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Abstract—Efficient outage location is critical to enhancing the1

resilience of power distribution systems. However, accurate out-2

age location requires combining massive evidence received from3

diverse data sources, including smart meter (SM) last gasp sig-4

nals, customer trouble calls, social media messages, weather data,5

vegetation information, and physical parameters of the network.6

This is a computationally complex task due to the high dimen-7

sionality of data in distribution grids. In this paper, we propose8

a multi-source data fusion approach to locate outage events in9

partially observable distribution systems using Bayesian networks10

(BNs). A novel aspect of the proposed approach is that it takes11

multi-source evidence and the complex structure of distribution12

systems into account using a probabilistic graphical method. Our13

method can radically reduce the computational complexity of14

outage location inference in high-dimensional spaces. The graph-15

ical structure of the proposed BN is established based on the16

network’s topology and the causal relationship between random17

variables, such as the states of branches/customers and evidence.18

Utilizing this graphical model, accurate outage locations are19

obtained by leveraging a Gibbs sampling (GS) method, to infer20

the probabilities of de-energization for all branches. Compared21

with commonly-used exact inference methods that have exponen-22

tial complexity in the size of the BN, GS quantifies the target23

conditional probability distributions in a timely manner. A case24

study of several real-world distribution systems is presented to25

validate the proposed method.26

Index Terms—Approximate inference, Bayesian networks,27

data fusion, outage location, partially observable distribution28

system.29

I. INTRODUCTION30

FREQUENT power outages are becoming a critical issue31

in the U.S. In 2018, the Department of Energy estimates32

that outages are costing the U.S. economy $150 billion annu-33

ally [1]. 1.9 million customers in Midwest were affected by34

1.4 million outages between August 10 and 13, 2020 [2].35
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Outage detection in distribution grids is an immediate and 36

indispensable task after service disruptions, without which util- 37

ities cannot obtain needed situational awareness for initiating 38

repair and restoration. This suggests an urgent need of efficient 39

approaches to shorten the time of lateral-level outage loca- 40

tion. Traditionally, outage location inference has been done 41

based on manual outage mapping, which in addition to volt- 42

age and current components measured only at the substations, 43

has mainly depended on customers’ trouble calls. However, 44

trouble calls alone are not a reliable source for outage loca- 45

tion inference. It is estimated that only one-third of customers 46

report the events in the first hour of outages, which might pro- 47

long the location determination process [3]. Also, customers 48

might contact utilities due to temporary and individual prob- 49

lems rather than system-level outage events, which can mislead 50

the location process and result in additional truck rolls to verify 51

power outages. 52

One way of avoiding these problems is to rely on advanced 53

metering infrastructure (AMI)-based techniques, which can 54

send outage notifications at the grid-edge by leveraging the 55

bidirectional communication function of smart meters (SMs). 56

Researchers have dedicated great efforts to this topic. In [4], 57

a hierarchical generative model is proposed that employs SM 58

error count measurements to detect anomalies. In [5], a multi- 59

label support vector machine model is developed that utilizes 60

the state of customers’ SMs to identify states of distribution 61

lines. In [6], a two-stage method is presented to detect non- 62

technical losses and outage events using real-time consumption 63

data from SMs. In [7], a framework that combines the use of 64

optimally deployed power flow sensors and load forecasts is 65

proposed to detect outage events. In [8], a hypothesis testing- 66

based outage location method is developed that combines the 67

power flow measurements and SM-based load forecasts of the 68

nodes. In [9], by using data from SMs and fault indicators, a 69

multiple-hypothesis method with an extended protection tree is 70

presented to detect a fault and identify the activated protective 71

devices. The main challenge is that most AMI-based meth- 72

ods require full observability for distribution grids, i.e., SM 73

installation for all customers. This assumption is not neces- 74

sarily applicable to practical distribution systems, mostly due 75

to utilities’ budgetary limitations. To perform outage detection 76

in partially observable systems, we have proposed a generative 77

adversarial network (GAN)-based method to efficiently iden- 78

tify outage region [10]. Although this method is guaranteed to 79
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TABLE I
AVAILABLE LITERATURE ON DATA-DRIVEN OUTAGE DETECTION IN DISTRIBUTION SYSTEMS

capture the maximum amount of information on outage loca-80

tion, it does not provide granular outage location estimation81

at the branch level due to the limitations of the single data82

source. This issue is further exacerbated considering that SM83

signal communication to the utilities’ data centers can fail due84

to hardware/software malfunctions and tampering [4].85

Rather than using SM data, an alternative solution is to86

utilize other grid-independent data sources to identify outage87

events in real-time. In [11], an AMI-based polling method is88

proposed to enhance outage detection. In [12], a distributed89

outage detection algorithm is proposed with the primary90

objective of addressing scalability and communication bot-91

tleneck concerns. In [13], weather information data is used92

to detect outages in overhead distribution systems employ-93

ing an ensemble learning approach. In [14], a data-driven94

outage identification approach is proposed that extracts tex-95

tural and spatial information from social media. In [15], a96

mixed-integer linear program (MILP) is formulated to identify97

the topology under both outage and normal operating con-98

ditions using line flow measurements, forecasted load data,99

and ping measurements from a limited set of SMs. In [16],100

a modified approach of Kleinberg’s burst detection algorithm101

is proposed to ensure the prompt detection of power outages.102

In [17], a dynamic programming-based minimum cost sen-103

sor placement solution is proposed for outage detection in104

distribution systems. In [18], the classical distribution system105

state estimation tool is extended to infer the status of switches.106

Nonetheless, the considerable uncertainty of these data sources107

can lead to erroneous outage location and additional costs for108

utilities. For example, only a part of SM last gasp signals109

can be delivered to the utility’s data center due to hard-110

ware and software issues. Thus, to handle the limitations and111

uncertainties of individual data sources, this paper proposes 112

a multi-source data fusion strategy to combine outage-related 113

information from diverse sources for accurate outage location. 114

A summary of the literature is shown in Table I. 115

One fundamental challenge in multi-source outage location 116

is the computational complexity of the problem: first, outage 117

location inference is the process of computing the probabilities 118

of topology candidates after disrupting events by leveraging 119

available information received by utilities. Estimating these 120

probability values requires obtaining the joint probability dis- 121

tribution function (PDF) of the unknown state variables and 122

the evidence, which is a high-dimensional mathematical object. 123

Considering that outage data sources and branches/customer 124

status are interdependent, directly quantifying this joint dis- 125

tribution requires enumerating probabilities of all possible 126

combinations of variables, which is computationally infeasible 127

in actual distribution systems. In addition, outage data sources 128

have heterogeneous characteristics such as accuracy levels and 129

reporting rates. Further, they may provide inconsistent and 130

contrary information. How to integrate these data sources is a 131

challenge. In [19], a probabilistic method is proposed for fault 132

location by combining the measurements from digital relays 133

at substations, intelligent electric devices along primary feed- 134

ers, SCADA sensors in the feeder circuit, and smart meters. 135

Statistics of historical fault location data are used to estimate 136

fault location errors with probability in real time. The diffi- 137

cultly we face in this work, is to effectively integrate data 138

from non-metered data sources (i.e., trouble calls, social media 139

messages, and weather data), which makes the construction of 140

a data fusion outage location framework challenging. 141

To address these challenges and the shortcomings of the 142

previous works in the literature, a multi-source data fusion 143
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Fig. 1. Graphical approach towards outage location inference.

method is presented to identify and locate the lateral-level144

outage events in partially observable distribution systems.145

To achieve this, we have adopted a probabilistic graphical146

modeling approach towards data fusion to reduce the com-147

putational complexity of representing high-dimensional joint148

PDF of the system. The basic idea of this methodology is149

to use a graph-based representation as the foundation for150

encoding the joint distribution. Specifically, we first investi-151

gate statistical relationships among outage data sources and152

branches/customer status to build a Bayesian network (BN)153

for each distribution feeder. System topology in normal oper-154

ations and context data, such as weather data and vegetation155

information, from geographic information system are used to156

design the architecture of the BN, as shown in Fig. 1. The157

graph parameters are learned empirically from historical out-158

age data. It should be noted that the proposed method does159

not consider information of distributed energy sources. The160

rationale behind this is that most customer-level rooftop pho-161

tovoltaics are integrated into distribution systems at behind-162

the-meter. Also, use of customer-level batteries in distribution163

systems has not become prevalent, which hinders utilities from164

using distributed energy data to detect power outages. By uti-165

lizing the proposed BN-based method, the high-dimensional166

joint PDF of the system is decomposed into a set of more167

manageable probabilistic factors. Then, the conditional PDF of168

the state of network branches and the connectivity of customer169

switches can be inferred by solving a probabilistic infer-170

ence over the BN given the observed evidence in real time.171

This inference task is solved by leveraging a Gibbs sampling172

(GS) method. As a Markov chain Monte Carlo (MCMC)-173

based algorithm, GS can provide a full characterization of the174

distribution of unknown variables by generating a sequence 175

of samples. We have used multiple real-world distribution 176

systems from our utility partners to validate the performance 177

of the proposed method. The main contributions of this paper 178

can be summarized as follows. 179

• A probabilistic graphical model-based approach is 180

proposed to seamlessly integrate heterogeneous outage- 181

related data sources. The statistics of historical outage 182

data are used to explicitly model the uncertainties of 183

different data sources by graph parameterization. By uti- 184

lizing this method, different data sources can complement 185

each other to increase the amount of outage information, 186

thus addressing low smart device coverage or customer 187

report rates in actual grids. 188

• Multiple conditional independencies are explored to sim- 189

plify the probabilistic graphical modeling. Meanwhile, a 190

fragility model is integrated with the graph to formulate 191

the conditional independence between the branch state 192

and context data. These strategies can reduce the overfit- 193

ting risk in the graph parameterization caused by outage 194

data scarcity. 195

• An MCMC-based method is utilized to simplify the 196

multi-dimensional summation in the outage location 197

inference, which leads to an exponential reduction in 198

detection and location time. This method can provide a 199

good representation of a PDF by leveraging random vari- 200

able instantiations, without knowing all the distribution’s 201

mathematical properties. The proposed technology deter- 202

mines the outage location by estimating the states of all 203

the branches and customers. 204

The rest of this paper is constructed as follows. In Section II, 205

the statement of the outage location problem is described. 206

Section III presents the proposed BN-based data fusion model, 207

along with structure selection and parameter learning schemes. 208

An MCMC approximate inference algorithm is given in 209

Section IV. The numerical results are analyzed in Section V. 210

Section VI concludes the paper with major findings. 211

II. OUTAGE LOCATION PROBLEM STATEMENT 212

Considering that outage events cause topological changes 213

in the grid, outage location is the process of inferring the 214

probabilities of post-event operational topology candidates. 215

In general, the accuracy of outage location depends on the 216

completeness of outage information. Compared to traditional 217

outage detection using only customer calls, combining differ- 218

ent outage-related information, including SM last gasp signals, 219

customer trouble calls, social media messages, wind speed, 220

vegetation information, and physical parameters of the grid 221

will greatly improve the accuracy and speed of outage detec- 222

tion. Different data sources can complement each other to 223

increase the amount of outage information, thus address- 224

ing low SM coverage or customer report rates. It should 225

be noted that this combination means integrating data from 226

diverse sources as well as different customers. Hence, the 227

proposed method aims to take full advantage of all avail- 228

able data in actual grids without the need to install additional 229

metering devices for accurate outage detection and location. 230
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This ensures the practicability of the proposed method for231

real-world applications. Specifically, SM last gasp signals and232

customer trouble calls are generally available in the distribu-233

tion systems [4]–[6]. As demonstrated concretely in [14], most234

customers are already actively engaged in social media such235

as Facebook and Twitter in this information age. By applying236

suitable natural language processing methods, social data can237

be converted into binary outage evidence, similar to customer238

trouble calls and last gasp signals. The rationale behind the use239

of wind speed and vegetation information is that 87% of major240

power outages happen because trees are blown into power241

lines, or poles are destroyed by high intense winds [5]. To242

estimate the impact of these information, physical grid param-243

eters, including the number of conductor wires and distribution244

poles, are necessary.245

These data sources can be easily obtained after a power246

outage has occurred. Specifically, SM will automatically send247

the last gasp signal to the head-end system of the AMI after248

power disruptions. Trouble calls and social media messages are249

reported by customer’s phones and Twitter. Wind speed and the250

physical parameters of the grid can be found from neighboring251

land-based station and grid model, respectively. Note that the252

proposed method does not have specific requirements for the253

range of wind speeds. Our method follows the line of fragility254

analysis using 3-s gust wind speed and grid physical param-255

eters to calculate the probability of failure of the individual256

branch when the neighboring upper-stream branch is ener-257

gized [20]. This fragility analysis is applicable to both normal258

and extreme weather. Regarding the vegetation evidence, the259

tree coverage data adjacent to power lines is utilized. Utilities260

can add or remove data sources in probabilistic graphical261

model according to their situations. For example, for systems262

lacking extreme weather events, vegetation information and263

wind speed can be removed to reduce the complexity of the264

model, as these two data sources may not have a signifi-265

cant impact on outage detection and location during normal266

weather. After data collection, last gasp signals, customer trou-267

ble calls, wind speed, vegetation information, and physical268

parameters can be directly transformed into outage evidence269

as input to the proposed model. For social media messages, a270

natural language processing tool is required to extract outage-271

related words, as proposed in our previous work [14]. Then,272

social media messages are converted into binary outage evi-273

dence, similar to customer trouble calls and last gasp signals.274

Note that all formulations in the paper are implicitly phase-275

based, meaning that separate equations should be written and276

applied to each phase of the distribution system to consider the277

multi-phase and unbalanced nature of the grid into account.278

With this in mind, and for the sake of clarity and tractability,279

phase-related notations/signs are dropped from all equations.280

Regarding notation, vectors/matrices are represented with281

bold letters. Uppercase letters refer to random and evidence282

variables. Lowercase letters are the assignment of values to283

the related variables. For example, for a random variable284

X, let x denotes its realization. Given the multi-source evi-285

dence, E, the inference process is mathematically formulated286

using the Bayes estimator [21], where the conditional PDF of287

network topology, Y , given the set of evidence is represented288

as P(Y = y|E = e) and calculated in terms of the joint 289

distribution of Y and E, denoted by P(Y = y,E = e). The 290

most probable candidate topology, which also determines the 291

location of the outage event, is obtained by maximizing this 292

conditional PDF, as: 293

y∗ = argmax
y

P(Y = y|E = e) = PY,E(y, e)
PE(e)

(1) 294

where, y∗ is the most likely network topology after the out- 295

age. Y is a multinomial variable which is represented in terms 296

of the states of primary network branches (D) and the con- 297

nection of customer switches (C), as Y = {D,C}. Here, 298

D = [D1, . . . ,Dk], where k is the number of branches in 299

the feeder and Di is a binary variable representing the con- 300

nectivity state for the i’th branch in the feeder: Di = 0 301

means that the branch is energized. In other words, there is 302

an uninterrupted path between the branch and the substation. 303

Di = 1 indicates that the branch is de-energized. Similarly, 304

C = [C1, . . . ,Ck], with Ci representing the set of connection 305

states for all the customers that are supplied by the i’th branch. 306

Hence, Ci = [C1
i , . . . ,Czi

i ], where zi is the total number of cus- 307

tomers that are connected to the i’th branch, and Cj
i is the state 308

of the j’th customer: Cj
i = 0 means that the customer is ener- 309

gized, and Cj
i = 1 implies that the customer is de-energized. 310

Note that the pre-outage topology is determined by assigning 311

0 to all the state variables (i.e., all branches are energized and 312

customers are energized). Thus, P(Y = y|E = e) in (1) can 313

be rewritten in terms of the joint PDF of the newly-defined 314

variables, PD,C,E(d, c, e), as follows [22]: 315

P(Y = y|E = e) = PD,C|E(d, c|e) = PD,C,E(d, c, e)
PE(e)

. (2) 316

Using (2), the maximization over topology candidates can be 317

conveniently transformed into finding the best values for the 318

individual branch/customer states belonging to {D,C} using 319

their conditional PDFs, PDi|E(di|e) and P
Cj

i |E(c
j
i|e). These 320

conditional PDFs are obtained ∀i, j using a marginalization 321

process over the joint PDF, as follows [23]: 322

PDi|E(di|e) =
∑

{d,c}\di

PD,C|E(d, c|e) =
∑

{d,c}\di

PD,C,E(d, c, e)
PE(e)

323

(3) 324

P
Cj

i |E
(

cj
i|e
)
=

∑

{d,c}\cj
i

PD,C|E(d, c|e) =
∑

{d,c}\cj
i

PD,C,E(d, c, e)
PE(e)

325

(4) 326

where, A \ B represents all the elements in A that specifically 327

are not in the set B. 328

In general, the goal of the proposed work is to solve (3)-(4) 329

in real time. However, considering the complexity of distri- 330

bution grids, obtaining the explicit representation of the joint 331

PDF, PD,C,E(d, c, e), is unmanageable for two reasons: (I) a 332

complete description of PD,C,E(d, c, e) induces an exponential 333

complexity in the order of 2r − 1, where r is the total cardi- 334

nality of all the unknown variables, r = |D| + |C|. Hence, 335

modeling this joint PDF using brute-force search over all 336

possible combinations of branch/customer states is computa- 337

tionally infeasible for large-scale distribution systems. (II) Due 338
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Fig. 2. Assumptions of the proposed method.

to the outage data scarcity in distribution grids, it is impossi-339

ble to acquire enough historical data to robustly estimate the340

massive number of parameters of this joint distribution. One341

solution is to use naive classification by assuming full indepen-342

dence among all evidence and unknown state variables [23].343

However, this assumption is not applicable to practical distri-344

bution systems and may lead to severe misclassification due345

to overfitting.346

III. BN-BASED DATA FUSION MODEL347

To counter computational complexity and overfitting in the348

outage location inference, we propose a BN-based method.349

A unique feature of our method is a seamless integration of350

heterogeneous data sources by leveraging conditional inde-351

pendencies inherent in the grid and data. These conditional352

independencies enable a scalable and compact graphical rep-353

resentation of different data and enhance outage inference354

efficiency. More precisely, by using the proposed method, the355

joint PDF PD,C,E(d, c, e) is decomposed into a set of factors356

with significantly smaller size. Using this computationally effi-357

cient BN-based approach, we can infer the conditional PDF358

of the state of each primary branch and the customer switch359

given outage-related evidence from various data sources in360

real time, shown in (3)-(4), to rapidly identify the location361

of lateral-level outage events. Given the unbalanced nature362

of distribution networks, the proposed algorithm is applied to363

each phase separately. Specifically, for three-phase unbalanced364

systems, we build three different Bayesian networks based on365

the information regarding which customers are connected to366

which service transformers or phases. In rare systems without367

this knowledge, the previous customer grouping methods can368

be applied before establishing the graphical models [24]–[26].369

As shown in Fig. 2, this work is based on several assump-370

tions, which are listed below.371

• The proposed method only considers distribution372

networks with single-directional power flows. Otherwise,373

the conditional independencies regarding the state of374

the upstream and downstream branches will become375

ambiguous.376

• The vegetation data adjacent to power lines is assumed 377

to be available for utilities. In rare cases without such 378

records, the tree coverage data in the census tract includ- 379

ing the power lines can be used [27]. 380

• All the branches are assumed to be subjected to the max- 381

imum wind speed at the middle point of the system in 382

this work. The rationale behind this is that the variation 383

of wind speed across the distribution system is minimal. 384

This assumption is consistent with the previous fragility 385

analysis [20]. 386

• The vegetation and physical parameter evidence for each 387

specific branch is assumed to be independent of those 388

in other branches. Relaxation of this assumption will be 389

further investigated in future works. 390

A. Factorization of the Joint PDF and BN Representation 391

The main idea of a BN-based representation is to use 392

conditional independencies, encoded in a graph structure, to 393

compactly break down high-dimensional joint PDFs with a 394

set of factors. Here, a factor refers to a low-dimensional and 395

more manageable conditional PDF that is determined by two 396

components: a child variable, such as Di and a number of 397

parent variables denoted by Pa(·), such as Pa(Di). Parent vari- 398

ables represent the direct causal sources of influence for a 399

child variable. In other words, each child is a stochastic func- 400

tion of its parents [23]. Thus, if the values of the parents are 401

known, then the child variable becomes conditionally indepen- 402

dent of random variables that do not directly influence it in a 403

causal manner. It can be shown that by using chain rule over 404

these conditional independencies, defined by parent-child rela- 405

tionships, the joint PDF of a set of random variables can be 406

simplified as the multiplication of the identified factors [23]. 407

In the outage location problem, this factorization leads to the 408

following data fusion representation for the joint PDF: 409

PD,C,E(d, c, e) =
(

k∏

i=1

PDi|Pa(Di)(di|Pa(di))

)
410

×
⎛

⎝
k∏

i=1

zi∏

j=1

P
Cj

i |Pa
(

Cj
i

)
(

cj
i|Pa

(
cj

i

))
⎞

⎠ 411

×
(

u∏

i=1

P
Eh

i,j|Pa
(

Eh
i,j

)
(

eh
i,j|Pa

(
eh

i,j

)))
412

×
(

u∏

i=1

P
Em

i,j|Pa
(

Em
i,j

)
(

em
i,j|Pa

(
em

i,j

)))
(5) 413

where, u = |E|, and the factors are PDi|Pa(Di)(di|Pa(di)), 414

P
Cj

i |Pa(Cj
i)
(cj

i|Pa(cj
i)), PEh

i,j|Pa(Eh
i,j)
(eh

i,j|Pa(eh
i,j)), and 415

PEm
i,j|Pa(Em

i,j)
(em

i,j|Pa(em
i,j)), ∀i, j. Eh

i,j denotes the human- 416

based evidence from the customer-side, including trouble 417

calls and social media messages; Em
i,j represents meter-based 418

evidence from customer-side, such as smart meter last gasp 419

signals. When an outage occurs, utilities can determine the 420

values of Eh
i,j and Em

i,j, according to the information received. 421

For example, if one customer calls to report a power outage, 422

this customer’s human evidence is identified as 1; otherwise, 423
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it should be 0. Compared with the original model in (2) that424

requires 2r − 1 independent parameters, the new representa-425

tion in (5) only needs
∑k

i=1 2|Pa(Di)| +∑k
i=1

∑zi
j=1 2|Pa(Cj

i)| +426

∑n
i=1 2|Pa(Eh

i,j)|+∑n
i=1 2|Pa(Em

i,j)| parameters. It can be observed427

that the number of parameters in the new representation is428

a function of size of parents for each variable. Considering429

that the number of variables’ parents is typically small, the430

new representation achieves a radical complexity reduction in431

outage location inference.432

As a directed acyclic graph, BN offers a convenient way433

of representing the factorization (5). Accordingly, the ran-434

dom variables, {D,C,E}, are represented as the vertices of435

the BN. Using the identified factors in (5), the vertices of436

the BN are connected by drawing directed edges that start437

from parent vertices and end in child vertices. Specifically,438

BN encodes the conditional independencies defined by the fac-439

tors as follows: any vertex, X, is conditionally independent of440

its non-descendant vertices in the graph, Nd(X), if the val-441

ues of its parents are known. This is symbolically denoted by442

(X ⊥ Nd(X)|Pa(X)) [28]. Nd(X) is the set of the vertices of the443

BN, excluding parents of X, to which no directed path exists444

originating from X. A ⊥ B means that A and B are marginally445

independent.446

B. BN Structure Development and Parameterization447

Developing a BN requires discovering the structure of the448

graph and the parameters of the conditional PDFs. To do this,449

a knowledge discovery-based method is utilized in this paper.450

An inherent feature of radial grids is their tree-like structure,451

resulting in a unique one-directional path between all nodes. If452

this path is disrupted at any branch, then the states of all down-453

stream branches can be inferred as de-energized without a454

need for further search. Based on this feature, the parent-child455

variables of each factor in (5) can be described as follows.456

(1) Factor PDi|Pa(Di)(di|Pa(di)) represents the conditional457

independencies of the form Di ⊥ Nd(Di)|Pa(Di). The par-458

ents of branch state variable are selected as Pa(Di) =459

{Di−1,Ew
i ,Ev

i ,Eb
i }, as shown in Fig. 3. Here, Di−1 is the state460

of the neighboring upper-stream branch. {Ew
i ,Ev

i ,Eb
i } are the461

evidence for the i’th branch. Specifically, Ew
i denotes 3-s gust462

wind speed collected by local land-based station. The value463

of Ew
i is determined by the maximum wind speed at the mid-464

dle point of the system. Ev
i refers to vegetation information,465

which contains vegetation constants and diameters of the trees466

adjacent to each branch. Eb
i represents the i’th branch’s phys-467

ical parameters, including the length of conductors and the468

number of poles of each branch. Based on this parent selec-469

tion scheme for branch state variables, Nd(Di) includes all the470

variables that are not downstream of the i’th branch in the471

feeder (see Fig. 3). To show the direct causal influences of472

these four variables on Di, two cases are described: Di−1 = 1473

and Di−1 = 0.474

In the first case, when the parent branch is de-energized,475

then Di = 1 with probability 1. Consequently, all variables476

on the path from the substation to Di−1, represented with477

{D1, . . . ,Di−2}, are conditionally independent from {Di} given478

Di−1 = 1. The intuition behind this is that in radial networks479

Fig. 3. BN of a typical radial distribution system.

there is only one unique path between the substation and 480

each branch; if this path is interrupted at any arbitrary point 481

in {D1, . . . ,Di−2}, we can automatically conclude Di−1 = 1 482

regardless of the location of outage in the path. Hence, con- 483

sidering the binary nature of variable Di, the conditional PDF, 484

PDi|Di−1,Ew
i ,E

v
i ,E

b
i
(di|1, ew

i , ev
i , eb

i ), can be formulated as: 485

PDi|Di−1,Ew
i ,E

v
i ,E

b
i

(
1|1, ew

i , ev
i , eb

i

)
= 1 486

PDi|Di−1,Ew
i ,E

v
i ,E

b
i

(
0|1, ew

i , ev
i , eb

i

)
= 0. (6) 487

In the second case, if the neighboring upper-stream branch 488

is energized, then all upstream branches of the i’th branch are 489

also energized with probability 1, and have not been impacted 490

by outage, {D1 = 0, . . . ,Di−2 = 0}. In this case, Di = 1 will 491

only occur when this branch is damaged. As demonstrated 492

concretely in [27], the majority of branch damage is caused 493

by tree contacts to power lines and broken poles due to high 494

wind speed. Thus, three context variables Ew
i , Ev

i and Eb
i are 495

serve as causal evidence for the i’th branch state to estimate 496

the probability of outage at the i’th branch. The conditional 497

PDF, PDi|Di−1,Ew
i ,E

v
i ,E

b
i
(di|0, ew

i , ev
i , eb

i ), can be formulated as a 498

Bernoulli distribution as follows: 499

PDi|Di−1,Ew
i ,E

v
i ,E

b
i

(
di|0, ew

i , ev
i , eb

i

)
=
{

Pi
l for di = 1

1− Pi
l for di = 0

500

(7) 501

where, the probability of failure for branch i, denoted as Pi
l, 502

is a function of ew
i , ev

i , and eb
i . To formulate this function, 503

a fragility model is leveraged. Basically, the fragility model 504

is a series model with the fragility analysis of each pole and 505
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conductor within the branch:506

Pi
l = 1−

L∏

d=1

⎛

⎝1− φ
⎛

⎝
ln
(

ew
i
χ

)

ξ

⎞

⎠

⎞

⎠
K∏

f=1

(
1− Pf

(
ew

i , ev
i

))
(8)507

where, L is the number of distribution poles used for support-508

ing branch i, K is the number of conductor wires between two509

neighboring poles at the i’th branch, φ is the standard normal510

probability integral, χ is the median of the fragility function,511

ξ is the logarithmic standard deviation of intensity measure,512

and Pf (ew
i , ev

i ) represents the failure probability for conductor513

f of branch i which is modeled as follows:514

Pf
(
ew

i , ev
i

)
515

= (1− pu)max

{
min

{
Fwind,f

(
ew

i

)

Fno,f
(
ew

i

) , 1

}
, α · Pt

(
ev

i

)
}

(9)516

where, pu is the probability of conductor f being underground,517

Fwind,f (ew
i ) represents the wind force loading on the conduc-518

tor and Fno,f (ew
i ) demonstrates the maximum perpendicular519

force of the conductor wire determined as shown in [20]. α520

describes the average tree-induced damage probability of over-521

head conductor, and Pt(ev
i ) is the fallen tree-induced failure522

probability of conductor f computed as in [27]. Hence, for523

the case Di−1 = 0, equations (8) and (9) are utilized to esti-524

mate the probability of outage for branch i given the values of525

the context variables Ew
i , Ev

i , and Eb
i . To summarize, the con-526

ditional PDFs given in equations (6) and (7) fully determine527

the factors of the form PDi|Pa(Di)(di|Pa(di)).528

(2) Factor P
Cj

i |Pa(Cj
i)
(cj

i|Pa(cj
i)) represents the conditional529

PDF of the status of customer j given parent variables. The par-530

ent of customer state variable is selected as Pa(Cj
i) = {Di} (see531

Fig. 3). Here, Di is the state of the immediate upper-stream532

branch that supplies the j’th customer. To show the casual rela-533

tionship between Cj
i and Di, two cases are considered: Di = 1534

and Di = 0.535

In the first case, if the primary branch is de-energized, the536

probability of Cj
i = 1 is 1 due to the radial structure of the537

feeder. Utilizing this deterministic relationship, P
Cj

i |Di
(cj

i|di)538

can be written as follows:539

P
Cj

i |Di
(1|1) = 1540

P
Cj

i |Di
(0|1) = 0. (10)541

In the second case, if the primary branch is energized, then542

the path between the substation and the i’th branch is active.543

Hence, customer outage, Cj
i = 1, can only be caused by over-544

loading/faults at the customer-side occurring with probability545

π2. This case is represented using a Bernoulli distribution546

adopted from statistical outage information [29]:547

P
Cj

i |Di

(
cj

i|0
)
=
{
π2 for cj

i = 1
1− π2 for cj

i = 0.
(11)548

To account for the uncertainty of parameter π2, a beta dis-549

tribution is defined with user-defined hyper-parameters α2550

and β2:551

π2 ∼ Beta(α2, β2) = γ2π
α2−1
2 (1− π2)

β2−1 (12)552

where, γ2 is a normalizing constant and defined as γ2 = 553

	(α2 + β2) with 	 = ∫∞0 tx−1e−tdt [23]. 554

(3) Factor PEh
i,j|Pa(Eh

i,j)
(eh

i,j|Pa(eh
i,j)) represents the condi- 555

tional independencies Eh
i,j ⊥ Nd(Eh

i,j)|Pa(Eh
i,j). The parents 556

of human-based evidence, Eh
i,j, are selected as Pa(Eh

i,j) = 557

{Cj
i,
T}, as shown in Fig. 3. 
T refers to the time elapsed 558

after the outage occurrence. More precisely, 
T embodies the 559

time period that utilities need to wait before outage reports 560

are issued [30]. It is clear that there is a trade-off between 561

the amount of human-based evidence and waiting time of out- 562

age location inference. For example, when feeder observability 563

is extremely low, utilities may increase 
T to receive more 564

human-based evidence for outage location inference. Within 565

the 
T period, the time at which the human-based evidence is 566

received, T , after outage occurrence at time, T0, is distributed 567

according to an exponential distribution as shown in [31]: 568

f
(

T = t|T0 = t0,Cj
i = 1

)
= λ1e−λ1(t−t0). (13) 569

Thus, given 
t, the probability of P(Eh
i,j = 1|Cj

i = 1,T−T0 ≤ 570


t) can be calculated as: 571

P(Eh
i,j = 1|Cj

i = 1,T − T0 ≤ 
t) 572

=
∫ 
t

0
λ1e−λ1t′dt′ = −e−λ1
t + 1. (14) 573

Hence, the factor P
Eh

i,j|Cj
i,
T

(eh
i,j|cj

i,
t) is obtained as follows: 574

P
Eh

i,j|Cj
i,
T

(
eh

i,j|cj
i,
t

)
575

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−e−λ1
t + 1 for eh
i,j = 1, cj

i = 1

e−λ1
t for eh
i,j = 0, cj

i = 1

π3 for eh
i,j = 1, cj

i = 0

1− π3 for eh
i,j = 0, cj

i = 0

(15) 576

where, π3 denotes a small user-defined value to take into 577

account the possibility of false positives, such as illegitimate 578

trouble call and social media data processing errors. 579

(4) Factor PEm
i,j|Pa(Em

i,j)
(em

i,j|Pa(em
i,j)) is the conditional inde- 580

pendencies Em
i,j ⊥ Nd(Em

i,j)|Pa(Em
i,j). Compared to the human- 581

based signals Eh
i,j, AMI-based notification mechanism will be 582

delivered almost instantaneously to the utilities. Thus, the par- 583

ent of meter-based evidence is selected as Pa(Em
i,j) = {Cj

i} 584

(see Fig. 3). When the state of customer switch is known, Em
i,j 585

becomes conditionally independent of the remaining variables, 586

as encoded by the factor: 587

P
Em

i,j|Cj
i

(
em

i,j|cj
i

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π4 for em
i,j = 1, cj

i = 1

1− π4 for em
i,j = 0, cj

i = 1

π5 for em
i,j = 1, cj

i = 0

1− π5 for em
i,j = 0, cj

i = 0

(16) 588

where, π4 and π5 represent the AMI communication reliability 589

and the SM malfunction probability values, respectively. For 590

concreteness, π4 is the probability that the last gasp can be 591

delivered to the utilities correctly for outage notification. π5 is 592

the probability that the SM loses power due to its own failure 593

and sends a last gasp signal. In this work, the values of these 594
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Fig. 4. 3-node lateral and matching BN graph.

two parameters are determined based on the historical outage595

reports. Considering the size of the historical data is limited,596

beta distributions are used to model the uncertainty of these597

two parameters as follows:598

π4 ∼ Beta(α4, β4) = γ4π
α4−1
4 (1− π4)

β4−1
599

π5 ∼ Beta(α5, β5) = γ5π
α5−1
5 (1− π5)

β5−1. (17)600

To help the reader understand how a Bayesian network is601

built, an example is shown in Fig. 4. This toy system includes602

3 nodes and 4 customers. First, since the state of each branch603

is directly impacted by weather, vegetation information, and604

physical parameters, Ew
1,1, Ev

1,1, and Eb
1,1 are modeled as par-605

ent nodes for D1. Then, given the tree-like structure of the606

system, the state of the branch 1 serves as the immediate607

casual source of influence for the states of its immediate608

downstream branch and customers (i.e., D2, C1
1, C2

1). When609

the state of the customer, C1
1, is known, outage evidences610

from this customer become conditionally independent from611

D1. Further, if the utility knows that C1
1 is in outage, prob-612

abilities of receiving SM last gasp signals and trouble calls613

from that customer are uncorrelated. Hence, C1
1 is modeled as614

parent node for Em
1,1 and Eh

1,1 in the graph. This exemplary615

system can be treated a block cell for any radial feeder in616

general, which means that the proposed method can be gener-617

alized to any radial distribution system. Also, some high-level618

context evidence, including weather information and vegeta-619

tion information, affect multiple neighboring branches in the620

same region, as shown in Fig. 4 (a). However, the size of621

the region is impacted by several factors (i.e., the geographic622

location of weather station and the grid infrastructure) and623

is hard to quantify and draw. Therefore, to avoid misunder-624

standing, two assumptions are utilized to build a more general625

BN graph, as shown in Fig. 4 (b). The details of the assump-626

tions can be found at the beginning of Section III. In sum, the627

evidence from the branch-side (i.e., wind speed, vegetation628

information, and the physical parameters) is causal sources629

of branch states, which is formulated as a fragility model.630

When the branch state is observed, the branch-side evidence631

becomes independent from the states of the connected cus-632

tomers. In contrast, the evidence from the customer-side (i.e.,633

human- and meter-based evidence) is independent from the634

rest of state and evidence variables, if the state of upstream 635

customer is known, which is denoted as conditional indepen- 636

dency. Furthermore, if the utility knows that a customer is 637

in an outage, the probabilities of receiving SM last gasp sig- 638

nals and human-based evidence will become uncorrelated. In 639

this case, customer states are causal sources of the evidence. 640

Thus, customer states are modeled as parent nodes for these 641

data sources. 642

IV. BN-BASED OUTAGE LOCATION INFERENCE USING GS 643

The data fusion outage location process is transformed into 644

a probabilistic inference over the graphical model. After con- 645

struction and parameterization of the BN, PD,C,E(d, c, e) has 646

been simplified. However, solving (3)-(4) still requires calcu- 647

lating computationally expensive summation operations PE(e) 648

over all nodes of the graph simultaneously, which is not scal- 649

able for large-scale distribution grids [23]. To address this, a 650

GS algorithm is used to perform the inference task over the 651

BN [32]. 652

A. GS Algorithm 653

GS is an MCMC-based approximate inference method,1 654

which allows one to provide a good representation of a PDF 655

by leveraging random variable instantiations, without knowing 656

the distribution’s mathematical properties [32]. The key advan- 657

tage of this method is that it employs univariate conditional 658

distributions for sampling, which eliminates the dependency 659

on the dimension of the random variable space. Thus, com- 660

pared to the commonly-used exact inference methods, such 661

as variable elimination and clique trees, GS is insensitive to 662

the size of BN [22]. This indicates that the GS method is 663

especially beneficial for complex real-world applications. 664

When an outage occurs, the de-energization probabilities of 665

branches/customers are inferred using the GS algorithm and 666

the BN structure. To do this, first, all the outage evidence 667

from the customer-side, {Eh
1,1, . . . ,Eh

zk,k
,Em

1,1, . . . ,Em
zk,k
}, is 668

collected after 
T has elapsed: if utilities receive trouble 669

call/tweet or last gasp signal from the j’th customer at branch i, 670

the corresponding evidence Eh
i,j or Em

i,j is set to 1. In con- 671

trast, if the trouble call/tweet or last gasp signal is missing, 672

the Eh
i,j or Em

i,j is set to 0. Also, the branch-level evidence, 673

{Ew
1 , . . . ,Ew

k ,Ev
1, . . . ,Ev

k,Eb
1, . . . ,Eb

k }, is set to the local wind 674

speed, vegetation data, and i’th branch’s physical param- 675

eters, respectively. After transferring these data to outage 676

evidence, arbitrary initial samples are randomly assigned to 677

all the unknown state variables {D,C}: [D1 = d(0)1 , . . . ,Dk = 678

d(0)k ,C1
1 = c1,(0)

1 , . . . ,Czk,(0)
k ]. Then, an arbitrary state vari- 679

able is selected as the sampling starting point, e.g., Di. At 680

iteration τ + 1 of GS, following the structure of the BN, 681

the assigned samples to the parents and children of Di are 682

inserted into a local Bayesian estimator [22], as shown in (20), 683

to approximate the conditional PDF of Di given the latest 684

1MCMC is a subset of Monte Carlo methods. Unlike the common Monte
Carlo methods that generate independent data samples from a specific distri-
bution, MCMC methods generate samples where the next sample is dependent
on the existing sample.
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samples:685

P
(

di|d−i
(τ )
)

686

= PDi|Pa(Di)(di|Pa(di))PCh(Di)|PC(Di)(Ch(di)|PC(di)∑
di

PDi|Pa(Di)(di|Pa(di))PCh(Di)|PC(Di)(Ch(di)|PC(di))
687

(18)688

where, d−i
(τ ) is all the latest samples except for di, including689

values of evidence variables, and:690

PDi|Pa(Di)(di|Pa(di)) = PDi|Di−1,Ew
i ,E

v
i ,E

b
i

(
di|d(τ )i−1, ew

i , ev
i , eb

i

)
691

(19)692

PCh(Di)|PC(Di)(Ch(di)|PC(di))693

= PDi+1|Di,Ew
i ,E

v
i ,E

b
i

(
d(τ )i+1|di, ew

i , ev
i , eb

i

) zi∏

j=1

P
Cj

i |Di

(
cj,(τ )

i |di

)
.694

(20)695

Hence, P(di|d−i
(τ )) can be directly calculated using the696

determined factors, (6)-(17), in Section III-B. Note that697

because P(di|d−i
(τ )) is a PDF over a single random variable698

given the samples assigned to all the others, this computa-699

tion can be performed efficiently. Utilizing P(di|d−i
(τ )), a700

new sample di ← d(τ+1)
i is drawn using the inverse trans-701

form method [23] to replace d(τ )i . Then, the algorithm moves702

to a next non-evidence variable of BN to perform the local703

sampling process (see (20)). When all the unknown variables704

of the BN have been sampled once, one iteration of GS is705

complete. This process is able to propagate the information706

across the BN and combine the data from diverse sources707

to infer the location of outage efficiently. The sampling pro-708

cess is repeatedly applied until a sufficient number of random709

samples are generated for the unknown variables, {D,C}. It710

has been theoretically proved that the approximate PDFs,711

P(·), are guaranteed to approach the target conditional PDFs,712

PDi|E(di|e) and P
Cj

i |E(c
j
i|e), defined in (3)-(4) [23]. Thus,713

PDi|E(di|e) and P
Cj

i |E(c
j
i|e) can be estimated by counting the714

samples generated by the GS algorithm. As an example,715

PDi|E(1|e) is estimated as follows:716

PDi|E(1|e) ≈
∑M
τ=0 dτi
M

(21)717

where, M is the number of iterations. After the GS process,718

the most likely value of each branch/customer state is deter-719

mined based on the obtained approximated conditional PDFs720

to solve (1). To achieve this, due to the binary nature of the721

state variables, a 0.5 threshold is used, e.g., PDi|E(1|e) ≤ 0.5722

indicates branch i is energized. After the connectivity states723

of all the branches/customers are inferred, the location of out-724

age events are obtained by selecting the nearest de-energized725

branch to the substation. See Algorithm 1 for details.726

B. GS Calibration Process727

One challenge in GS is how to determine the number of iter-728

ations, M. In general, if the iterations have not proceeded long729

enough, the sampling may grossly misrepresent the target dis-730

tributions, thus decreasing the inference accuracy. In contrast,731

Algorithm 1 Outage Location Inference Using GS
Require: : BN G; iteration number M; evidence E;

1: Randomly generate i.i.d. samples x(0) ← {Di =
d(0)i , . . . ,Cj

i = cj,(0)
i ,∀i, j} from uniform distribution;

x(0)← x(0) ∪ E
2: for τ = 0, . . . ,M do
3: for i = 1, . . . , |D+ C| do
4: Select one random variable Xi ∈ {D,C}
5: x−i

(τ )← x(τ ) − x(τ )i
6: Obtain Pa(Xi) and Ch(Xi) from G
7:

PXi|Pa(Xi)(xi|Pa(xi))PCh(Xi)|Xi (Ch(xi)|xi)∑
xi

PXi|Pa(Xi)(xi|Pa(xi))PCh(Xi)|Xi (Ch(xi)|xi)
→P

8: Draw a new sample, x(τ+1)
i ∼ P

9: x(τ+1)
i ← x(τ )i

10: end for
11: end for
12: Return sample vectors: di = {d(0)i , . . . , d(M)i } and cj

i =
{cj,(0)

i , . . . , cj,(M)
i }, ∀i, j

13: PDi|E(1|e)←
∑M
τ=0 d(τ )i

M ,∀i
14: P

Cj
i |E(1|e)←

∑M
τ=0 cj,(τ )

i
M ,∀i, j

15: If PDi|E(1|e) ≤ 0.5 =⇒ di = 1,∀i; if P
Cj

i |E(1|e) ≤
0.5 =⇒ cj

i = 1,∀i, j
16: Select the nearest de-energized branch as the outage

location

if the value of M is large enough, the theory of MCMC guar- 732

antees that the stationary distribution of the samples generated 733

using the GS algorithm [22]. However, such a strategy leads 734

to high computational time, which increases outage duration 735

and cost. Hence, by using GS, a trade-off exists between the 736

accuracy and computational time of outage location. To find 737

a reasonable maximum iteration number for a specific BN, a 738

potential scale reduction factor, R, is utilized to diagnose the 739

convergence of the GS at different numbers of iterations [33]. 740

The basic idea is to measure between- and within-sequence 741

variances of generated sample sequences. Specifically, for each 742

M, we start with n sample sequences produced by the GS for 743

each unknown variable in the BN. After discarding the sam- 744

ples generated in the warm-up period, each sequence is divided 745

into two halves of the same size, m, and used to complement 746

the original sequences. All sample sequences are concatenated 747

into a matrix of size 2n × m, denoted as θ . Utilizing this 748

matrix, the between-sequence and within-sequence variances 749

are calculated as follows: 750

Bi = m

2n− 1

2n∑

j=1

(
θ̄ .j − θ̄ ..

)2
(22) 751

Vi = 1

2n

2n∑

j=1

s2
j (23) 752

where, Bi is the between-sequence variance of variable i, Vi 753

is the within-sequence variance of variable i, θ̄ .j is the within- 754

sequence means that can be calculated using θ̄ .j = 1
m

∑m
i=1 θ ij. 755

θ̄ .. is the overall mean that can be computed using θ̄ .. = 756

1
2n

∑2n
j=1 θ̄ .j. s2

j denotes the j’th sample sequence variance 757
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obtained as s2
j = 1

m−1

∑m
i=1(θ ij− θ̄ .j)

2. Utilizing Vi and Bi, Ri758

is defined and computed as [22]:759

Ri =
√

n−1
n Vi + 1

n Bi

Vi
. (24)760

In theory, the value of Ri equals 1 as 2m → ∞. Ri � 1761

indicates that either estimate of the variance can be further762

decrease by more iterations. In other words, the generated763

sequences have not yet made a full tour of the target PDF.764

Alternatively, if Ri ≈ 1, the sequences are close to the tar-765

get PDF. Here, following the previous work [22], a threshold766

Rψ = 1.1 is adopted to select the value of M. Thus, M← 2m767

is set as the number of iterations that satisfy Ri ≤ Rψ,∀i for768

the BN. To have the same level of R, the number of iterations769

M is different for systems with different scales and evidence.770

In general, the number of M is determined by the size of vari-771

ables (|D|+ |C|+ |E|). It should be note that |D|+ |C|+ |E| is772

not equivalent to the system scale. For example, urban systems773

can have the similar number of primary nodes as rural systems,774

but with a significant difference in the number of customers775

and evidence (both human-based and meter-based evidence).776

C. Application Challenges777

As detailed below, we discuss some application challenges:778

• In actual grids, utilities may have incomplete information779

regarding secondary topology. This lack of knowledge780

inhibits the development and parameterization of BN781

structure. One solution is to apply field inspection or782

data-driven methods for secondary network topology783

identification.784

• The graphical structure of the proposed BN is established785

based on the network’s topology in normal operations.786

However, the distribution system often undergoes recon-787

figuration, which can impact the topology of the grid.788

Thus, before running the proposed outage detection and789

location method, previous state estimation-based meth-790

ods can be utilized to update the topology in normal791

operations.792

• Directed probabilistic graphs alone cannot capture con-793

ditional independencies when there are multi-directional794

power flows caused by meshed topology or high DER795

penetration. The future work will be done to meet this796

gap by investigating hybrid graphs.797

V. NUMERICAL RESULTS798

This section explores the practical effectiveness of the799

proposed data fusion outage location method. Three real-world800

distribution feeders are utilized in this case study, which are801

publicly available online [34]. The topological information is802

shown in Fig. 5. For each test system, we have evaluated the803

proposed method under three different observability levels,804

25%, 50%, 75%. Note that the observability level is calcu-805

lated as the ratio of customers with SMs to those without806

SMs. To validate the average performance of the proposed807

method, a Monte Carlo approach has been utilized to gener-808

ate 1500 outage scenarios for each case (a total of 9 cases).809

In each scenario, the outage location is randomly chosen. All810

Fig. 5. Three test feeders with different sizes.

aforementioned evidence, including trouble calls, social media 811

messages, last gasp signal, vegetation information, and wind 812

speed, are utilized to perform outage detection and location 813

using the proposed method. Specifically, a portion of cus- 814

tomers are randomly selected to install SMs. When a customer 815

is assumed to have the SM, this indicates that the customer is 816

likely to send a last gasp signal when an outage occurs. Based 817

on the historical data, this probability that refers to AMI com- 818

munication reliability is assigned as 82% in this work. The 819

amount and location of meter-based evidence in each scenario 820

is therefore determined by pre-defined system observability, 821

the geographical distribution of SMs and the location of simu- 822

lated outages. For the customer trouble calls and social media 823

messages, the human-based evidence is generated using an 824

exponential PDF given 
T . Note that the parameter of this 825

PDF is considerably different from that of (14) to simulate the 826

uncertainty of the BN parameterization in real-world applica- 827

tions. Consequently, in the outage inference task, we do not 828

know the PDF used to generate evidence and the conditional 829

PDF of the outage location. Basically, in each scenario, the 830

amount and location of the human-based evidence is deter- 831

mined by the total number of customers, the locations of 832

simulated outages, and 
T . For all scenarios, the value of 833


T is assigned as 10 minutes, which indicates that only a 834

fraction of customers are active in making trouble calls or 835

posting social media messages. For each test system, the veg- 836

etation information and the branch’s physical parameters are 837

provided by our utility partners. For some unknown parame- 838

ters, such as tree diameter, we refer to the previous work [27]. 839

Further, depending on the geographical locations of the avail- 840

able systems, the wind speed data is obtained from national 841

oceanic and atmospheric administration (NOVAA) [35]. Since 842

vegetation information and weather data can affect multiple 843

neighboring branches in the same region, the related evidence 844

of the branches in the region is considered to be the same. 845

Moreover, to simulate real-world power outages, 10%, 15%, 846

and 3% of total evidence is assumed to be wrong to simulate 847
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TABLE II
OUTAGE LOCATION OBSERVABILITY SENSITIVITY ANALYSIS

Fig. 6. Branch de-energization probabilities for one outage case.

the illegitimate calls, natural language processing errors, and848

AMI communication failure.849

A. GS Calibration Results850

Basically, the GS calibration is a trial and error process851

using a specific index, R. Hence, in each test feeder, we have852

generated 500 sample sequences for each unknown variable853

in the BN at different sampling iterations, M. Fig. 7 shows854

the values of Ri in the 51-node test feeder. As can be seen, by855

increasing the number of M, the values of Ri’s tend to converge856

to 1. By selecting M = 4000, all Ri’s drop below the user-857

defined calibration threshold, Rψ = 1.1, which indicates that858

GS has reached a reasonable number of iterations in this BN.859

Note that GS calibration is a offline process; as a result, the860

high computational burden of the trial and error process does861

not impact the real-time performance of the proposed method.862

B. Performance of the Proposed Data Fusion Model863

Fig. 6 shows the GS-based inferred dis-connectivity prob-864

ability values of primary branches in the 51-node test feeder865

in single outage scenario. As can be seen, for branches down-866

stream of the outage location, these probabilities converge to867

significantly higher values compared to the branches that are868

not impacted by the outage event. By using the threshold,869

the energized branches and the de-energized branches can be870

easily distinguished to locate the outage. This demonstrates871

that the BN-based outage location inference method is able872

to correctly determine the state of the system. Note that there873

Fig. 7. GS algorithm calibration results for the 51-node system.

are many blue lines overlapping with the x-axis (with zero 874

de-connectivity probability). 875

To evaluate the performance of the proposed outage loca- 876

tion method for 1500 generated outage cases in the test 877

systems, several statistical metrics are applied among all pri- 878

mary branches and customers, including accuracy, precision, 879

recall, and F1 score [36], [37]. These indexes are determined 880

as follows: 881

Accuracy = (TP+ TN)

(TP+ FP+ FN + TN)
(25) 882

Precision = (TP)

(TP+ FP)
(26) 883

Recall = (TP)

(TP+ FN)
(27) 884

F1 =
(
β2 + 1

) ∗ Prec ∗ Recall
(
β2 ∗ Prec+ Recall

) (28) 885

where, TP is the true positive (i.e., state of branch is inferred 886

as de-energized while its actual state is also de-energized), TN 887

is the true negative (i.e., state of branch is considered as an 888

energized while its true state is also energized), FP is the false 889

positive (i.e., state of branch is inferred as de-energized while 890

its actual state is energized), FN is the false negative (i.e., 891

state of branch is inferred as energized while its actual state 892

is de-energized), P and N are the numbers of total positives 893

and negatives, and β is the precision weight which is selected 894

to be 1 in this paper. The average values of these indexes are 895

presented in Table II for the three different test feeders with 896

various observability levels. In all cases, the lowest accuracy, 897
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precision, recall, and F1 score are 98.7%, 83.47%, 98.88%,898

and 88.05%, respectively. For 50% and 75% observability899

cases, all branch-level indexes reach values over 0.9. Also, the900

system-level accuracy is calculated for all cases. Specifically,901

the system-level accuracy refers to the percentage of times902

that the states of all the branches/customers have been inferred903

correctly in outage scenarios. In other words, even though the904

outage location is inferred correctly, the system-level accuracy905

may fail because of one misclassified branch. For example, for906

77-node test feeder, our method can accurately infer the states907

of all the branches/customers for about 1300 of the 1500 out-908

age scenarios when the observability level is 50%. In this case,909

the system-level accuracy is around 86.6%. As shown in the910

table, when the observability is 25%, the system-level accuracy911

is about 70%. This could be due to the evidence scarcity. We912

have analyzed the failed scenarios. In more than 80% of these913

scenarios, the proposed method can infer the actual location of914

the outage but misjudged the status of one or two branches.915

For the cases that have 75% observability, the system-level916

accuracy is about 90%. This result is not surprising since917

we have assigned false positive and false negative alarms in918

each scenario. Such alarms reduce the completeness of outage919

information. By comparing the results of the three feeders, it920

can be concluded that the performance of the proposed out-921

age location method improves as the observability increases,922

due to the high confidence levels of meter-based evidence.923

Also, the proposed algorithm shows almost the same level of924

performance over the different test feeders. This result demon-925

strates that the BN-based outage location method is nearly926

insensitive to the topology of the underlying network.927

To further evaluate the performance of our method, coincid-928

ing multiple outage events are generated in three test systems.929

Note that coinciding outage events refer to multiple simulta-930

neous outages that take place at different locations that are931

randomly selected. For concreteness, we have also calculated932

the accuracy under 25%, 50%, and 75% observability lev-933

els. Fig. 8 shows the performance indexes as a function of934

observability level and the number of outages for the three935

systems. As can be seen, almost in all cases, higher observabil-936

ity improves the performance indexes regardless of the number937

of coinciding outage events. In all cases, even though the938

system observability is only 25%, almost all statistical indices939

are above 90%. When the system observability is 75%, almost940

all statistical indices are higher than 98%. Also, the indexes941

have nearly similar values in cases with single and multiple942

outages. Hence, we can conclude that the method has a stable943

performance for multiple outages.944

To explore the impact of information on the performance,945

two more extreme cases are simulated. In the first case, all946

human-based evidence is removed in the Bayesian network.947

In the second case, the uncertainty of meter-based evidence948

is manually increased. Specifically, by changing the values949

of α4 and β4 (see (16) and (17)), the probability that the950

last gasp can be delivered to the utilities correctly for out-951

age notification is substantially set to 50%. Hence, when a952

customer is assumed to have the smart meter, there is only953

50% probability that the meter will send a last gasp signal954

when an outage occurs. Using the three real-world test feeders,955

Fig. 8. Sensitivity analysis with coinciding multi-outage events.

different scenarios are simulated, and the results for system- 956

level location accuracy are summarized in Fig. 9. Testing 957

results show that the performance of the proposed method is 958
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Fig. 9. Performance of the proposed method under different evidence
scenarios.

impacted by the amount of outage information. By comparing959

the results among the three cases, it is clear that incorpo-960

rating non-metered information (i.e., customer trouble calls961

and social media messages) is critical for distribution systems962

with low observability. For the systems with high observabil-963

ity, the uncertainty of the SM last gasp signals can limit the964

performance of the proposed method.965

C. Method Comparison966

We have conducted numerical comparisons with two exist-967

ing outage location methods, a support vector machine968

(SVM) based approach [5] and a probabilistic approach [19].969

Specifically, in [5], smart meter last gasp signals have been970

utilized to train a SVM mode, one of the state-of-the-art clas-971

sification models, for estimating the outage location. In [19],972

the measurements from digital relays at substations and smart973

meter signals have been incorporated for probabilistic diag-974

nosis. Note that since there are no remote fault indicators975

installed in the test systems, two constraints (i.e., constraint976

Fig. 10. Comparison of outage location results with two previous methods.

(4) and (5) in the [19]) are ruled out in the simulations. To 977

ensure a fair comparison among the three methods, the accu- 978

racy of all three was assessed based on the same branch-level 979

criteria. The comparison results are demonstrated in Fig. 10. 980

It can be observed that [19] and the proposed method gen- 981

erally outperform [5], especially when the system has low 982

observability. This indicates that our method and [19] can 983

achieve good outage location accuracy with smaller number 984

of smart meters by integrating heterogeneous outage-related 985

data sources, which makes it a suitable method in most dis- 986

tribution grids that are only partially observable. Among the 987

data-fusion-based methods, our method performs slightly bet- 988

ter than [19]. The difference between these two approaches 989

is that the proposed method not only uses data from smart 990

meters, but also effectively combines data from non-metered 991

data sources (i.e., trouble calls, social media messages, and 992

weather data). 993
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Fig. 11. Average simulation time for the five test feeders.

D. Computational Complexity Analysis994

The case study is conducted on a standard PC with an995

Intel Xeon CPU running at 4.10GHZ and with 64.0GB of996

RAM and an Nvidia Geforce GTX 1080ti 11.0GB GPU.997

To provide a comprehensive computational complexity anal-998

ysis, the proposed method is conducted on two additional999

real-world distribution feeders: a 17-node and 164-node feed-1000

ers. The detailed information of these feeders can be found1001

in [10]. Fig. 11 shows the average computational time of1002

outage inference for the test feeders. As described in the fig-1003

ure, by using our standard PC, the average computational1004

time for outage location inference in five test feeders are1005

{2.7s, 12.58s, 21.64s, 30.14s, 51.59s}, respectively. Also, the1006

proposed model does not infer outage location in a system-1007

wide fashion, but performs feeder-level location estimation.1008

This strategy enables parallel computation of different feeders1009

to further reduce the computational time. These salient features1010

can facilitate the application of practical distribution systems.1011

VI. CONCLUSION1012

In this paper, we have presented a novel multi-source data1013

fusion approach to detect and locate outages in partially1014

observable distribution networks. The problem is cast as the1015

process of inferring the probabilities of post-event operational1016

topology candidates. Our method encodes the network’s topol-1017

ogy and the causal relationship between outage evidence and1018

branch states into BNs by leveraging the conditional inde-1019

pendence inherent in distribution grids. By constructing the1020

BNs, the proposed method is able to infer the connectivity1021

probability of individual primary branches with nearly lin-1022

ear complexity in the size of the network. Moreover, this1023

method exploits data redundancy to reduce the impact of data1024

uncertainty, and is suitable for arbitrary radial distribution1025

systems. Based on simulation results on real-world networks,1026

the proposed method can accurately detect and locate outage1027

events within a short time.1028

Future study will seek to extend the proposed method1029

in meshed grids with high penetration distributed energy1030

resources. BNs alone cannot fully capture conditional indepen-1031

dencies when there are multi-directional power flows. Hence,1032

we plan to explore hybrid graphs that consist of both directed1033

BNs and fully undirected Markov networks. Further, a joint1034

Boltzmann distribution function will be investigated to embody1035

graph parameters.1036
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