host system and the subsystem i; 𝓮0 and 𝓯0 are the 
real and imaginary vectors of the node voltage; 𝓰0 is the real 
part of the admittance matrix. The dimension of 𝑼W,0 indicates 
single-, two-, and three-phase cases, and the voltage phase 
angle unbalances of the interconnecting bus are neglected in 
this paper. However, the rest of the loads and systems is still 
unbalanced. Note that each subsystem can operate with only 
one objective at a timeslot.  

C. Constraints 
Power flow constraints are physically identical for both host 

and subsystems. Hence, this subsection does not differentiate 
the variables in the power flow constraints of the systems at 
different levels, and the variable notation inherits from the 
host system. In this paper, the power flow model in rectangu-
lar coordinates is applied to describe the nodal power balance 
constraints, and we can write 
 𝑽g = −𝒀ggi)𝒀gj𝑽j − 𝒀ggi)diagi)(𝑽g∗)𝑺g∗  (4) 

where index 𝐿 ∈ ℒ and 𝑆 ∈ 𝒮 in which ℒ stands for the set of 
load bus indexes and 𝒮 stands for the set of substation bus 
indexes; 𝑽g and 𝑽j are the voltage vectors of load and substa-
tion buses (interconnecting buses of subsystems), respectively; 
𝑺g is the apparent power vector representing ZIP loads and 
dispatchable power injections; diag(∙) is the operator to ex-
pand a vector to a diagonal matrix; 𝒀gg and 𝒀gj are submatri-
ces of the system admittance matrix Y. Note that 𝒀gg and 𝒀gj 
are functions of 𝒕D, 𝒕E. 

The node current 𝐼s at node k can be expressed as 
 

𝐼s = t
𝑆s
𝑉s
v
∗

=
𝐾x,s∗

𝑉s∗
+
𝑠G,s∗

𝑉s∗
+ 𝐾z,s∗

𝑉s
𝑈s
+ 𝐾{,s∗ 𝑉s (5) 

where 𝐾x,s , 𝐾z,s, and 𝐾{,s are ZIP parameters for the loads at 
node k, 𝑠G,s is the complex dispatchable power; 𝑉s  is the com-
plex node voltage at node k. The nonlinear relationship in (5) 
can be linearized using regional regression [20], and we have 

𝐼s =
𝑆s∗

𝑉s∗
≈ 𝐾},s𝑒s + 𝐾�,s𝑓s + 𝐾�,s𝑝G,s + 𝐾�,s𝑞G,s + 𝐶z,s (6) 

where 𝐾},s, 𝐾�,s , 𝐾�,s, 𝐾�,s, and 𝐶z,sare linearized parameters; 
𝑒s and 𝑓s  are real and imaginary parts of 𝑉s; 𝑝G,s and 𝑞G,s are 
dispatchable active and reactive powers at node k. 

Apart from the nodal power balance constraints, the 
branches with tap changeable transformers can be modeled 
using controllable sources as shown in Fig. 3, and we have 
 𝑰s = 𝑰0� − 𝑨0𝑰s� = 𝑰0� − 𝑨0𝒀s�(𝑨�𝑽s − 𝑽�) (7a) 
 𝑰� = 𝑰s� − 𝑰��W = 𝒀s�(𝑨�𝑽s − 𝑽�) − 𝑰��W  (7b) 
where 𝑰s and 𝑰� are the multiphase node currents of nodes k 
and m; 𝑰0�  and 𝑰��W  are the input and output currents of the 
transformer and they represent the rest of the network; 𝑰s� is 
the transformer current w.r.t node m; 𝑨� and 𝑨0 stand for the 
amplify matrices on node voltage and current; 𝒀s� is the line 
impedance of the transformer. The relationship in (7) can be 
re-organized to a matrix form, and we have  
 �𝑰s𝑰�

� = �−𝑨0𝒀s�𝑨� 𝑨0𝒀s�
𝒀s�𝑨� −𝒀s�

��𝑽s𝑽�
� + � 𝑰0�

−𝑰��W
� (8) 

where 𝑨� = 𝑨0D  for transformer in wye, closed-delta, and 
open-delta connections. 

 
Fig. 3.  One-line diagram of a multiphase transformer. 
 

According to [21], the effective regulator ratio 𝑎� for sin-
gle-phase tap changeable transformer is defined as  
 𝑎� = 1 ∓ 0.00625𝑡D,s (9) 
where 𝑡D,s is an integer and an example in 𝒕D which interlinks 
the tap positions to nodal power balance constraints (4). Note 
that the detailed relationship between 𝑎�  and 𝑨0D  can be 
founded in [21] based on the connectivity types of the trans-
former. For a real transformer, 𝒕D will always be bounded as 
 𝒕D ≤ 𝒕D ≤ 𝒕D  (10) 
where 𝒕D and 𝒕D represent the lower and upper bounds of 𝒕D. 

Similar to a single-phase transformer, the susceptance of a 
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switched capacitor bank at node k can be modeled as 
 𝐵E,s = 𝑡E,s𝑏E,s (11) 
where 𝐵E,s is the total susceptance offered by the capacitor 
bank; 𝑡E,s is an example in 𝒕E; 𝑏E,s is the incremental suscep-
tance of the capacitor bank. The capacitor bank tap 𝒕E is also 
constrained by 
 𝒕E ≤ 𝒕E ≤ 𝒕E (12) 
where 𝒕E and 𝒕E are the lower and upper bounds of 𝒕E.  

Additional to power flow constraints, the constraints on 
voltage amplitude also exist in lower- and upper-level prob-
lems, and we have 
 𝑼 ≤ 𝑼 ≤ 𝑼 (13) 
where 𝑼 is the vector of all node voltage amplitudes; 𝑼 and 𝑼 
are the upper and lower bounds of the voltage amplitudes. 
Remark that it is essential to include voltage amplitude con-
straints in the lower-level problems since the upper-level deci-
sion may cause infeasibilities of lower-level problems.  

In all systems, the dispatchable active power and reactive 
power of AERs are bounded by box constraints, yielding 
 𝒑G ≤ 𝒑G ≤ 𝒑G (14a) 
 𝒒G ≤ 𝒒G ≤ 𝒒G (14b) 
where 𝒔G = 𝒑G + 𝑗𝒒G. 

According to the problem formulation, the voltage regula-
tion problem considered in this paper is a bilevel 
mixed-integer nonlinear problem, and it is an NP-hard prob-
lem. In the next section, a hybrid method is proposed to solve 
the proposed voltage regulation problems. 

III. LOWER-LEVEL PROBLEM MODELING THROUGH 
DATA-DRIVEN APPROACH 

Compared with other neural network based methods, DNN 
is one of the most popular, fundamental, and flexible methods 
to model smooth nonlinear systems [22]. Hence, this paper 
proposes to use DNNs with different activation functions to 
model the behaviors of each lower-level problem with some 
relaxation.  

 
Fig. 4.  Lower-level system modeling. 

 

A. Deep Neural Network Representation 
Apart from direct computation using heuristic search ap-

proaches, one intuitive way of solving bilevel problems is to 
convert the bilevel formulation into a single-level problem. A 
successful single-level problem conversion relies on the accu-
racy and complexity of the lower-level problem. Apart from 
traditional KKT conditions or primal-dual approaches, a 
promising method is to use a deep neural network to model the 
behavior of the lower-level system; see Fig. 4.  

With a constant terminal voltage vector 𝑼W,0, the ith low-
er-level problem can be solved using existing solvers effec-

tively. Consider the lower-level problem as a system with in-
put 𝑼W,0 and output 𝜶0, we can define a function to represent 
such relationships between input and output, and we write as 
 𝜶0 = �

𝒑W,0
𝒒W,0� = 𝒗0(𝑼W,0) (15) 

where 𝒗0(∙) represents the relationship described by (1c)-(1e), 
𝒑W,0 and 𝒒W,0 are the active and reactive power vectors at the 
terminal buses.  

In this paper, the function 𝑣0(∙) is approximated using a set 
of parametrized functions. The input training data 𝓧 of the 
DNN is a collection of the random sampled 𝑼W,0, where the lth 
sample 𝔁£ = 𝑼W,0,£  and 𝓧 = b𝔁)D, 𝔁RD,…𝔁£D,… ,𝔁+¤

D eD . The la-
beled output data 𝓨 consists of the power injection 𝜶0,£ from 
the ith subsystem under given 𝔁0, we can write 
 𝓨 = b𝜶0,)D , 𝜶0,RD ,… ,𝜶0,£D , … , 𝜶0,+¤

D eD (16) 
where 𝑁§ is the number of training data pairs. Now we can 
construct the DNN considering a fully connected neural net-
work with 𝑁g hidden layers. Each layer follows a specific ac-
tivation function denoted as 𝜎(∙), and the network ends with 
an output layer that uses a linear activation function. The ap-
proximated power injection 𝜶0 can be expressed as  
 𝒛) = 𝔁£𝑾) + 𝒃) (17) 
 𝒛¬­ = 𝒛­i)𝑾­ + 𝒃­ (18) 
 𝒛­ = 𝜎(𝒛¬­) (19) 
 𝜶®0,£ = 𝒛+¯𝑾+¯°) + 𝒃+¯°) (20) 
where 𝜶®0,£ is the approximated power injection w.r.t input 𝔁£; 
𝑾­ and 𝒃­ for h = 1, …, ND are the weight and bias of all 
hidden layers; 𝑾+¯°) and 𝒃+¯°) are the weight and bias of 
the output layer. All the weights and biases are selected to 
minimize the squared L2-norm of the difference between la-
beled power injections and the approximated injections, 
yielding 
 [𝑾­,𝒃­] = argmin

𝑾±,𝒃±

1
𝑁§
²𝓨³ −𝓨²

R

R
	 (21) 

where 𝓨³ = b𝜶®0,)D , 𝜶®0,RD ,… ,𝜶®0,£D , … , 𝜶®0,+¤
D eD  and ‖∙‖R  is the 

L2-norm operator. By replacing the lower-level problem using 
constraints (17) – (20), the proposed bilevel voltage regulation 
problem can be converted to a single-level problem. 

B. Activation Function 𝜎(∙) 
The selection of activation function is the key to DNN 

based lower-level problem reformulation. The most popular 
activation function is the rectified linear unit (ReLU), which is 
the simplest activation function that can be represented by 
mixed-integer linear constraints in an exact way [14]. Com-
pared with ReLU, other nonlinear and smooth activation func-
tions such as tanh(∙), sigmoid(∙), and Gaussian(∙) can also be 
selected to form a DNN model. However, the nonlinear and 
smooth activation functions do not have exact mixed integer 
representations.  

Clearly, the selection of the activation functions affects the 
mathematical model in the final single-level formulation. To 
thoroughly study the impact of the activation functions in 
solving the bilevel voltage regulation problem, the ReLU ac-
tivation function and the tanh(∙) activation function are select-

𝑓𝑖#𝑼𝑡,𝑖 , 𝒚𝑖( 
Objective

ith subsystem

)
𝒑𝑡,𝑖
𝒒𝑡,𝑖 , = 𝒗𝑖(𝑼𝑡,𝑖) 

𝑼𝑡,𝑖 𝒑𝑡,𝑖 
𝒒𝑡,𝑖 

Training

Ut,i pt,i

qt,i
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ed in this paper to build the DNN based models. Mathemati-
cally, the ReLU function is defined as 
 σ�(𝓍) = max(𝓍, 0) (22) 
where max(𝓍, 0) returns a larger value between input 𝓍 and 0. 
The ReLU function can be considered as a representative of 
all the other activation functions, which can be converted to 
mixed-integer linear constraints. In comparison, the tanh(∙) 
function represents the nonlinear smooth functions, and it can 
be expressed as 
 σD(𝓍) =

𝑒𝓍 − 𝑒i𝓍

𝑒𝓍 + 𝑒i𝓍  (23) 

Examples of the ReLU and tanh(∙) are plotted in Fig. 5 for 
comparison purposes. The detailed process of converting the 
ReLU function into mixed-integer linear constraints is pro-
vided in Appendix A. 

  
(a) (b) 

Fig. 5.  Activation functions in DNN. (a) ReLU function; (b) tanh(∙) function. 
 

Note that the authors do compare the performance between 
tanh(∙) function with other popular activation functions such as 
sigmoid(∙), and Gaussian(∙). Since the prediction accuracies 
of sigmoid(∙)  and Gaussian(∙)  are slightly lower than or 
equivalent to tanh(∙), we select tanh(∙) as a representative. 

C. Training Data Generation 
Training data generation strategy is crucial to DNN model 

training. Unsuccessful training data set often leads to more 
complicated network structures, lower prediction accuracy, 
and longer training time. Remark that this paper assumes that 
the subsystem operators have sufficient information about 
their system to generate training data. Either subsystems or 
host systems can do the model training using the generated 
data. 

To reduce the complexity of the training data, the voltage 
constraints (13) in the lower-level problem are relaxed as 
 𝑼 − ∆𝑢 ≤ 𝑼 ≤ 𝑼 + ∆𝑢 (24) 
 ∆𝑢 > 0 and ∆𝑢 ≥ 0 
where ∆𝑢  and ∆𝑢  are scalar slack variables. The objective 
function of the subsystem is adjusted correspondingly as 
 𝑓À0M𝑼W,0, 𝒚0Q = 𝑓0M𝑼W,0, 𝒚0Q +ℳg(∆𝑢 + ∆𝑢) (25) 
where 𝑓0M𝑼W,0, 𝒚0Q is the original objective function for low-
er-level problem shown in (3) and ℳg is a big number. Note 
that the voltage constraint relaxation proposed in (24)-(25) can 
reduce the data generating time significantly. 

In addition, the proposed relaxation eliminates the require-
ment of an additional DNN model for feasibility classification. 
As mentioned in Section II, improper host system operation 
often causes the infeasibility of the lower-level problem. 
Without the relaxation (24)-(25), a feasibility classification 
model is necessary to avoid the bilevel problem being trapped 

in the infeasible region during the problem-solving process. 
An extra classification model results in a more complex prob-
lem and increases the training time and training data. Alt-
hough (24)-(25) are straightforward relaxation ideas, it is crit-
ical for the DNN modeling approach with power system ap-
plications. 

D. Lower-Level Problem Update Frequency 
To ensure the optimality and accuracy of the proposed bi-

level operation, the DNN model needs to be updated in re-
sponse to the system events. The target update frequency can 
be designed according to the operation strategies of the host 
system (minutes, hourly, or day-ahead timeframes). The 
trained DNN model will be updated during every dispatch if 
necessary. For example, in a 15-mins dispatch frequency, the 
DNN model can be updated every 15-mins to handle the sig-
nificant system topology changes or loads changes. 

Similar to the voltage regulation problem for centralized 
operated distribution systems [4]-[6], the proposed voltage 
regulation operation cannot cover all unexpected system 
events such as faults. Hence, the DNN model does not need to 
be able to predict the system behavior accurately under unex-
pected events. A robust bilevel formulation might be able to 
provide certain performance guarantees for unexpected events. 
However, the robust bilevel voltage regulation is beyond the 
scope of this paper. 

IV. UPPER-LEVEL PROBLEM REFORMULATION AND 
BENCHMARK 

After converting the lower-level problem into a DNN model, 
the bilevel problem can be reformulated as a single-level 
voltage regulation problem, while the subsystems are consid-
ered as multiphase nonlinear voltage-dependent loads. Differ-
ent DNN models create different types of single-level prob-
lems.  

In Section III, the lower-level problem has been relaxed for 
DNN training data generation, and the upper-level problem 
needs to be adjusted accordingly. To limit the error of the re-
laxed problem within an acceptable range, additional con-
straints are added in the upper-level problem as 
 ∆𝑢 ≤ ℳÂ	and	∆𝑢 ≤ ℳÂ (26) 
where ℳÂ is a small number that controls the exactness of 
lower-level voltage limit constraints. ℳÂ can be set to zero to 
achieve an exact relaxation of the original bilevel problem. 
The overall solution algorithm is concluded in Algorithm 1. 
 
Algorithm 1 DNN Model based Bilevel Problem 
Identify subsystem problem (1d)-(1f) and chain variables 𝜶0  and 𝜷0  for all i; 
Select activation function from DNN model;  
for i = 1: N: 
 Relax subsystem problem using (24)-(25) 
 Generate 𝓧 randomly and compute 𝓨 using solver (i.e. Gurobi, IPOPT); 
 Training DNN model using data pair (𝓧,	𝓨); 
 Building ith DNN model using (17)-(20); 
end for 
Form single-level problem by replacing (1d)-(1f) by DNN models; 
Add constraint (26) to single-level problem; 
Solving single-level problem using solver (i.e. Gurobi, IPOPT).  
 

According to Algorithm 1, each subsystem can train its 
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DNN model separately and provide the encoded DNN model 
to the host system without providing network and control in-
formation. Besides, the subsystem training processes are not 
coupled with other subsystems. Hence, the training processes 
can be fully distributed or parallel to reduce the training time. 

For N subsystems, each subsystem can learn their system by 
themselves. After the N DNN models are well-trained, the 
operator of each subsystem can send the model to the host 
system operator, and the operator of the host system will solve 
the DNN-based single-level problem.  

It is worth pointing out that each DNN model does not need 
to synchronize with other subsystems during training. The 
DNN just represents the behaviors of each subsystem. The 
synchronization between each subsystem and the host system 
will be done during the solving process of the upper-level 
problem. 

A. Mixed-Integer Quadratic Programming Formulation 
Since the ReLU function enabled DNN model can be for-

mulated as mixed-integer linear constraints, the single-level 
voltage regulation problem becomes a mixed-integer pro-
gramming (MIP) problem. Due to the nonlinear term 
𝑨0𝒀s�𝑨�𝑽s in the transformer model shown in (8), the high-
est polynomial degree is three. 

The problem with the MIP components and degree three 
polynomials cannot be solved efficiently by commercial solv-
ers. Hence, the integer variable 𝒕D is modeled by a set of bi-
nary variables, and the third-degree polynomial term can be 
exactly relaxed as a set of mixed-integer constraints. The de-
tailed process of relaxation process can be found in Appendix 
B. However, the proposed binary variable representation of 
the transformer taps cannot be applied to closed-delta and 
open-delta transformers with phase-independent taps. Hence, 
this paper only considers multiphase tap-changeable trans-
formers in the wyn connection and the open-delta connection 
with phase-dependent taps.  

Finally, the single-level voltage regulation problem be-
comes a problem with mixed-integer linear constraints and 
quadratic cost that can be computed by many existing com-
mercially available solvers. 

B. Nonlinear Programming Formulation 
Different from the ReLU-based DNN model, the tanh(∙) 

enabled DNN model is established by smooth functions that 
cannot be represented by mixed integer constraints exactly. 
Hence, we formulate the tanh(∙) enabled DNN model as a non-
linear constraint set.  

Due to the nonlinearity of tanh(∙), introducing integer varia-
bles such as 𝒕D  and 𝒕E  increase the complexity of the sin-
gle-level problem. Therefore, the integer variables (tap posi-
tions) have been relaxed to continuous variables, and the final 
single-level problem becomes a pure nonlinear problem with-
out any integer variables. Although the global optimum of 
nonconvex problems cannot be guaranteed, different 
off-the-shelf solvers can still be applied to compute the local 
optimal solution. In this paper, the final nonlinear problems 
are solved effectively using IPOPT [23]. After solving the 

nonlinear single-level problem, quantization processes will be 
applied to converting the tap position variables to integers. 

C. Heuristic Searching Benchmark 
Although KKT condition and primal-dual approaches are 

widely used methods for converting bilevel formulations into 
single-level problems. The complementary constraint in the 
KKT condition of the lower-level problem may include inte-
ger variables and high degree nonlinear constraints. Modeling 
the lower-level problem using the KKT condition can neither 
ensure the optimality of the lower-level problem nor reduce 
the complexity of this original problem. Hence, the KKT con-
dition method is not selected as a benchmark to compare with 
the proposed DNN based method. 

 
Algorithm 2 Heuristic Searching Method  
for particle j = 1,…, J: 
 Initialize 𝒙Y = b𝒕D,Y, 𝒕E,Y, 𝒔G,Ye for jth particle and particle best position; 
 Solve (1b) using 𝒙Y and identify 𝑼W,0 for all subsystems; 
 Solve low-level problems (1d)-(1f) with 𝑼W,0 and compute [𝒑W,0, 𝒒W,0]; 
 Update 𝑼W,0 with 𝒙Y and [𝒑W,0, 𝒒W,0]; 
 Repeat until changes of 𝑼W,0 is small; 
 Evaluate cost (2) and update the global best position. 
 Initialize the particle’s velocity vj; 
end for 
while termination criterion is not met do: 
 for particle j = 1,…, J: 
  Update velocity vj; 
  Update position 𝒙Y; 
  Repeat to compute a stable b𝒑W,0, 𝒒W,0e with updated 𝒙Y 
  Update particle’s best position; 
  Update global best position;  
 end for 

 
To evaluate the performance of the proposed DNN based 

methods for solving bilevel problems, a heuristic searching 
method is applied to solve the proposed bilevel problem di-
rectly. The lower-level problem (with upper-level constraints 
and fixed decision variables) will be solved by commercially 
available solvers during each searching step, and the up-
per-level problem will be solved using particle swarm optimi-
zation (PSO). The algorithm for using PSO to solve the pro-
posed bilevel problem is provided in Algorithm 2. 

V. NUMERICAL EXAMPLES 
In this section, a simple distribution system shown in Fig.1 

is first investigated to illustrate the difference between the 
global voltage regulation problem, local voltage regulation, 
and bilevel voltage regulation problem. Later, comprehensive 
numerical studies using the IEEE 123-bus test system and a 
realistic distribution system in Iowa [24] are presented to 
compare the proposed data-driven modeling approach with the 
existing bilevel problem-solving method.  

A. Simple Example of Voltage Regulation Problem 
The system topology of the first example is shown in Fig. 1. 

Two DERs are installed at bus 2 and bus 4, respectively. The 
upper and lower bounds for the active power of each DER are 
0.3 p.u. and -0.3 p.u. The upper and lower bounds for the reac-
tive power are 0.1 p.u. and -0.1 p.u. The substation voltage is 
set to 1.02 p.u. and the line impedance is 0.002+j0.04 p.u. The 
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loads assigned to all four buses are 0.2+j0.05 p.u.  
Four different voltage regulation scenarios are computed in 

this example. This first scenario is the base case in which the 
outputs of DERs are zero. The rest three scenarios are the 
global regulation, the local regulation, and the bilevel voltage 
regulation. In the global problem, the host system operator 
controls two DERs to regulate all four bus voltage amplitudes 
to 1 p.u. In the local regulation problem, the host system oper-
ation controls the DER 1 to regulate the voltages of buses 1 
and 2 to 1 p.u. The subsystem operator controls the DER 2 to 
minimize the loss of the subsystem consisted of buses 3 and 4. 
The subsystem operator does not communicate with the host 
system operator in the localized scenario.  

In the last scenario, the bilevel problem is studied. The 
subsystem still minimizes its line loss, and the host system 
operator knows the strategy of the subsystem. The voltage 
profiles under four different scenarios are presented in Fig. 6, 
and the corresponding dispatch solutions and the system losses 
are concluded in Table I. 

 
Fig. 6. Voltage profiles for four management scenarios. 

 
TABLE I 

DISPATCH SOLUTIONS AND SYSTEM LOSSES FOR FOUR-BUS SYSTEM 
 Base Case Global Local Bilevel 

DER 1 [p.u.] 0 + j0 0.3 + j0.076 0.3 + j0.029 0.3 + j0.1 
DER 2 [p.u.] 0 + j0 0.089 – j0.1 – 0.2 – j0.05 – 0.2 – j0.05 
Loss [p.u.] 0.0026 0.0056 0.0028 0.0029 

 
According to the voltage profiles shown in Fig. 6, different 

management structures lead to different dispatch solutions. 
The global operation results in the smallest voltage derivation 
and largest line loss. Compared with the fully localized opera-
tion, the bilevel voltage regulation balances the minimizations 
of voltage deviation and the line losses in the subsystem. 
Hence, voltage regulation problems with the bilevel structure 
are different from traditional voltage regulation problems. 

 

Fig. 7.  One-line diagram of the IEEE123-Iowa240 joint system that is under 
investigation. Two Iowa240 systems are denoted as MG_1 and MG_2. 

 

B. IEEE 123-bus System with Single Microgrid 
The test system topologies of the second and third examples 

are plotted in Fig. 7, in which the Iowa distribution systems 
are considered as a self-managed microgrid (denoted as MG_1 
and MG_2) and attached to the host IEEE 123-bus test system. 
To avoid host system overloading, the feeder C from the orig-
inal Iowa distribution system is removed, and the total loads of 
the Iowa system are reduced to 430.45 kW and 154.06 kVar. 
Besides, the line lengths in the Iowa system are extended to 
create sufficient voltage deviations in the microgrids. The ac-
tive energy resources managed by the Iowa system are located 
at buses 1009, 2011, and 2043. Two Iowa systems with iden-
tical configurations are connected to the IEEE 123-bus system 
at buses 48 and 78. The original loads at buses 48 and 78 are 
removed from the IEEE 123-bus system. The information 
about other controllable devices such as tap-changeable trans-
formers, capacitor banks are collected and presented in Table 
II. The voltage weights for both host and subsystems are set to 
1 in the following numerical examples. 

TABLE II 
SYSTEM SETUPS FOR JOINT DISTRIBUTION SYSTEM 

System No. Bus Type (Total) Bounds 

IEEE 123 

1-6 

13.abc, 22.b, 
48.b, 56.abc, 

100.abc, 
151.abc 

DER (14) ±100 kW±100 kVar 

7-9 
160.a - 160r.a,  
160.b - 160r.b,  
160.c - 160r.c 

Tap (3) 

0.9325 - 1.0675 

10-12 
25.a - 25r.a,  
25.c - 25r.c,  

9.a - 9r.a 
Tap (3) 

13-15 36.a, 29.b, 18.c Cap (3) 0 - 0.2 p.u. 

Iowa 240 16-18 
1009.abc, 
2011.abc, 
2043.abc 

DER (9) ±100 kW±100 kVar 

19-21 2038.abc Cap (3) 0 - 0.2 p.u. 
 

In this example, the joint system is simplified to enable the 
comparison between different algorithms for bilevel problems. 
To limit the complexity of the target system, the MG_2 mi-
crogrid is disconnected from the host system and the capacitor 
banks in the MG_1 are disabled. Only No. 7, 10, and 12 
transformer taps in the host IEEE 123-bus system are enabled. 

As described in Section II, the MG_1 only controls its 
AERs to minimize its voltage deviation (3a) without consid-
ering the impact on the host system. Meanwhile, the host sys-
tem (IEEE 123-bus system) operates its transformers, capaci-
tor banks, and AERs to minimize the voltage deviation of the 
host system. To study the effectiveness of the proposed ap-
proaches, this bilevel operation problem is solved using the 
DNN based approaches as well as a PSO-based heuristic 
searching approach. 

The DNN structure applied to model the microgrid voltage 
regulation problem is plotted in Fig. 8. According to the 
structure of the DNN, the number of hidden layers is one, and 
the number of neurons per hidden layer is set to 100. Mean-
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while, the number of training data pairs for training the DNN 
networks is 1000. The total data generation time is 45.48 s for 
both DNN models. Other information related to the training 
process is provided in Table III. 

TABLE III 
TRAINING PROCESS OF IEEE 123-BUS SYSTEM WITH SINGLE MICROGRID 
σ(∙) No. of Data Generation time Training time MSE [%] 

ReLU 1000 45.48 [s] 161 [s] 9.41e-4 
tanh(·) 1000 45.48 [s] 170 [s] 1.16e-3 

 

 
Fig. 8.  Structure of DNN applied in this paper. 

 

 
Fig. 9.  Example root mean square error (RMSE) and training objective (loss) 
function value during the training process of tanh(∙). 

 

  
(a) (b) 

Fig. 10.  Prediction results of different DNN models after normalization. (a) 
ReLU based DNN model. (b) tanh(∙) based DNN model. 

 
TABLE IV 

ROOT MEAN SQUARE ERROR COMPARISON BETWEEN DIFFERENT MACHINE 
LEARNING METHODS 

 DNN SVM Gaussian Kernel 
RMSE 0.108 0.253 0.145 

 
The training process of the tanh(∙) based DNN model for 

MG_1 is shown in Fig. 9. According to Fig. 9, the training 
objective function value reduces to 1.16×10-3 at the end of the 
training. The ending root-mean-square error (RMSE) of the 
training data is around 0.2. The graphic examples to show the 
accuracies of the DNN model are presented in Fig. 10. Alt-
hough two different DNN models are trained by the same data 
set, the performances of the DNN models are different from 
each other. The worst prediction of the ReLU based DNN 
model occurs at the active power of phase b. In comparison, 
the worst prediction of the tanh(∙) based DNN model is the 

active power at phase a. However, the prediction errors of 
both DNN models are acceptable for lower-level problem 
modeling. The DNN model is also compared with other ma-
chine learning methods such as support vector machine 
(SVM) and Gaussian Kernel regression, as shown in Table IV. 
According to the comparison results, the DNN model has the 
highest accuracy in the active power prediction at phase b of 
the microgrid.  

Remark that the prediction error of both the DNN model 
can be further reduced by complicating the network structure 
and increasing the number of neurons, which will unfortu-
nately complicate the single-level problems.  

For comparison and benchmarking purposes, we have ap-
plied four different methods to solve the proposed problem. 
The first three methods are two DNN based methods and the 
heuristic searching method that solve the voltage regulation 
problem with bilevel structure. The fourth method solves a 
global voltage regulation problem for using PSO only since 
the objectives for both systems are identical. After solving the 
bilevel voltage regulation problem, the corresponding voltage 
profiles are plotted in Fig. 11. All four methods can fix the 
voltage problem in the joint system. According to Fig. 11, the 
voltage profiles computed from DNN based methods are al-
most overlapped with the centralized solution. However, the 
voltage profile of the heuristic method is not as good as the 
DNN based methods. To compare the performances of differ-
ent methods numerically, the optimality data and the corre-
sponding solution information are concluded in Table V. 

 
Fig. 11.  Voltage profile comparison of host IEEE system computed by DNN 
model approach, heuristic searching, and centralized operation. 

 
TABLE V 

SOLUTION OF IEEE 123-BUS SYSTEM WITH SINGLE MICROGRID 
 DNN(ReLU) DNN(tanh) Heuristic Central 

Lower-level solver Gurobi(QP) Gurobi(QP) IPOPT(NP) 
PSO Upper-level solver Gurobi 

(MIQP) IPOPT(NP) PSO(NP) 

𝜀Â1 [%] 0.132 0.24 - - 
ObjectiveL (3a) 0.0036 0.0036 0.0157 0.0032 
ObjectiveU (2) 0.06 0.06 0.0705 0.0596 

‖𝑼‖RR 0.0635 0.0635 0.0862 0.0628 
Loss Reduction 25.9% 25.7% 29.6% 22.5% 

Solution Time [s] 2178.4 31.72 2499.9 2424.2 
Remark 5% gap - Max Iteration - 

 
According to Table V, different DNN models can generate 

similar solutions for the bilevel voltage regulation problem 
and the voltage errors are negligible. However, the ReLU 

 
1 𝜀Â is the maximum node voltage different between the linear power flow 

and the nonlinear power flow results computed from OpenDSS. 
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based DNN model requires 36.3 minutes to compute the solu-
tion with 5% gaps, which is almost 69 times longer than the 
tanh(∙) based DNN model. The performance of the heuristic 
method is even worse, which takes 42 minutes to reach a 
non-optimal solution. As expected, the voltage deviation of 
the centralized operation is the smallest one and different from 
the bilevel operated system. Although loss minimization is not 
the operational objective in this example, the regulation opera-
tion also affects the system loss reduction. According to the 
system losses results in Table V, the global voltage regulation 
has a smaller loss reduction compared with bilevel operations. 

Another advantage of the DNN based method is that the 
upper-level operator does not require any details of the sub-
systems during the bilevel problem-solving process from the 
host system perspective. The only information they need is the 
DNN encoded model. Hence the privacy and security between 
different systems can be enhanced. 

C. IEEE 123-bus System with Multiple Microgrids 
In the third example, the MG_2 microgrid is reconnected to 

the host IEEE 123-bus system at bus 78, and all the trans-
former taps listed in Table I are controllable. In addition, the 
capacitor banks in both microgrids are activated. The total 
node number in the joint system increased to 910. Different 
from scenario one, the objective of the MG_2 is minimizing 
its system line losses (3b), and the objective function of the 
MG_1 is still to minimize its own voltage deviation (3a). The 
DNN structures for both microgrids are identical to the one 
shown in Fig. 8. Note that the ReLU based DNN method and 
the heuristic searching method are not selected to solve the 
problem in this example since both methods take days to solve 
the proposed bilevel problem.  

Based on the proposed tanh(∙) based DNN method, the data 
generation and training time of two microgrids are shown in 
Table VI. Based on the results shown in Table VI, the data 
generation time with capacitor banks is longer than the second 
example since the lower-level problem shifts from quadratic 
programming problems to MIQP problems. 

TABLE VI 
TRAINING PROCESS OF IEEE 123-BUS SYSTEM WITH TWO MICROGRID 
 No. of Data Generation time Training time MSE [%] 

MG_1 1000 533.77 [s] 167 [s] 1.43E-03 
MG_2 1000 286.90 [s] 169 [s] 6.80E-04 

 
TABLE VII 

SOLUTION OF IEEE 123-BUS SYSTEM WITH TWO MICROGRID 

 Lower-level 
solver 

Upper-level 
solver 𝜀Â [%] Solution Time 

[s] 

 Gurobi 
(MIQP) IPOPT(NP) 0.087 8.18 

 ObjectiveL1 

(3a) 
ObjectiveL2 

(3b) 
ObjectiveU 

(2) ‖𝑼‖RR 

Before 
[p.u.] 0.109 0.0122 0.2512 0.4693 

After [p.u.] 0.0057 0.0023 0.0194 0.0343 
 

 
Fig. 12.  voltage profile of the host IEEE 123 system before and after optimi-
zation.  
 

The solutions to the bilevel problem with two microgrids 
are shown in Table VII. According to Table VII, the computa-
tional time of the DNN based approach is 8.18 s, which is ac-
ceptable for all near real-time operations. Besides, the voltage 
deviation of the MG_1 is reduced by 94.7%, and the line loss 
of the MG_2 is reduced from 12.28 kW to 2.3 kW. They are 
satisfied with their operational objectives. The voltage devia-
tion of the host IEEE 123-bus system is reduced by 92.28%, 
which is also better than the second example since more 
transformer taps are available this time. A voltage profile 
comparison study between the pre-optimization and 
post-optimization is shown in Fig. 12. According to Fig. 12, 
the voltages of the host system are well-controlled around 1.0 
p.u. compared with the unregulated condition. The maximum 
voltage profile error generated by linearization and quantiza-
tion processes is only 0.087%. 

VI. CONCLUSION 
This paper explores the potential of using DNN based mod-

eling approaches to solve bilevel optimization problems in 
distribution systems. Compared with the existing methods, the 
DNN based model can be applied to reformulate subproblems 
as constraints and integrated into upper-level problems. Alt-
hough additional time is spent in data generation and training 
processes, the DNN based model is reusable and more secure 
than other existing methods because of its non-disclosure fea-
tures. 

Because of the complexity of the MIP problem, the tanh(∙) 
based DNN model is more suitable in solving the voltage reg-
ulation problems than the ReLU based DNN model. However, 
it is worth pointing out that the tanh(∙) based DNN model may 
cause the final single-level problem trapped in a local mini-
mum. 

According to the numerical study in this paper, the tanh(∙) 
based DNN model can solve the bilevel voltage regulation 
problem with fast speed and excellent optimality. Remark that 
the proposed DNN based approach can also be applied to oth-
er bilevel problems with different management objectives. 

APPENDIX A 

MILP MODEL OF TRANSFORMER AND CAPACITOR 
According to the transformer model (8) and the capacitor 

bank model (11), the system admittance matrix Y becomes a 
function of tap change positions. Hence, multiplications be-
tween integer and node voltage can be found in the power 
flow formulations. In the following reformulation process, the 
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tap positions of the transformer and the capacitor bank are 
generalized as integer variable t. The multiplication between 
the real part of a node voltage e and integer variable t is se-
lected for illustration.  

To simplify the nonlinear constraints to mixed integer linear 
constraints, the integer tap position 𝑡 with power 𝓂 can be 
modeled by a set of binary variables as 
 𝑡𝓂 =J 𝑡𝒿𝓂𝓀𝒿

+É

𝒿
 (A1) 

 J 𝓀𝒿
+É

𝒿
= 1	𝑎𝑛𝑑	𝓀𝒿 ∈ {0,1} (A2) 

where 𝑡𝒿 is the 𝒿th integer constant in the set of t, 𝑁z is the size 
of the set; 𝓀𝒿 is a binary variable; 𝑚 is a continuous variable 

in ℝ. After converting integer 𝑡𝒿𝓂 to a set of binaries Î𝓀𝒿Ï)
+É, 

the multiplication between 𝓀𝒿  and ℯ can be modeled by 𝜇𝒿 
using big-M as 
 ℯ ≤ 𝜇𝒿 ≤ ℯ (A3) 
 ℯ𝑘𝒿 ≤ 𝜇𝒿 ≤ ℯ𝑘𝒿 (A4) 
 ℯ − ℯM1 − 𝑘𝒿Q ≤ 𝜇𝒿 ≤ ℯ − ℯM1 − 𝑘𝒿Q (A5) 
where ℯ and ℯ are the upper and lower bound of ℯ; 𝜇𝒿 repre-
sents 𝑘𝒿ℯ. In this paper, the upper and lower bounds of ℯ and 
𝒻 are ±1.5 p.u. 

APPENDIX B 

MILP ENCODING OF RELU BASED DNN MODEL 
A binary vector 𝒂­ represents the activation status of ReLU 

at ℎth hidden layer, and 𝑎­,𝓃 is the status of the 𝓃th neuron at 
ℎth layer. Assume an element �̂�­,𝓃 in 𝒛¬­ can be bounded by 
𝑍­,𝓃 and 𝑍­,𝓃, the relationship shown in (22) can be repre-
sented as [14] 
 𝑧­,𝓃 ≤ �̂�­,𝓃 − 𝑍­,𝓃(1 − 𝑎­,𝓃) (B1) 
 𝑧­,𝓃 ≥ �̂�­,𝓃 (B2) 
 𝑧­,𝓃 ≤ 𝑍­,𝓃𝑎­,𝓃 (B3) 
 𝑧­,𝓃 ≥ 0 (B4) 
 𝑎­,𝓃 ∈ {0,1} (B5) 
According to (B1)-(B5), the nonlinear relationship shown in 
(22) can be converted to a set of mixed-integer linear con-
straints in an exact manner. Hence, the entire DNN-based 
model can be rewritten as a large set of mixed-integer linear 
constraints. 
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