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Abstract—This paper proposes an online voltage control strat-
egy of distributed energy resources (DERs), based on the pro-
jected Newton method (PNM), for unbalanced distribution net-
works. The optimal Volt/VAr control (VVC) problem is formu-
lated as an optimization program, with the goal of maintain-
ing the voltage profile across the network by coordinating the
VAr outputs of DERs. To overcome the slow convergence rate
of conventional gradient-based methods, a PNM-based solution
algorithm is developed to solve this VVC problem. It utilizes a
non-diagonal symmetric positive definite matrix, developed from
the Hessian matrix of the objective, to scale the gradient, and thus
a fast convergence performance can be expected in this Newton-
like algorithm. Moreover, taking advantage of the instantaneous
feedback of voltage measurements, the online implementation of
the PNM-based VVC is further designed to deal with fast sys-
tem variations. In this online PNM-based VVC scheme, each bus
agent communicates the instantaneous voltage measurements to
the central agent, and the central agent communicates the VAr
output commands of DERs back to each bus agent. The fast con-
vergence performance of PNM results in a stronger capability to
track the system variations in real time. Finally, numerical case
studies are performed to validate the effectiveness, superiority,
and scalability of the proposed method.

Index Terms—Online voltage control, distributed energy re-
sources (DERs), unbalanced distribution networks, projected
Newton method (PNM).

I. INTRODUCTION

THE increasing proliferation of distributed energy re-
sources (DERs), such as photovoltaic (PV) generators,

has posed new challenges to Volt/VAr control (VVC) prob-
lems in distribution networks due to the intermittent nature of
renewable energy resources. However, meanwhile, it also pro-
vides promising opportunities to utilize DERs to resolve the
VVC problems due to the great advance in the inverter-based
technologies of DERs [1].

The VVC problems are often cast as optimization programs
with various control goals. Some studies have made efforts to
explore different VVC methods to coordinate DERs in distri-
bution networks. In [2], the VVC problem is formulated as an
optimal power flow (OPF) problem through a Second-Order
Cone Program to minimize line losses and energy consump-
tion in single-phase radial distribution networks. A sequential
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convex programming is applied to minimize total injected re-
active power while satisfying the operational constraints of un-
balanced distribution networks [3]. However, the works [2], [3]
are solved in the centralized manner, entailing large amounts
of computational burdens and time.

Considering the high proliferation of DERs in distribution
networks, various distributed VVC methods have attracted
growing attentions, which can be roughly classified into two
categories: hierarchical and decentralized VVC strategies. Hi-
erarchical VVC strategies establish on the communication be-
tween the central agent and local agents. In [4]-[5], the hi-
erarchical VVC strategies, based on the Alternating Direc-
tion Method of Multipliers (ADMM), are applied to coordi-
nate the electric vehicle charging and wind turbines, respec-
tively. In [6], an ADMM-based hierarchical management strat-
egy is developed between the utility and customers to op-
timally dispatch real and reactive power set-points for resi-
dential PV inverters. In contrast, decentralized VVC strategies
mainly rely on the communication between neighboring buses.
The study by Zhang et al. [7] proposes a dual decomposition-
based decentralized VVC method to minimize power losses in
single-phase networks, relying on the utilization of reactive-
power-capable DERs. The authors in [8] propose a voltage-
constrained ADMM-based algorithm that optimally coordi-
nates the VAr outputs of DERs in unbalanced distribution sys-
tems to regulate bus voltages. The ADMM-based strategies are
utilized in [9]-[11] to solve VVC problems as well. Those
VVC problems in [2]-[11] are solved in an offline manner.
That is, the solution in the offline voltage control cannot be
applied to distribution networks till the iteration convergences.
Thus, they might not be able to capture the fast fluctuations
and disturbances in distribution networks caused by the high
variability of DERs, potentially leading to undesirable and un-
acceptable results.

In recent years, distribution networks are undergoing a fun-
damental architecture transformation to become more intelli-
gent, controllable, and open due to the increasing deployment
of communication, computing, information devices across dis-
tribution networks, such as advanced metering infrastructure.
It offers an unprecedented promising opportunity to transform
the voltage control scheme from the open-loop offline manner
to the closed-loop online manner.

Different than the offline algorithms, the online algorithms
naturally track changing network conditions as these changes
manifest themselves in the network state that is used to com-
pute the control solution [12]. The online VVC strategy has
already triggered a wide-spread interest. One category is the
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traditional “droop” control [13]-[15], which actively adjusts
its VAr output as a function of local bus voltage. However,
the work [16] points out that the droop control cannot main-
tain a feasible voltage profile under certain circumstances.
Consequently, other more sophisticated VVC strategies have
been proposed. The authors in [16]-[18] propose various on-
line VVC schemes based on a dual ascent method. In [19],
a primal-dual gradient algorithm is leveraged to regulate volt-
age in real time through the iterative update of primal and
dual variables. A gradient projection (GP) method is applied
to design online voltage control with the goal of minimiz-
ing the voltage deviation in [20]. Liu et al. [21] propose an
ADMM-based VVC strategy in an online fashion to solve
voltage regulation problems, subject to time-varying operating
conditions. Those underlying methodologies in online VVC
strategies [16]-[21] can be regarded as first-order gradient-
based algorithms. A known drawback of gradient-based al-
gorithms is that they may suffer from a slow convergence rate
and are highly affected by the condition number of the prob-
lem [22]. However, the convergence rate of algorithms is of
great importance for the online implementation since it signif-
icantly affects the tracking capabilities. Researchers and prac-
titioners have developed some newly online VVC strategies
to improve the tracking capabilities. An accelerated dual de-
scent algorithm is proposed to solve the voltage regulation
problem in single-phase networks [23] by employing the dual
decomposition and accelerated gradient projected techniques.
But this work is established on the assumption that the single-
phase network lines have the same ratio of resistance to re-
actance. The works [24], [25] propose feedback-based VVC
strategies by means of a diagonally scaled gradient projec-
tion (DSGP) method, adopting a diagonal scaling of gradient
to improve the convergence performance; however, the DSGP
method theoretically only has a linear convergence rate [26].
Moreover, although the simulations of [24] are tested on un-
balanced distribution networks, the theoretical analysis of [24]
only builds on single-phase distribution networks. The New-
ton’s method has always been a popular option to improve the
convergence performance by directly scaling the gradient with
the inverse Hessian matrix of the objective. However, using the
inverse Hessian matrix directly could be problematic for con-
strained optimization problems. As indicated in [22, Sec. 2.4],
the Newton’s update may fail to attain the optimal solution of
a constrained program. A real-time OPF algorithm, based on
quasi-Newton methods, is developed in [27] for single-phase
networks. Nevertheless, it requires solving sub-optimization
programs in the online implementation, thus its effectiveness
is dependent upon the computational burdens of solving sub-
optimization programs.

In this context, an online VVC scheme, based on the pro-
jected Newton method (PNM) [28], is proposed to adjust the
VAr outputs of DERs to maintain the voltage profile across
unbalanced distribution networks. In this online PNM-based
scheme, each bus agent sends the local voltage measurement
as feedback to the central agent; then, the central agent com-
municates the VAr commands back to each agent to optimally
coordinate the DERs across the unbalanced distribution net-
work. The main contributions of this paper are summarized as

follows:
• The second-order PNM is applied to solve the constrained

VVC problem with the goal of maintaining the voltage
profile. Instead of directly using the inverse Hessian ma-
trix of the objective, PNM adopts a non-diagonal posi-
tive definite symmetric matrix, developed from the Hes-
sian matrix, to scale the gradient so that the resulting
Newton-like algorithm can guarantee a fast convergence
rate, contributing to a great capability to track the time-
varying changes in real time.

• Taking advantage of the instantaneous local voltage mea-
surement from each bus agent, an online feedback-based
PNM-based hierarchical VVC strategy is further devel-
oped. Each local bus agent sends its local voltage mea-
surement to the central agent, and the central agent com-
municates back to each bus agent the VAr output com-
mand. Under this online VVC strategy, the central agent
and bus agents are not required to solve any (sub) op-
timization program. This attribute can effectively reduce
the computational burdens, facilitating the online imple-
mentation to cope with fast system variations.

• The theoretical analysis and simulations are both built
on unbalanced distribution networks. We mathematically
analyze this PNM-based VVC scheme, based on the lin-
earized power flow model [29] of unbalanced distribution
networks. And we test the performance of this PNM-
based VVC scheme on the multi-phase nonlinear power
flow in numerical case studies. Numerical comparisons
with other VVC strategies are also provided to demon-
strate the superiority of our proposed method.

Remaining sections are organized as follows. The system mod-
eling and problem statement are presented in Section II. The
details of leveraging PNM to solve the VVC problem are dis-
cussed in Section III. Section IV outlines the online implemen-
tation strategy of the proposed PNM-based VVC. Numerical
case studies and results are provided in Section V. Concluding
comments are given in Section VI.

II. SYSTEM MODELING AND PROBLEM STATEMENT

A. Unbalanced Radial Distribution Networks

Consider an unbalanced radial distribution network with
N+1 buses. Let {0}

⋃
N denote the index set for these buses,

where N = {1, 2, ..., N}, bus 0 is the feeder head bus. For
each bus i ∈ N , let bp(i) denote the bus that immediately
precedes bus i along the radial network headed by bus 0. Let
L = {`j = (i, j)|i = bp(j), j ∈ N} denote this edge set of
line segments. Also, let Ni denote the set of all buses located
strictly after bus i along the radial network.

Let Φi and ni denote the phase set and number of bus
i ∈ {0}

⋃
N , Φij and n`j denote the phase set and num-

ber of line segment `j = (i, j) ∈ L. Note that for ∀`j ∈ L,
n`j = nj . For each bus i ∈ {0}

⋃
N , V φi (t) and vφi (t) de-

note its phase φ complex voltage and squared voltage mag-
nitude, respectively, and define the following column vectors:
Vi(t) = [V φi (t)]φ∈Φi ∈ Cni , V Φij

i (t) = [V φi (t)]φ∈Φij ∈ Cn`j ,
vi(t) = [vφi (t)]φ∈Φi ∈ Rni , vΦij

i (t) = [vφi (t)]φ∈Φij ∈ Rn`j .
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TABLE I
NOMENCLATURE: OPERATOR

diag(u) A diagonal matrix with the entries of u in its diagonal
uH The conjugate transpose of u
||µ||2C It denotes µTCµ
[µ]i For vector µ, let [µ]i denote the i-th element in µ
[U ]ij For matrix U , let [U ]ij denote the i-th row and j-th column

element in U
[ · ]q

g

qg Projection operator onto the box constraint [qg , qg ]
� Element-wise multiplication
� Element-wise division

Bus 0 1 j
Z01 Zij

. . .

i=bp(j)

p1,q1 pi,qi pj,qj

N

pN,qN

Pij,QijP01,Q01

Fig. 1. A radial distribution network.

And let column vectors pi(t) = [pφi (t)]φ∈Φi and qi(t) =

[qφi (t)]φ∈Φi ∈ Rni denote the real and reactive power con-
sumption at bus i. For each line segment (i, j) ∈ L, let
Pij(t) = [Pφij(t)]φ∈Φij and Qij(t) = [Qφij(t)]φ∈Φij ∈ Rn`j
denote the real and reactive power flow from bus i to j, and
Zij ∈ Cn`j×n`j denote the impedance matrix for line seg-
ment (i, j). The nonlinear distribution power flow can be rep-
resented as follows, for ∀(i, j) ∈ L,

Vj(t) = V
Φij
i (t)−Zij [(Pij(t)−Qij(t))� V

Φij
i (t)] (1)

The nonlinear distribution power flow (1) poses challenges
for optimization problems due to its nonconvex nature. Some
convex relaxation approaches, e.g., semidefinite programming
relaxation ([29], [30]), are leveraged to convexify the nonlin-
ear distribution power flow. However, those convex relaxation
approaches may be computationally expensive, and the exact-
ness of convex relaxation may not be guaranteed. Instead, the
linearized distribution power flow ([8], [29]) exhibits lower
complexity and higher computational efficiency by assuming
(i) voltages among phases are nearly balanced; (ii) line losses
are small. Compared to the nonlinear distribution power flow
and convex relaxation approaches, the linearized power flow
model is easier to facilitate the algorithm design in optimiza-
tion problems due to its linear and convex characteristics. The
linearized distribution power flow generalizes the LinDistFlow
equations [31] from single-phase networks to multiphase net-
works.1 The linearized distribution power flow can be pre-
sented as follows, for ∀(i, j) ∈ L,

vj(t) = v
Φij
i (t)− 2(R̃ijPij(t) + X̃ijQij(t)) (2a)

Pij(t) =
∑
k∈Nj

Pjk(t) + pj(t) (2b)

Qij(t) =
∑
k∈Nj

Qjk(t) + qj(t) (2c)

1We refer readers to [8], [29] for more details regarding the linearized
distribution power flow.

with

Z̃ij = R̃ij + jX̃ij =
[(
aaH

)Φij �Z∗ij]∗ (3a)

a = [1, e−j
2π
3 , ej

2π
3 ]T (3b)

aH = [1, ej
2π
3 , e−j

2π
3 ] (3c)

where (aaH)Φij ∈ Zn`j×n`j denotes the sub-matrix of aaH ,
consisting of entries associated with Φij .

B. Compact Form of Power Flow Model

For an unbalanced radial distribution network, let m =∑N
j=1 n`j =

∑N
i=1 ni. Let Ā = [A0,A

T ]T ∈ R(n0+m)×m

be the incidence matrix of unbalanced radial distribution net-
work, where AT

0 ∈ Rn0×m represents the connection structure
between bus 0 and each of the line segments in L, A ∈ Rm×m
represents the connection structure between the remaining
buses and each of the line segments in L 2 . More precisely,
the incidence matrix Ā with an entry 1 for each “from” phase
node and -1 for each “to” phase node corresponding to each
phase circuit of line segments takes the following form:

Ā =


J(0, `1) J(0, `2) ... J(0, `N )
J(1, `1) J(1, `2) ... J(1, `N )

...
...

. . .
...

J(N, `1) J(N, `2) ... J(N, `N )

 (4)

where J(i, `j) ∈ Rni×n`j indicates the connection structure
between bus i and line segment `j ; see [32, Appendix B] for
one numerical example illustrating the construction of Ā for
an unbalanced radial network.

Let the squared voltage magnitudes, real and reactive power
consumption, and real and reactive power flows over line seg-
ments be denoted for the network by the following column
vectors3 : v = [vi]i∈N , p = [pi]i∈N , q = [qi]i∈N , P =
[Pbp(i)i]bp(i)i∈L, Q = [Qbp(i)i]bp(i)i∈L, v0 = [va0 , v

b
0, v

c
0]T .

The linearized distribution power flow model (2) can be writ-
ten in a compact form:

−A0v0(t)−ATv(t) = −2DrP (t)− 2DxQ(t) (5a)
−AP (t) = p(t) (5b)
−AQ(t) = q(t) (5c)

with

Dr = blkdiag[R̃bp(1)1, ..., R̃bp(N)N ] (6a)

Dx = blkdiag[X̃bp(1)1, ..., X̃bp(N)N ] (6b)

We separate q(t) into two parts qg(t) and qc(t), where q(t) =
qc(t)−qg(t), qg(t) denotes the vector of reactive power gen-
erated by DERs, e.g., PV inverters, and qc(t) denotes the re-
active power consumption vector generated by other resources

2Note that Ā is invertible, see [32, Appendix C] for details.
3The squared voltage magnitudes and the real and reactive loads at buses

i are sorted in accordance with the ordering of these buses from small to
large i. The real and reactive power flows over line segments `j are sorted in
accordance with the ordering of these line segments from small to large j.
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except DERs. Substituting q(t) = qc(t)−qg(t), (5b) and (5c)
into (5a), then we have:

v(t) = 2[AT ]−1DxA
−1︸ ︷︷ ︸

M

qg(t) + c(t) (7)

with

c(t) = −Mqc(t)− [AT ]−1A0v0(t)

− 2[AT ]−1DrA
−1p(t)

(8)

where vector c(t) is a function of v0(t),p(t), qc(t), reflecting
the impacts of slack bus, real power, and other reactive power
except DERs.

Remark 1: The linearized distribution power flow (7) is
adopted in this work since the structure of (7) can facili-
tate the algorithm design and theoretical analysis. Note that
our proposed voltage control scheme can also be applied to
the multi-phase nonlinear power flow model. In our numerical
case studies, we test the performance of our proposed voltage
control scheme on the nonlinear model using the open-source
simulator OpenDSS [33].

C. Problem Statement

The goal of voltage control problem is assumed to minimize
the voltage deviations by optimally coordinating the VAr out-
puts of DERs 4, which can be formulated as follows:

min
qg(t),v(t)

1

2
||v(t)− vr||22 (9a)

subject to: qg(t) ≤ qg(t) ≤ qg(t) (9b)

v(t) = Mqg(t) + c(t) (9c)

where vr ∈ Rm is the reference of squared voltage magnitude,
(9b) is the VAr limits for DERs, (9c) is the compact form of
linearized distribution power flow constraints.

III. VOLTAGE CONTROL USING PROJECTED NEWTON
METHOD

A. Problem Reformulation

Substituting (9c) into (9a), we have:

h(qg(t)) =
1

2
||v(t)−vr||22 =

1

2
||Mqg(t)+c(t)−vr||22 (10)

Let X (t) = {qg(t) |qg(t) ≤ qg(t) ≤ qg(t)}. Then, the prob-
lem (9) can be reformulated as follows:

min
qg(t)∈X (t)

h(qg(t)) (11)

Remark 2: With respect to single-phase radial distribution net-
works, the works [20] and [24] adopt ||·||2M−1 to replace ||·||22
in (10) 5, which facilitates the local/decentralized voltage con-
trol design. There might be two limitations in this way. First,
the surrogate VVC problem with || · ||2M−1 assigns different

4For this VVC problem, we do not consider the hard voltage constraint, but
instead treat the voltage constraint as a soft penalty in the objective function
to facilitate the algorithm design, just like [23], [24].

5M is a symmetric positive definite matrix in single-phase radial distribu-
tion networks.

weights to the squared voltage magnitude deviations and their
product, which is not physical interpretable. Second, it might
be improper to replace || · ||22 by || · ||2M−1 in unbalanced ra-
dial distribution networks. Since Dx is not a symmetric matrix
in unbalanced radial distribution networks, M is no longer a
symmetric positive definite matrix in unbalanced radial distri-
bution networks.

Proposition 1: LetH denote the symmetric Hessian matrix of
(10), where H = ∇2h(qg(t)) = MTM . The Hessian matrix
H is a symmetric positive definite matrix as Dx is invertible.
Proof of Proposition 1: H can be represented as follows:

H = MTM = 4
(
A−TDT

xA
−1
)
·
(
A−TDxA

−1
)

= 4A−TDT
x ·
(
A−1A−T

)
·DxA

−1
(12)

For any non-zero row vector u, we have:

uA−1A−TuT =
(
uA−1

)
·
(
uA−1

)T
> 0 (13)

It means that A−1A−T is positive definite. Then, we have:

u(MTM)uT =

4
(
uA−TDT

x

)
·
(
A−1A−T

)
·
(
uA−TDT

x

)T (14)

As Dx is invertible, uA−TDT
x is a non-zero row vector. Plus

A−1A−T is positive definite, it follows that u(MTM)uT >
0 which implies that MTM is positive definite. Plus HT =
MTM = H , it follows that H ∈ Sm++ is a symmetric posi-
tive definite matrix. Q.E.D.

B. Projected Newton Method

In this subsection, we propose a voltage control scheme
using the projected Newton method. To facilitate algorithm
design and theoretic analysis, we assume c(t) = c, qg(t) =
qg, qg(t) = qg are fixed. But this is not required when apply-
ing our method, the online implementation of our proposed
method is discussed in Section IV to deal with the time-
varying conditions. The problem (11) is a strictly convex prob-
lem with box constraints since the Hessian matrix H is posi-
tive definite (See Proposition 1). For this type of problem, it
can be solved by the GP method, which iteratively updates the
VAr outputs of DERs at step t in the following manner:

qg(t+ 1) = [qg(t)−∇h(qg(t))]q
g

qg (15)

with

∇h(qg(t)) = M
[
v(qg(t))− vr

]
(16a)

v(qg(t)) = Mqg(t) + c (16b)

where [ · ]q
g

qg denotes the projection operator onto the box
constraint [qg, qg]. However, the condition number ofH could
be large, the gradient-based methods, e.g., GP, always suffer
from the slow convergence rate.

To resolve the slow convergence implementation dilemma,
one possible method is to scale the gradient with some positive
definitive matrices such that:

qg(t+ 1) = [qg(t)− α(t)u(t)]q
g

qg (17)
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with
u(t) = D(t)∇h(qg(t)) (18)

where α(t) and D(t) are a positive step size and a positive
definite matrix. The work [24] makes use of a diagonal posi-
tive definite matrix D(t) to achieve a proper diagonal scaling
of ∇h. However, the convergence rate of DSGP method is
still not ideal, which is typically characterized by the linear
convergence rate [26]. Any attempt to construct a superlin-
early convergent algorithm should by necessity involve a non-
diagonal scaling matrix. This motivates us to explore the use
of more general, nondiagonal scaling of ∇h. The Newton’s
method is always a popular approach by scaling the gradient
with the inverse Hessian matrix of the objective. However, the
scaling manner by directly using the inverse Hessian matrix
could be problematic when it comes to constrained optimiza-
tion problems with a projection operator. The iterated man-
ner is not always in general a descent iteration. That is, we
may have h(qg(t + 1)) > h(qg(t)) for all positive step size
α(t) with an unfavorable choice of D(t) (see [22, Sec. 2.4]
for details). In short, the scaling manner for constrained opti-
mization problems is far more complicated than their uncon-
strained counterparts. The appropriate selection of D(t) is of
great importance for the scaling manner for constrained op-
timization problems.To this end, the following Proposition 2
identifies a class of matrices D(t) for which a descent itera-
tion is obtained. Proposition 2 can be easily proved by using
[28, Proposition 1].
Definition (D is diagonal with respect to I): If a symmetric
m × m matrix D and a subset of indices I ⊂ {1, 2, ...,m}
satisfy:

[D]ij = 0, for i ∈ I, j = 1, 2, ...,m, i 6= j (19)

then we say that D is diagonal with respect to I .
And define Î(t):

Î(t) =
{
i|[qg(t)]i = [qg]i and

∂h(qg(t))

∂[qg]i
> 0;

or [qg(t)]i = [qg]i and
∂h(qg(t))

∂[qg]i
< 0
} (20)

Proposition 2: Assume D(t) is a symmetric positive definite
matrix which is diagonal with respect to Î(t), then we have:
• [P2.a] If qg(t) is the optimal solution qg∗ of the problem

(11), then:

qg(t+ 1) = [qg(t)− α(t)u(t)]q
g

qg

= qg(t),∀α(t) > 0

• [P2.b] If qg(t) is not the optimal solution qg∗ of the
problem (11), then there exists a scalar ᾱ(t) such that:

h(qg(t+ 1)) < h(qg(t)),∀α(t) ∈ (0, ᾱ(t)]

with

qg(t+ 1) = [qg(t)− α(t)u(t)]q
g

qg

u(t) = D(t)∇h(qg(t)), defined in (18).

Proposition 2 shows that the iteration essentially terminates
at a optimal solution and is capable of descent when not at a

global minimum. Unfortunately, Î(t) in Proposition 2 exhibits
an undesirable discontinuity at the boundary of the constraint
set, i.e., qg and qg , which could have an adverse effect on its
rate of convergence. (This phenomenon is quite common in
feasible direction algorithms and is referred to as zigzagging
or jamming). Consequently, we aim to introduce I(t), certain
enlargements of Î(t), to bypass those difficulties, where I(t)
is defined as follows:

I(t) =
{
i|[qg]i ≤ [qg(t)]i ≤ [qg]i + [ε(t)]i and

∂h(qg(t))

∂[qg]i
> 0;

or [qg]i − [ε(t)]i ≤ [qg(t)]i ≤ [qg]i and
∂h(qg(t))

∂[qg]i
< 0
}

(21)

where
[ε(t)]i = min{ε, [w(t)]i} (22)

ε is a fixed positive scalar (typically small) and [w(t)]i is the
i-th element in w(t), w(t) is given by

w(t) =
∣∣∣qg(t)− [qg(t)−C∇h(qg(t))]q

g

qg

∣∣∣ (23)

where | · | denotes the element-wise absolute value operation,
C is a fixed diagonal positive definite matrix (e.g., the iden-
tity matrix). This is an anti-zigzagging procedure commonly
employed in feasible direction methods (see [34]), and is de-
signed to counteract the possible discontinuity exhibited by
the set Î(t). Ideally, D(t) is not only diagonal with respect to
Î(t), but rather with respect to the larger set I(t). Meanwhile,
to achieve a fast convergence performance, D(t) should be an
adequate approximation of the inverse Hessian H−1, at least
along a suitable subspace. At this point, Proposition 3 intro-
duces D(t) such that it is diagonal with respect I(t) and the
portion of D(t) corresponding to the indices i /∈ I(t) is the
inverse of the Hessian H with respect to these indices.
Proposition 3: Suppose D(t) satisfies:

D(t) = E(t)−1 (24)

where E(t) is:

[E(t)]ij =


0 if i 6= j, and either i or j ∈ I(t)∣∣[H]ii

∣∣ if i = j and i ∈ I(t)

[H]ij otherwise
(25)

Then, D(t) is a symmetric positive definite matrix, which is
diagonal with respect to I(t).
Proof of Proposition 3: Without loss of generality, let γ de-
note the number of elements in I(t). Define Ẽ(t) as follows:

Ẽ(t) =


B(t) ∣∣[H]I1(t)I1(t)

∣∣
. . . ∣∣[H]Iγ(t)Iγ(t)

∣∣

 (26)

where B(t) is a (m−γ)×(m−γ) principal sub-matrix of H
formed by removing any i-th row and column for i ∈ I(t).
And let Ij(t) denote the j-th element in I(t), where j =
1, 2, .., γ.

Since H is positive definite, it follows that B(t) is posi-
tive definite since any principal sub-matrix of positive definite
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Algorithm 1 Offline PNM-based VVC
For any time step t: Alternately update variables by the following

steps until convergence:
S1: Update ∇h(qg(t)) by (16).
S2: Update w(t) by (23).
S3: Identify the set I(t) by (21) and (22).
S4: Update D(t) by (24) and (25), which is diagonal with respect
to I(t).
S5: Update qg(t + 1). Let u(t) = D(t)∇h(qg(t)). Starting at
τ(t) = 0, repeat:

τ(t) = τ(t) + 1, α(t) = βτ(t)

qg(t+ 1) = [qg(t)− α(t)u(t)]q
g

qg

until:

h(qg(t))− h(qg(t+ 1)) ≥ δ
{
βτ(t)

∑
i6∈I(t)

∂h(qg(t))

∂[qg]i
[u(t)]i

+
∑
i∈I(t)

∂h(qg(t))

∂[qg]i

[
[qg(t)]i − [qg(t+ 1)]i

]}
where β ∈ (0, 1) and δ ∈ (0, 0.5).
S6: Update t← t+ 1.

matrix is positive definite. Thus, Ẽ(t) is a positive definite
matrix. For any vector ν ∈ Rm, we have:

νTE(t)ν = ν̄T Ẽ(t)ν̄ > 0 (27)

where ν̄ is a vector formed by rearranging elements in ν in
the order consistent with Ẽ(t), the inequality holds since Ẽ(t)
is positive definite. Thus, E(t) is positive definite, implying
E(t) is invertible. In addition, E(t) is symmetric since H is
symmetric. Then, we can conclude that E(t) is a symmetric
positive definite matrix, it follows that D(t) is a symmetric
positive definite matrix. Besides, from (24) and (25), it follows
that:

[D(t)]ij = 0, if i 6= j, and either i or j ∈ I(t). (28)

Then, D(t) is diagonal with respect to I(t). Q.E.D.
Proposition 4: Suppose D(t) = E(t)−1, we have
• [P4.a] [P2.a] holds.
• [P4.b] [P2.b] holds.

Proof of Proposition 4: See Appendix A.
As indicated in Propositions 3 and 4, they extend Î(t) in

Proposition 2 to the larger set I(t). Moreover, D(t) = E(t)−1

shows a suitable approximation of the inverse Hessian to some
extent, and a descent iteration can be obtained as D(t) =
E(t)−1 holds.

Finally, we propose an offline PNM-based VVC strategy,
scaling the gradient with the nondiagonal symmetric positive
definite matrix D(t) = E(t)−1, instead of directly making use
of the inverse Hessian H−1. The offline PNM-based VVC is
presented in Algorithm 1. Regrading the choice of step size
in S4 of Algorithm 1, it could be viewed as a combination
of the Armijo-like rule and the Armijo rule. The convergence
proof of PNM is provided in [28].

Remark 3: Gradient-based methods, e.g., GP, are first-order
methods, they are typically characterized by the linear conver-
gence rate. As discussed before, the second-order Newton’s

method cannot be directly applied to solve constrained opti-
mization problems. There are some extensions and variants
[35]-[36] of Newton’s method to solve constrained optimiza-
tion problems, which are capable of superlinear convergence.
However, sub-optimization problems are required to be solved
in these methods [35]-[36] (which could be very time con-
suming for large-scale systems), thus rendering these methods
impractical. In contrast, PNM can be utilized without solving
any (sub)optimization problems, thereby reducing the associ-
ated computational burden. It is proved in [28, Prop. 4] that
the superlinear convergence rate could be achieved for PNM
under mild assumptions, thus leading to a faster convergence
performance compared with first-order methods.

IV. ONLINE IMPLEMENTATION

To better capture the time-varying characteristic of system,
the online implementation of our proposed voltage control
scheme is proposed in this section. With respect to the on-
line implementation, c(t), qg(t), and qg(t) do not need to be
fixed, which could be time-varying.

A. Estimation of c(t)

c(t) is a function of v0(t), p(t), qc(t), where c(t) can be
calculated by (8) for the online implementation.

B. Estimation of VAr Limits

VAr limits qg(t) and qg(t) of DERs can be updated based
on the inverter capacities and the instantaneous real power
output of DERs. The online update of VAr limits is helpful
to guarantee inverters of DERs operate within a secure range,
especially for preventing inverters from overload.

C. Estimation of Gradient

For the online implementation, the rule to update the gra-
dient ∇h(qg(t)) = M

[
v(qg(t)) − vr

]
as shown in (16) can

be replaced by a feedback control law based on the voltage
measurement, which is:

∇h(qg(t)) = M
[
vm(t)− vr

]
(29)

where vm(t) is the squared voltage measurement vector for
time step t. It indicates the gradient ∇h(qg(t)) can be esti-
mated by utilizing the local voltage measurement from each
bus agent in the online implementation.

D. Online PNM-based VVC

The details and framework of the online PNM-based VVC
are provided in Algorithm 2 and Fig.2, respectively. As seen
in Algorithm 2 and Fig.2, each bus agent i sends its volt-
age measurement vmi (t) and VAr limits to the central agent,
and the central agent communicates the VAr output command
qgi (t+ 1) back to each bus agent i. Note that there is no any
(sub)optimization problem required to solve for both the cen-
tral agent and local bus agent, the central agent only needs to
implement the analytical calculation for each time step, such
characteristic is suitable for online implementation. Moreover,
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Algorithm 2 Online PNM-based VVC
For any time step t, repeat the following steps:

S1: Each bus agent i measures voltage magnitudes and updates
vmi (t), and estimates the VAr limits qgi (t+ 1) and qg

i
(t+ 1).

S2: Each bus agent i sends vmi (t), qgi (t+1) and qg
i
(t+1) to the

central agent.
S3: The central agent estimates c(t), ∇h(qg(t)) by (8) and (29).
S4: The central agent updates the VAr limits by setting qg =
qg(t+ 1), qg = qg(t+ 1).
S5: The central agent updates w(t) by (23).
S6: The central agent identifies the set I(t) by (21) and (22).
S7: The central agent updates D(t) by (24) and (25), which is
diagonal with respect to I(t).
S8: The central agent updates qg(t + 1). Let u(t) =
D(t)∇h(qg(t)). Starting at τ(t) = 0, repeat:

τ(t) = τ(t) + 1, α(t) = βτ(t)

qg(t+ 1) = [qg(t)− α(t)u(t)]q
g

qg

until:

h(qg(t))− ĥ(qg(t+ 1)) ≥ δ
{
βτ(t)

∑
i6∈I(t)

∂h(qg(t))

∂[qg]i
[u(t)]i

+
∑
i∈I(t)

∂h(qg(t))

∂[qg]i

[
[qg(t)]i − [qg(t+ 1)]i

]}
where ĥ(qg(t+ 1)) = 1

2
||Mqg(t+ 1) + c(t)− vr||22, β ∈ (0, 1)

and δ ∈ (0, 0.5). Note that c(t) is used in ĥ(qg(t + 1)) to keep
consistent with h(qg(t)). Then the central agent sends qgi (t+ 1)
to bus agent i.
S9: Update t← t+ 1.

Bus 
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limits 
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Inner 
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Update
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Fig. 2. Online PNM-based VVC framework.

the fast convergence performance of PNM contributes to a
better capability to track the changes in distribution networks.

Remark 4: The key feature of online implementation is its
own closed-loop nature, exploiting the most up-to-date voltage
measurements to estimate ∇h. Though we design and analyze
the algorithm under a fixed-point condition, the online imple-
mentation could asymptotically mitigate the model errors due
to the closed-loop nature. This might shed light on why the
online implementation can achieve a better performance than
the offline implementation.
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Fig. 3. IEEE 123-bus test system.

TABLE II
OBJECTIVE VALUES AND CONVERGENCE ITERATIONS COMPUTED BY

DIFFERENT VVC STRATEGIES.

Strategy Feedback Convergence Iteration Value
GP-based VVC Yes 46 0.0013

DSGP-based VVC Yes 25 0.0007
PNM-based VVC Yes 5 0.0005

Offline OPF No converged 0.0015

V. CASE STUDY

A. Overview

In this section, numerical simulations are performed in the
modified IEEE 123-bus test case [37] to demonstrate the pro-
posed online voltage control scheme. As shown in Fig. 3, PV
generators are distributed across the radial distribution net-
work. Note that the proposed online PNM-based VVC strategy
can be embedded into the two-layer VVC framework to coor-
dinate the conventional discrete voltage regulation devices and
DERs in different timescales. In the upper layer, the conven-
tional discrete voltage regulation devices are scheduled over a
slow timescale. In the lower layer, the VAr outputs of DERs
can be adjusted by the online PNM-based VVC over a fast
timescale. More details regarding the determination of the con-
ventional devices in the upper layer are given in Appendix B.6

In the numerical simulations, the base voltage for the modi-
fied IEEE 123-bus network is 4.16 kV and the base power is
100 kVA. We set the reference of squared voltage magnitude
as vr = 1m, a m × 1 column vector of ones. With respect
to the PNM algorithm, the parameter settings are: C is the
identity matrix, ε = 0.001, β = 0.5, δ = 0.1.

To validate the effectiveness and superiority of the proposed
online VVC strategy, both the static scenario and the dynamic
scenario are taken into account in our simulations. The static
scenario considers the static load and PV generators while
the dynamic scenario considers the time-varying load and PV
generators. All the simulations are conducted using MATLAB

6The operating status of on-line load tap changer and capacitor banks are
determined in the upper layer.
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Fig. 5. Voltage magnitudes of buses 9, 14, 18, 29, 51, 86, 95 in the phase-a
network for the online PNM-based VVC under the static scenario.

R2019b, the open source simulator OpenDSS [33] and the
IBM ILOG CPLEX 12.9 solver [38].

B. Static Scenario

In the static scenario, each phase node has a constant load
of (6+j3) kVA, and each phase of PV generators supplies 20
kW real power generation to the grid. We also assume each
phase of PV generator can supply or consume at most 50
kVar reactive power. For the static scenario, we consider the
following four different VVC strategies:

(i) GP-based VVC ([20]): As shown in (15), the GP-based
VVC replies on the gradient information and projection oper-
ation to adjust the VAr outputs of DERs.

(ii) DSGP-based VVC ([24],[25]): In the DSGP-based
VVC, the diagonal entries of the Hessian matrix are leveraged
to scale the gradient, thus improving the convergence perfor-
mance. It adopts the scaled gradient and projection operation
to adjust the VAr outputs of DERs.

(iii) PNM-based VVC: As shown in Algorithm 2, it lever-
ages the projected Newton method to update the VAr outputs
of DERs in the online manner.

(iv) Offline OPF: The problem (11) is directly solved by
the CPLEX solver [38] without considering the feedback of
voltage measurements.

Note that voltage magnitudes, solved by the nonlinear dis-
tribution power flow in OpenDSS, are regarded as the actual
voltage measurements to update the VAr outputs of PV gen-
erators in the GP-based VVC, DSGP-based VVC, and PNM-
based VVC. Table II and Fig.4 show objective values and con-
vergence iterations computed by different VVC strategies. It
can be observed that the GP-based VVC, DSGP-based VVC
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Fig. 6. VAr outputs of buses 9, 14, 18, 29, 51, 86, 95 in the phase-a network
for the online PNM-based VVC under the static scenario.

and PNM-based VVC have smaller objective values than the
OPF method due to the fact that they are able to asymptot-
ically compensate the model errors via the feedback mecha-
nism. The GP-based VVC shows a slow convergence rate since
the convergence performance of the convention gradient-based
method (steepest gradient) is not good. The performance of
DSGP-based VVC is better than the GP-based VVC by taking
advantage of the diagonal scaling. The convergence iteration
of PNM-based VVC is only 5, which is far less than GP-based
VVC and DSGP-based VVC, validating our previous analysis.
This implies the online PNM-based VVC will have less com-
munication costs in real-life implementations. Fig.5 and Fig.6
show that voltage magnitudes and VAr outputs of buses 9, 14,
18, 29, 51, 86, 95 in the phase-a network as the PNM-based
VVC is applied. As depicted in Fig.5 and Fig.6, the voltage
magnitudes are close to the target voltage 1.0 without violating
the VAr limits by utilizing the PNM-based VVC.

C. Dynamic Scenario

For the dynamic scenario, we consider a more realistic time-
varying system. The aggregate load and PV generation across
the modified IEEE 123-bus test case are shown in Fig.7, where
the total time span is one day (24 hours) and the time resolu-
tion is 10s.
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Fig. 7. Aggregate load and PV generation across the IEEE 123-bus test
system.
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Fig. 9. Voltage profiles without control in the phase-a network (each curve
depicts the voltage magnitude fluctuation for each phase-a node of bus) under
the dynamic scenario.

In the dynamic scenario, three different VVC strategies, in-
cluding GP-based, DSGP-based, PNM-based VVC, are taken
into account7. The control period of those VVC strategies is
set as 2s, i.e., the VAr outputs of PV inverters are updated
every 2 seconds. In the dynamic scenario, the capacities of
PV inverters are set as 50 kVA. And the VAr limits qg, qg

are updated online based on the given inverter capacities and
the instantaneous real power of PV generators. Time average
objective values across time steps are chose as the index to
test the performance of those different VVC strategies in the
dynamic scenario. Fig.8 shows the time average objective val-
ues across time steps computed by different VVC strategies.
It can be observed from Fig.8 that the PNM-based VVC ex-
hibits a better performance compared with GP-based VVC and
DSGP-based VVC. Due to the fast convergence of PNM, the
online PNM-based VVC has a great tracking capability to fol-
low the time-varying changes in the system, thus leading to
the better performance of PNM-based VVC compared with
GP-based and DSGP-based VVC.

Taking phase a as an example, Fig.9 and Fig.10 show volt-

7Considering the offline OPF can only be implemented after convergence,
it might not be suitable to apply the offline OPF to the dynamic scenario with
a fast change rate. Thus, it is not carried out in the dynamic scenario.

Fig. 10. Voltage profiles with the online PNM-based VVC in the phase-
a network (each curve depicts the voltage magnitude fluctuation for each
phase-a node of bus) under the dynamic scenario.
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Fig. 11. VAr outputs of buses 9, 14, 18, 29, 51, 86, 95 in the phase-a network
for the online PNM-based VVC under the dynamic scenario.

age profiles without control and with the online PNM-based
VVC in the phase-a network, respectively. In addition, Fig.11
exhibits the VAr outputs of buses 9, 14,18, 29, 51, 86, 95 un-
der the dynamic scenario. It can be seen that there are under-
voltage violations (below 0.95 p.u.) around 8:00, 16:00 and
20:00 for the distribution network without control due to the
high load demands but low PV generation around those peri-
ods. In contrast, there is no any voltage violation across one
day as the online PNM-based VVC is applied to the distribu-
tion network. It means the proposed online PNM-based VVC
can effectively eliminate voltage violations in the dynamic sce-
nario.

D. Algorithm Scalability: IEEE 8500-node Test Feeder

The IEEE 8500-node test feeder [39] is used to test the
scalability of the online PNM-based VVC strategy. The test
feeder is modified by adding several PV generators, as shown
in Fig.12, where the capacities of thoes PV inverters are set as
100 kVA. The base voltage for the IEEE 8500-node test feeder
is 7.2 kV and the base power is 100 kVA. The aggregate load
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Fig. 12. IEEE 8500-node test feeder.
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Fig. 13. Aggregate load and PV generation across the IEEE 8500-node test
feeder.

and PV generation across the IEEE 8500-node test feeder are
shown in Fig.13.

Fig. 14 reports minimum voltage profiles without control in
phase-a, phase-b and phase-c networks for each time step. As
seen in Fig. 14 , voltage violations occur in phase-a networks
for this distribution network without control. Next, suppose
one change is made: the proposed online PNM-based VVC is
applied to manage the VAr outputs of PV generators. In this
case, the maximum voltage magnitude across this IEEE 8500-
node test feeder over time steps is 1.036 when implementing
the online PNM-based VVC. In addition, Fig. 15 reports min-
imum voltage profiles with the online PNM-based VVC in
phase-a, phase-b and phase-c networks for each time step. As
seen in Fig. 15, no voltage violation occurs in phase-a, phase-
b, and phase-c networks. These results illustrate the online
PNM-based VVC is still effective to protect against voltage
violations for this large distribution network, validating the al-
gorithm scalability of our proposed online PNM-based VVC.

VI. CONCLUSION

This paper proposes an online voltage control method for
unbalanced distribution networks where PNM is leveraged to
improve the convergence performance. Through the feedback
of voltage measurements from local bus agents, the central
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Fig. 15. Minimum voltage profiles with the online PNM-based VVC in phase-
a, phase-b and phase-c networks for each time step.

agent can effectively coordinate the VAr outputs of DERs in
real time to cope with fast system variations. The theoretical
analysis and proof of this work are established on unbalanced
distribution networks.

Numerical case studies are conducted in both static and dy-
namic scenarios to test the performance of the proposed online
PNM-based VVC. Through numerical case studies, it is found
that the online voltage control with feedback exhibits a bet-
ter performance than offline OPF without feedback since the
closed-loop nature of online feedback can asymptotically com-
pensate the model errors via the feedback mechanism. Our
proposed online PNM-based VVC can effectively eliminate
the voltage violations in unbalanced distribution networks, and
shows a better control performance compared with other meth-
ods (e.g., GP and DSGP), validating our theoretical analysis.

This work is the model-based VVC strategy, relying on the
knowledge of distribution networks. However, it is promising
to reduce the requirement for the knowledge of distribution
networks due to the increasing deployment of advanced mon-
itoring and metering infrastructures and available data in the
distribution network level. Our future work will investigate
data-driven model-free VVC strategies based on advanced ma-
chine learning techniques.

APPENDIX A

Proof of Proposition 4: Making use of [22, Prop. 2.1.2], it
follows that qg∗ is the optimal solution of (11), if and only if:

(qg(t)− qg∗)T∇h(qg∗) ≥ 0,∀qg(t) ∈ [qg, qg] (30)

Now, we show the sufficient and necessary conditions of (30)
are:

∂h(qg∗)

∂[qg]i
≥ 0 if [qg∗]i = [qg]i (31a)
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∂h(qg∗)

∂[qg]i
≤ 0 if [qg∗]i = [qg]i (31b)

∂h(qg∗)

∂[qg]i
= 0, if [qg]i < [qg∗]i < [qg]i (31c)

Sufficiency: As the condition (31) holds, it is straightforward
that (30) holds.
Necessity: It will be established using proof by contrapositive.
Suppose there exists a [qg∗]i such that the condition (31) fails
to hold, there always exists a qg(t) ∈ [qg, qg] such that the
condition (30) fails to hold. For example, assume (31a) does
not hold, i.e., ∂h(qg∗)

∂[qg ]i
< 0 as [qg∗]i = [qg]i. Then, let all the

elements in qg(t) be the same as qg∗ except [qg(t)]i > [qg]i =
[qg∗]i. In this case, such a qg(t) does not satisfy (30). Thus,
we conclude that (31) is the necessary condition of (30).

From the above analysis, we can know that if qg(t) is the
optimal solution qg∗, then (31) holds. It follows from (31) that
[P4.a] holds.

We then prove [P4.b] holds. Note that with respect to i ∈
I(t), it follows from the definition of I(t) and Proposition 3
that:

[u(t)]i > 0 if [qg]i ≤ [qg(t)]i ≤ [qg]i + [ε(t)]i, i ∈ I(t)
(32a)

[u(t)]i < 0 if [qg]i − [ε(t)]i ≤ [qg(t)]i ≤ [qg]i, i ∈ I(t)
(32b)

Consider the following sets of indices:

I1 ={i|[qg]i > [qg(t)]i > [qg]i or [qg(t)]i = [qg]i, [u(t)]i < 0

or [qg(t)]i = [qg]i, [u(t)]i > 0 for i ∈ {1, ..,m}\I(t)}
(33a)

I2 ={i|[qg(t)]i = [qg]i, [u(t)]i ≥ 0 or [qg(t)]i = [qg]i,

[u(t)]i ≤ 0 for i ∈ {1, ..,m}\I(t)} (33b)
I3 ={i|[qg(t)]i = [qg]i or [qg(t)]i = [qg]i, for i ∈ I(t)} (33c)

I4 ={i|[qg]i < [qg(t)]i ≤ [qg]i + [ε(t)]i

or [qg]i − [ε(t)]i≤[qg(t)]i < [qg]i, for i ∈ I(t)} (33d)

And set α̃:

α̃ = sup{α(k)| [qg]i ≥ [qg(t)]i−α(t)[u(t)]i ≥ [qg]i, ∀i ∈ I1∪I4}
(34)

In view of the definitions of I1 and I4 as well as (32), we can
know α̃ > 0. Define the vector ū(t) as follows:

[ū(t)]i =

{
[u(t)]i, i ∈ I1 ∪ I4

0, i ∈ I2 ∪ I3

(35)

In view of (17) and (32)-(35), we have:

qg(t+ 1) = [qg(t)− α(t)u(t)]q
g

qg

= qg(t)− α(t)ū(t),∀α(t) ∈ (0, α̃]
(36)

In view of the definitions of I2 and I(t), it follows that:

∂h(qg(t))

∂[qg]i
≤ 0, if i ∈ I2, [qg(t)]i = [qg]i (37a)

∂h(qg(t))

∂[qg]i
≥ 0, if i ∈ I2, [qg(t)]i = [qg]i (37b)

Combining (33b) and (37), it follows that:∑
i∈I2

∂h(qg(t))

∂[qg]i
[u(t)]i ≤ 0 (38)

Using (35) and (38), it follows that:

∇h(qg(t))T ū(t) =
∑

i∈I1∪I4

∂h(qg(t))

∂[qg]i
[u(t)]i

≥
∑

i∈I1∪I2

∂h(qg(t))

∂[qg]i
[u(t)]i +

∑
i∈I4

∂h(qg(t))

∂[qg]i
[u(t)]i

(39)

Using (18) and the structure of D(t), and rearranging terms,
we have:∑

i∈I1∪I2

∂h(qg(t))

∂[qg]i
[u(t)]i +

∑
i∈I4

∂h(qg(t))

∂[qg]i
[u(t)]i

= y(t)TB(t)−1y(t) +
∑
i∈I4

∣∣[H]ii
∣∣−1

[
∂h(qg(t))

∂[qg]i
]2 ≥ 0

(40)

where B(t) is a positive definite matrix, defined in (26), and
y(t) is a column vector formed by rearranging ∂h(qg(t))

∂[qg]i
for

i ∈ I1 ∪ I2 in the order consistent with B(t).
From the definitions of I3 and I(t), we can know that for

i ∈ I3, ∂h(qg(t))
∂[qg ]i

satisfies (31). We next prove: as qg(t) is

not the optimal solution, there must exist a ∂h(qg(t))
∂[qg ]i

6= 0 for
i ∈ {I1 ∪ I2 ∪ I4}, which can be proved by contradiction.
Suppose ∂h(qg(t))

∂[qg ]i
= 0 for i ∈ {I1 ∪ I2 ∪ I4}, then it follows

that for i ∈ {I1 ∪ I2 ∪ I4}, ∂h(qg(t))
∂[qg ]i

satisfies (31). Plus that

for ∀i ∈ I3, ∂h(qg(t))
∂[qg ]i

satisfies (31), it follows that qg(t) is the
optimal solution, resulting in the contradiction. Thus, we can
know there must exist a ∂h(qg(t))

∂[qg]i
6= 0 for i ∈ {I1 ∪ I2 ∪ I4}.

Combing it with (40), it implies that:

y(t)TB(t)−1y(t) +
∑
i∈I4

∣∣[H]ii
∣∣−1

[
∂h(qg(t))

∂[qg]i
]2 > 0 (41)

It then follows that:

∇h(qg(t))T ū(t) > 0 (42)

Combing this relation with (36) and the fact α̃ > 0, it follows
that ū(t) is a feasible descent direction at qg(t) and there
exists a scalar ᾱ(t) for which the desired relation [P4. b] is
satisfied. Q.E.D.

APPENDIX B

The determination of the conventional devices in the upper
layer

The voltage control devices in distribution networks exhibit
different temporal characteristics, which should be addressed
in the voltage control system design. The conventional dis-
crete devices with slow and discrete nature should be operated
in the slow timescale. Frequent adjustments of those discrete
devices are not beneficial for the economic operation. How-
ever, the inverter-based DERs, e.g., PV, with fast and contin-
uous nature could effectively respond to voltage issues with a
fast timescale. Consequently, those voltage regulation devices
should be operated in different timescales.

The two-layer VVC framework is depicted in Fig.16. In the
upper layer, a model predictive control (MPC)-based control
scheme is proposed to optimally coordinate the operation of
conventional discrete devices, including on-load tap changer
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Fig. 16. Two-layer Volt/VAr control framework.

(OLTC) and capacitor banks (CBs), over slow timescale. Al-
though the VAr outputs of DERs are also considered in the
upper layer, only conventional discrete devices are scheduled
in this upper layer.

MPC is widely employed to make optimal operation deci-
sions in over a given time horizon. Optimal operation decisions
over this given time horizon are generated, but only the deci-
sion for the first time step is implemented in practice. In the
MPC, let Hp and Kp = {1, .., Np} denote the prediction hori-
zon and the prediction control steps, where Tp is the duration
of each control period in the slow timescale and Np = Hp/Tp.

Define the parameters and variables in the column
vector form: let ntap(t) = [nφtap(t)]φ∈Φ0

,∆ntap(t) =

[∆nφtap(t)]φ∈Φ0 ∈ Z3 denote the tap position and change of
OLTC, ncb(t) = [ni,cb(t)]i∈N ,∆ntap(t) = [∆ni,cb(t)]i∈N ∈
Zm denote the number and switching times of CBs, ql(t) =
[qli(t)]i∈N , qcb(t) = [qcbi (t)]i∈N ∈ Rm denote the reactive
load consumption power, reactive power generated by CBs,
respectively. Let ∆qcb = [∆qcbi ]i∈N ∈ Rm denote capacitor
bank unit reactive power output, and ∆tap = [∆φtap]φ∈Φ0

∈
R3 denote the tap step size of OLTC, where ∆φtap is the tap
step size of OLTC in phase φ. Then vφ0 (t) can be expressed
as follows:

vφ0 (t) = (1 + nφtap(t)∆
φtap)2,∀t ∈ Kp (43)

However, (43) could lead to a nonlinear and nonconvex mixed-
integer optimization problem, making the optimization prob-
lem hard to solve. To this end, a linear approximation of (43)
is derived as follows:

vφ0 (t) = 1 + 2nφtap(t)∆
φtap+ (nφtap(t)∆

φtap)2

≈ 1 + 2nφtap(t)∆
φtap,∀t ∈ Kp

(44)

Such an approximation is believed to hold since the term
(nφtap(t)∆

φtap)2 << 1, which can be written in a compact
form:

v0(t) = 13 + 2diag
(
ntap(t)

)
∆tap,∀t ∈ Kp (45)

where 13 is a 3× 1 column vector of ones.
Finally, in the upper layer, the MPC problem can be formu-

lated as follows:

min
∑
t∈Kp

1

2

(
||v(t)− vr||2Cv + ||ntap(t)− ntap(t− 1)||2Ctap

+ ||ncb(t)− ncb(t− 1)||2Ccb
)

(46a)

subject to: (5) and (45),∀t ∈ Kp (46b)
q(t) = qc(t)− qg(t),∀t ∈ Kp (46c)

qc(t) = ql(t)− qcb(t),∀t ∈ Kp (46d)
qg(t) ≤ qg(t) ≤ qg(t),∀t ∈ Kp (46e)

ntap ≤ ntap(t) ≤ ntap,∀t ∈ Kp (46f)

∆ntap ≤ ∆ntap(t) ≤ ∆ntap,∀t ∈ Kp (46g)

0 ≤ ncb(t) ≤ ncb,∀t ∈ Kp (46h)
∆ncb ≤ ∆ncb(t) ≤ ∆ncb,∀t ∈ Kp (46i)

qcb(t) = diag(ncb(t))∆q
cb,∀t ∈ Kp (46j)

In (46a), vr is the reference of squared voltage magnitude,
Cv , Ctap, and Ccb are the weighting matrices corresponding
to the three terms. (46b) denotes the power flow constraints
and the constraints of head bus 0; (46c)-(46d) are the reactive
power relationships; (46e) is the VAr limits for DERs; (46f)
denotes the OLTC tap position limits; (46g) constrains the
OLTC tap change; (46h) and (46i) constrain the maximum
number and switching times of CBs; (46j) obtains the reactive
power generated by CBs based on ncb(t). The above problem
(46) is a mixed-integer convex programming (MICP) problem
and can thus be efficiently solved by MICP solvers. Only the
optimal solution of OLTC and CBs in the first time step will
be implemented.
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