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Abstract—Evaluation of conservation voltage reduction (CVR) 
factor is critical to peak load reduction, energy conservation, and 
many CVR-related power system control/optimization strategies. 
This paper proposes a novel robust CVR factor evaluation method 
using soft constrained gradient analysis based on time-varying 
load modeling and real utility field measurements. Firstly, the 
time-varying ZIP parameter identification is formulated as an 
over-determinant problem composed of first-order gradient with 
respect to each coefficient and soft constraints representing 
temporal correlation of loads in each time step, in order to improve 
the robustness and smoothness of CVR factor evaluation. Then, 
problems in time series are coordinated with a sliding window 
approach. A necessary condition for selecting the smallest window 
size is proposed and strictly proved to guarantee the existence and 
uniqueness of the solution of time-varying load modeling problem. 
Finally, time-varying CVR factors are accurately and robustly 
calculated with field measurements and the identified load model. 
Case studies are performed using sufficient field measurements 
obtained from two real utilities. Unlike existing methods that 
require a large number of measurements to obtain precise 
estimation of CVR factor, the proposed method is sufficiently 
accurate even when the measurements are limited or of low time 
resolution. Further, the accuracy and robustness of the proposed 
approach are validated under different types of uncertainties and 
compared with other existing data processing and CVR factor 
evaluation methods. 

Index Terms—Conservation voltage reduction, time-varying 
load modeling, robust evaluation, limited measurements 

NOMENCLATURE 

A.  Abbreviations 
CVR Conservation voltage reduction 
ANSI American national standards institute 
SVR Support vector regression 
ZIP Constant impedance, constant current 

and constant power load 
PMU Phasor measurement unit  
WAMS Wide area management system 
SCADA Supervisory control and data acquisition  
MAD Median absolute deviation 
MSE Mean squared error 
RLS Recursive least square 
RLS-VFF Recursive least square with variable 

forgetting factors 

  
MAPE Mean absolute percentage error 
SNR Signal-to-noise ratio 
B.  Parameters 
���� Active power of exponential load model 

���� Exponential load model coefficient 

���� Active power of ZIP load model 
�� Nominal active power 
�� Constant impedance coefficient of active 

power 
�� Constant current coefficient of active 

power 
�� Constant power coefficient of active 

power 
� Voltage magnitude measurement 
�� Nominal voltage 
�, �, � Median value, standard deviation, and 

length of the window in Hampel filter 
L Total time length of the data set 
n Window size 
s Number of repetitive data in a window 
�� Weight of current initial estimation  
�� Weight of historical solution 
∆�, � Sampling interval and length of data set 
∆� Saved energy consumption 
C.  Variables 
��,�, ��,�, ��,� Time-varying coefficients of ZIP model 

����,�, �� Time-varying active and voltage 
measurements 

��
∗ Active power estimated by load model 

��  Error between power measurement and 
estimated result 

� Accumulative squared error 
��

�, ��
� Rated voltage and power measurements 

��,�, ��, ��,� Matrices of determinant problem 
��,�, ��,� Matrices of over-determinant problem 
��,�

� , ��,�
� , ��,�

�    Initial estimation of ZIP coefficients 

����,�
�   CVR factor for active power at time � 

�������,�, ������,� Active power when CVR is off and on 

��,������, ��,����� Voltage when the CVR is off and on 

D.  Functions 
�(�) Range space of � 
�(�) Kernel of � 

I. INTRODUCTION 

S a cost-effective way to reduce peak load, save energy 
and maximize the utilization of power distribution 

capability, conservation voltage reduction (CVR) is widely 
studied [1-2]. With the integration of distributed renewable 
energy and electric vehicles in recent years, CVR is becoming 

Robust Conservation Voltage Reduction Evaluation 
using Soft Constrained Gradient Analysis 

Zixiao Ma, Graduate student member, IEEE, Yingmeng Xiang, Member, IEEE, and Zhaoyu Wang, 
Senior member, IEEE 

A 
Zixiao Ma, Yingmeng Xiang and Zhaoyu Wang are with the Department 

of Electrical and Computer Engineering, Iowa State University, Ames, IA 
50011 USA (e-mail: zma@iastate.edu; yxiang@iastate.edu; 
wzy@iastate.edu).  

Corresponding Author: Zhaoyu Wang 
This work was supported in part by the U.S. Department of Energy Wind 

Energy Technologies Office under Grant DE-EE0008956, and in part by the 
National Science Foundation under ECCS 1929975. 

Authorized licensed use limited to: Iowa State University. Downloaded on February 27,2022 at 00:48:10 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3146842, IEEE
Transactions on Power Systems

 2

increasingly popular in active distribution networks to alleviate 
the related voltage and energy issues [3-4]. According to the 
American National Standards Institute (ANSI) standard C84.1, 
the user-end voltage level should be within 120 V ± 5% [5]. The 
principle of CVR is to supply the power to the customers at a 
lower voltage (i.e., 114 V - 120 V) without interrupting the 
customers. In other countries, there are also similar standards 
that serve as the lawful foundation of CVR. 

The CVR has been implemented by multiple utilities 
worldwide, such as American Electric Power System, BC 
Hydro, and Dominion Virginia Power [6-7]. From the utilities’ 
point of view, it would be helpful for deciding which feeders 
are suitable to implement the CVR to achieve best energy 
saving, if there is an effective method to evaluate the 
performance of CVR of each feeder. By practical tests 
conducted by utilities in the past 30 years, they have found that 
generally 0.3%~1% load consumption reduction can be 
achieved per 1% voltage decrease [7]. This relationship is 
captured by CVR factor, which is defined as percentile load 
consumption reduction divided by percentile voltage reduction. 
Higher CVR factor of a feeder indicates higher energy saving 
efficiency if CVR is implemented on that feeder. While it brings 
a lot of benefits to implement the CVR, the detailed CVR factor 
evaluation should be carefully conducted to aid the operators’ 
decision-making. Actually, multiple challenges are confronting 
the CVR factor evaluation: 1) the CVR factor depends on a 
variety of factors, including the power grid configurations, load 
types, customers’ behaviors, local weather, etc., making the 
CVR factor highly stochastic and time-variant; 2) the 
integration of distributed generators, microgrids, electric 
vehicles, and demand response strategies are transforming the 
distribution systems to be more active, which are complicating 
the CVR factor evaluation; 3) the CVR factor may be 
susceptible to or even masked by the natural variation of loads, 
as well as outliers and noises in the measurement data. Thus, 
the accurate and robust evaluation of the CVR factor is regarded 
as a major barrier in implementing CVR [7]. 

There have been various methods devoted to the CVR factor 
evaluation, and they can be categorized into five major 
categories: comparison-based [8], regression-based [9], 
synthesis-based [10], perturbation-based [11-12] and load-
modeling-based [13]. 1) The comparison-based method is to 
apply the CVR to a feeder while applying the normal voltage to 
a similar feeder at the same time; or it is to apply CVR to a 
feeder while applying a normal voltage to the same feeder but 
at another time with similar load conditions. Then, the CVR 
factor is approximated by the percentage difference of energy 
consumptions in the two cases divided by the percentage 
voltage difference. Although the comparison method is 
straightforward, it is difficult to find a similar feeder or a similar 
load condition in practice. 2) The regression method models the 
load as a linear/nonlinear function with respect to its impact 
factors, including voltage, season, temperature, etc. This 
method is comprehensive, but it usually assumes that the 
coefficients of impact factors do not change over a long time 
(monthly to yearly), since the measurements with the same 
sampling rate of all the impact factors are difficult to obtain. 3) 

In the synthesis-based method, the CVR factor of individual 
components (e.g., industrial load, commercial load, residential 
load) are estimated first, then the overall CVR factor is obtained 
by integrating the CVR factors and the ratios of individual 
components. It takes effort to analyze the CVR factors of 
individual components; also, the results obtained in one feeder 
may not be applicable to another feeder, which hinders the 
application of the synthesis-based method. 4) The perturbation-
based method is recently developed, and it proactively causes a 
voltage perturbation using an advanced voltage regulation 
device (e.g., smart inverter or smart transformer) and record the 
resultant voltage and load variation with an advanced 
measurement device, such as a phasor measurement unit (PMU), 
to calculate the CVR factor. While the perturbation-based 
method has multiple advantages, it requires extra investment to 
install the smart transformers and PMUs [14], which may 
prohibit its wide adoption. 5) The load-modeling-based method 
evaluates the CVR factor by directly analyzing the power-to-
voltage sensitivity with well-established load models, such as 
exponential and ZIP load models. An advantage of this method 
is that the CVR factor can be analytically calculated, but a 
sufficient number of measurements are needed for ensuring the 
accuracy of the load model.  

It is worth noting that, the relationship between power and 
voltage variations in real systems is mainly manifested as load 
induced voltage change due to line voltage drop and voltage 
induced load change attributed to CVR effects [11]. The 
correlation directions of power and voltage in these two 
scenarios are opposite. In actual systems, the former scenario 
widely exists, thus leading to inaccurate real-time CVR factor 
evaluation, if the load composition and parameters are not 
updated timely. To overcome this problem, CVR factor 
evaluation based on time-varying ZIP load modeling is 
motivated, which adjusts the load composition and parameters 
in real-time. 

Recently, the CVR is widely integrated with various power 
system optimization and control schemes, such as PV 
generation control [15-17], optimal power flow analysis [18], 
power loss optimization [19], electric vehicle charging 
scheduling [20], frequency regulation [21], etc. While those 
researches broaden the application of CVR, they typically 
assume that the accurate CVR factor is already known for the 
feeder/substation. This highlights the importance of CVR factor 
evaluation. 

In our previous work, we have proposed multiple CVR factor 
assessment approaches. In [22], a multi-stage support vector 
regression (SVR) method is used to estimate the power 
consumption without voltage reduction during the CVR. Then, 
the CVR factor can be calculated with comparison-based 
method. This method does not assume any CVR model, but the 
accuracy highly depends on the prediction performance of SVR. 
In [23], the CVR factor is calculated based on time-varying load 
modeling, however, the adopted exponential model intrinsically 
assumes all the load power to be voltage-sensitive. This 
assumption is relaxed by replacing the exponential model with 
ZIP model in [24], i.e., the voltage-insensitive components are 
aggregated into the constant power term. A robust recursive 
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least square method is proposed to identify the coefficients of 
the ZIP model but with simulated data only. Moreover, due to 
its dynamical property, the overshoot and settling time after 
disturbance exist and highly depend on the parameter setup.  

To overcome the remaining challenges of the existing CVR 
factor evaluation methods, this paper proposes a robust time-
varying CVR factor evaluation approach for real utility field 
measurement. Specially, soft constraints of ZIP parameters with 
temporal correlation among the sliding time windows are 
integrated into the time-varying parameter identification 
process. Since in each time window, the optimization problem 
is solved in a static manner, the overshoot and settling time 
issues are fully eliminated. To guarantee the existence and 
uniqueness of the solution of the optimization problem, a 
necessary condition of the selection of window size is proposed 
and mathematically proved. Compared with numerical 
programming approaches, the proposed soft constraints lead to 
more robust and smoother results. By incorporating the Hampel 
filter, the robustness against outliers, disturbances and noises in 
the raw data is significantly improved. From statistical analysis, 
the proposed is sufficiently accurate, even using measurement 
with low time-resolution. Comparative studies and statistical 
analysis are conducted to validate the advantages of this method. 

II. TIME-VARYING LOAD MODELING 

A. Static Load Modeling 

Appropriate load modeling is essential to the assessment of 
CVR factor. Load modeling means the mathematical 
representation of the load (e.g., active power and reactive power) 
in a feeder or load bus concerning the relevant factors (e.g., 
voltage, frequency, temperature, time). Generally, there are 
three major categories of load models commonly used: static 
models, dynamic models, and composite models. Static models 
represent the power of a feeder or bus during a period of time 
as functions of the magnitudes of static voltages and 
frequencies, etc., while neglecting the loads’ dynamic process. 
Dynamic models describe the loads’ power as dynamic 
functions with respect to voltages and frequencies, differential 
equations are usually adopted to describe the power dynamics 
in response to disturbances. By combining the static models and 
dynamic models, composite load models can be formulated [25].  

Since the main purpose of CVR factor evaluation is to analyze 
the performance of energy conservation in power grid steady-
state operation when the load voltages are deliberately reduced, 
it is sufficient to adopt a static load model. Examples of the 
static load models include the exponential model and ZIP model, 
which are briefly explained as follows. 

1) Exponential Model 

The exponential model describes the relationship between the 
power and voltage in the following exponential form, 

����

��
= �

�

��

�
����

(1) 

where ����  is the power measurement and ����  is the 

exponential parameter. The exponential load model is often 
adopted to characterize the mixed loads, and it captures the load 

restoration feature. As mentioned above, it is important for a 
load model to capture the load composition to accurately 
evaluate CVR factor, due to the wide existence of load induced 
voltage change, in which, the power and voltage have negative 
correlation. However, exponential load model intrinsically 
assumes that all the measured power are voltage-correlated. 
Therefore, an appropriate load model taking load composition 
into account is imperative [26-28].  

2) ZIP Model 

As one of the most commonly used load models, the ZIP 
model considers three components, i.e., constant impedance (Z), 
constant current (I), and constant power (P). The active power 
of the load is expressed as polynomial terms as follows. 

����

��
= �� �

�

��

�
�

+ ��

�

��
+ �� (2) 

where ���� is the active power measurement; �� is the nominal 
active power; �� , ��  and  ��  are the active power-related 
coefficients of the constant impedance, current, and power 
components, respectively;  �  is the voltage magnitude 
measurement; �� is the nominal voltage. It is worth noting that 
the underlying nominal impedance and nominal current are 
omitted in (2), since we use the per unit expression. Unlike 
exponential load model, the voltage-uncorrelated power is 
reflected in the constant power term in ZIP model. 

Other static load models include frequency-dependent model, 
LOADSYN model developed by Electric Power Research 
Institute, which are not introduced here due to page limitation.  

B. Time-Varying Load Modeling 

Static load models focus on representing the steady-state 
relationship between load power and voltage/frequency, and it 
usually assumes the model coefficients to be constants in a 
relatively long time period. However, this assumption is 
vulnerable due to customers’ power consumption behavior and 
switching operation of loads. Moreover, load composition is 
time-variant and the portion of voltage induced load change 
caused by CVR needs to be determined in real-time for accurate 
evaluation. As a result, time-varying load models are 
imperative to depict the time-varying features of loads.  

A time-varying ZIP load model for active power is described 
as follows [23-24], 

����,�

��
= ��,� �

��

��

�
�

+ ��,�

��

��
+ ��,� (3) 

where the measurements (����,�, ��)  and coefficients 

(��,�, ��,�, ��,�) are changing with time t.  

Similarly, a time-varying ZIP load model for reactive power 
can be derived. They are not explained in detail here since this 
paper focuses on active power, and the ZIP load model is used 
as an example of the load models. The proposed method can be 
conveniently extended to reactive power and other load models. 

III. ROBUST CVR FACTOR EVALUATION 

In this section, a robust CVR factor evaluation method is 
proposed using the time-varying ZIP load modeling and 
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power/voltage field measurement data. A framework of the 
proposed method is shown in Fig. 1. 

 In power system long time operation, the measurements, 
including the active power, reactive power, frequency and 
voltage, can be continuously obtained by the measurement 
devices, such as PMUs, smart meters, and/or voltage and 
current sensors. The measurements for a feeder, for example, 
can be utilized to model the load characteristics and perform 
CVR analysis of that feeder. The raw data usually contains 
some noises or even errors, and part of the data may be missing; 
thus, appropriate missing data recovery, outlier detection and 
noise canceling should be implemented. Based on the errors �� 
between the power measurements �� and simulated results ��

∗ 
of the load model, the parameter identification algorithm can 

update the time-varying coefficients ���,�, ��,�, ��,�� of the load 

model. When the errors are sufficiently small, the parameters 
can be finally obtained and sent to the CVR factor calculator. 
Then, the time-varying CVR factor can be computed with the 
desired voltage reduction, power and voltage measurements, 
and identified load model parameters. A statistical analysis is 
conducted for the calculated CVR factors as feedback to 
evaluate the accuracy of the methods. 

A. Raw Data Processing 

The power and voltage data needed for CVR factor 
evaluation can be measured by the PMU devices and 
transmitted to the control centers via the wide area management 
system (WAMS) network, or they can be measured by the 
sensors/meters and transmitted to the control center via the 
supervisory control and data acquisition (SCADA) network. 
During both data generation and data transmission processes, 
errors and noises are inevitable, which may cause missing and 
errors in the data received by the control center. Thus, data 
recovering is needed to recover the missing data if possible; 
outlier detection should be adopted to replace the outliers with 
reasonable measurements; filtering should be carried out for the 
purpose of smoothing the data. 

Missing data recovery is an extensively studied topic, and 
there are a variety of methods available; thus, the missing data 
recovery is not discussed in detail here. For the outlier detection 
and data smoothing, the Hampel filter is adopted in this study. 
It has two parameters to be configured, i.e., the sliding window 
size and the standard deviation. In the Hampel filter, each data 

point together with � points on its both sides in the time series 
form a data window. The median value ��  of the ith data 
window is calculated by 

�� = median(����, … , ��, … , ����) (4) 
where �  denotes data points. The standard deviation � is 
estimated using the median absolute deviation (MAD), i.e.,  

�� = 1.4826 × ���� (5) 

���� = median(|���� − ��|, … , |�� − ��|, … , |���� − ��|) (6) 

Any data point �� outside of ��±3�� (99.73% confidence level) 
will be identified as an outlier and replaced with �� . The 
window size is selected empirically as 15 in this study for the 
best performance. 

B. Problem Formulation of Load Modeling 

The CVR factor evaluation is based on the time-varying ZIP 
model in this paper, and the accuracy of load modeling-based 
CVR factor assessment approaches highly depends on the 
performance of parameter identification of the load model. 
Therefore, to identify the accurate load model parameters, a 
general optimization problem is formulated to find the optimal 
coefficients ��,� , ��,� , and ��,�  to minimize the accumulative 

squared error between estimated power and real power using 
field voltage �� and power measurements ��. 

min
��,�,��,�,��,�

� = � ���,� �
��

��

�
�

+ ��,�

��

��
+ ��,� −

��

��

�

��

���

(7) 

�. �.                       0 < ��,�, ��,�, ��,� < 1              (8) 

where � is the accumulative squared error, and L is the total time 
length. 

C. Time-Varying Load Parameter Identification 

Since the objective function in (7) is convex, without 
considering the constraints, the optimum can be calculated by 
letting the first-order gradient with respect to each of the 
coefficients ��,�, ��,�, ��,� be zero: 

��

���,�
= � 2(��

�)����,�(��
�)� + ��,���

� + ��,� − ��
��

�

���

= 0 (9) 

��

���,�
= � 2��

����,�(��
�)� + ��,���

� + ��,� − ��
��

�

���

= 0   (10) 

��

���,�
= � 2���,�(��

�)� + ��,���
� + ��,� − ��

��

�

���

= 0       (11) 

where we denote 
��

��
= ��

� and 
��

��
= ��

� for conciseness.  

   The above problem (9)-(11) is not solvable because it has nine 
variables but only three equations. A sliding window approach 
is applied to calculate the time-varying parameters ��,� , ��,� 

and ��,�, as depicted in Fig. 2. For a set of data in a time window, 

it is assumed that the time-varying parameters are constant in 
each time window with length � . Considering discrete-time 
sampling data, the window moves forward one sampling time’s 

Fig. 1.  The overall framework of the proposed CVR evaluation method. 
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long at a time with overlaps.  The calculated parameters within 
each window are considered as the result of the last sample 
point of the window, i.e., the parameter identification results 
start from (��,� , ��,� , ��,�). Then, denoting �� = � − � + 1 , 

equations (9)-(11) can be expressed in a matrix form as  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡� ��

��

�

����

� ��
��

�

����

� ��
��

�

����

� ��
��

�

����

� ��
��

�

����

� ��
�

�

����

� ��
��

�

����

� ��
�

�

����

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

× �

��,�

��,�

��,�

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡� ��

���
��

�

����

� ��
���

�

�

����

� ��
�

�

���� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (12) 

where � = �, … , �. 

Theorem 1: The determinant problem (12) has a unique 
solution only if  � − � + 1 ≥ 3, where � ≥ 1 is the number of 
same-valued/repetitive ��

� within the window. 

Proof 1: For conciseness, denote the  3 × 3 matrix on the left-

hand-side of (12) as ��,� ; denote ���,�, ��,�, ��,� �
�

 as  �� ; 

denote 3 × 1 vector on the right side of (12) as ��,�. We can 

have ��,� = ∑ ��
�
���  where  

�� = �

��
��

��
��

��
��

��
��

��
��

��
�

��
��

��
� 1

� (13) 

Obviously, for each � = ��, … , �, the rank of �� matrix is 1, 
denoted as rank(��) = 1. We know that for � same-valued ��

�, 
it has rank(∑ ��

�
��� ) = rank(���) = rank(��). Since the rank 

of the sum of � matrices are less than or equal to the sum of the 
ranks of each matrix, i.e.,  

rank���,�� ≤ ∑ rank(��)�
��� = ∑ rank(��)�����

��� = � − � + 1

(14) 

Thus, the necessary condition for that ��,� has full rank is � −

� + 1 ≥ 3. Only under this necessary condition, it is possible to 
calculate the solution as �� = ��,�

����,�.                                                

According to Theorem 1, for each time window with � − � +
1 ≥ 3, i.e., at least three data points with different values, the 
parameters ��,� , ��,�  and ��,�  can be calculated by directly 

solving the determinant problem (12). However, this method 
has three problems. Firstly, the constraints of parameters ��,�, 

��,� and ��,� are not taken into consideration, thus it can overfit 

the data with abnormal identified parameter values (e.g., the 
magnitudes of parameters can be hundreds), which leads to 
meaningless CVR factor evaluation. One popular reason is that 
the � − � + 1  data points are too similar that leads to 
singularity. This problem also exists in other unconstrained 
methods, such as recursive least square (RLS) [23] and robust 
recursive least square with variable forgetting factors (RLS-
VFF) [24]. Secondly, the load variations are mainly driven by 
human behaviors, environmental weather, and economic 
activities. All these factors often present temporal correlations. 
However, the parameter values identified with this method 
purely depend on the measurements in that window and the 
temporal correlation with historical data is not considered. 
Finally, the solution of determinant problem (12) is 
hypersensitive to the errors and noises in measurement data that 
are not completely removed by the outlier detection and data 
smoothing methods, thus leading to weak robustness.  

Based on the above reasoning and Proof 1, for improving the 
robustness of time-varying load model parameter identification 
and capturing the temporal correlation of loads, we propose a 
method using over-determinant least squares optimization with 
soft constraints, as shown in (15). 
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 (15) 

The lower three rows in over-determinant problem (15) 
softly constrain the values of ��,� , ��,�  and ��,�  by guiding 

them towards a near optimal initial estimation that is in the 
normal range. The initial estimation is a weighted average of 
two components: solution of current time window ��,�

� , ��,�
�  and 

��,�
�  obtained by solving problem (7)-(8) with interior point 

method, and the solutions from the last time window, ��,���, 

��,��� and ��,���. To ensure meaningful CVR factor evaluation, 

��,� , ��,�  and ��,�  must be selected within the normal range 

[29]. ��  and ��  are weighting factors balancing the initial 
estimation of the current window and the historical solution, 
respectively. It is worth noting that, the solutions ��,�

� , ��,�
�  and 

��,�
�  are not accurate enough as illustrated in [30], but it can still 

provide an acceptable initial estimation that serves as soft 
constraints together with the historical results to guide the time-
varying parameter identification.  

The over-determinant problem (15) can be solved by the 
ordinary least squares approach in (16), which gives a unique 
solution that minimizes the solution errors, 

�� = �

��,�

��,�

��,�

� = ���,�
� ��,��

��
��,�

� ��,� (16) 

Fig. 2.  Schematic of sliding window method. 
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where ��,� indicates the 6 × 3 matrix on the left side of (15) 

and ��,� indicates the 6 × 1 vector on the right side of (15). 

Theorem 2:  The over-determinant problem (15) is guaranteed 
to have a unique least squares solution as in (16). 

Proof 2: Since ��,��� is an arbitrary vector in the range space of 

��,� , i.e., �(��,�) , the length of the residual vector �(��) =

��,�  − ��,���  is the minimal if ��,��� is orthogonal to �(��,�). 

Since the orthogonal complement ����,��
� 

= �(��,�
T ) which is 

the kernel of ��,�
� , ��� is a least squares solution if and only if  

��,�
� ������ = 0 ⇔ ��,�

� ���,�  − ��,����� = 0 ⇔ ��,�
� ���� = ��,�

� ��,�          

(17) 

It is straightforward to conclude that (17) would have a unique 
solution if and only if ��,�

� ��,� is invertible. Moreover, ��,�
� ��,� is 

invertible if and only if ��,� has full rank.  

Importantly, notice that the lower three rows of ��,�  are 

diagonal and full-rank; then, ��,� must have full column rank, 

which renders (16) and it is guaranteed despite the values of the 
measurements.                                                                                                                                                                     

Although over-determinant problem (15) is guaranteed to 
have a unique least squares solution, it is still important to 
carefully choose the window size � to ensure the uniqueness of 
��,�

� , ��,�
�  and ��,�

� . If � is too large, it hints that the load model’s 

coefficients should remain unchanged for a long time, which 
may not be true. If � is too small (e.g., � = 1 or 2), the problem 
(12) does not have a unique solution, as illustrated in Proof 1. 
To balance the strictness of assumption and uniqueness of the 
solution, the length of the sliding window � should be selected 
as small as possible but satisfying � − � + 1 ≥ 3. To ensure the 
uniqueness of the solution, a variant-window-size method is 
proposed as follows. To minimize the data requirement, we set 
� = 3  as a start. Then, the rank of ��,�  is checked in each 

sliding window. If rank(��,�) < 3 , extend window size 

forward to � + 1, and check the rank again. Repeat this step 
until ��,�  has full rank and finally begin the parameter 

identification. Note that ��,�  is 3 × 3, thus the rank checking 

would not significantly increase computational burden. 

D. CVR Factor Calculation 

The CVR factor is calculated as the percentage of energy 
reduction over the percentage of voltage reduction. For active 
power, the CVR factor is obtained as follows, 

����,�
� =

∆�%

∆�%
=

�������,� − ������,�

�������,� − ������,�
×

�������,�

�������,�

(18) 

�������,� = �� ���,� �
��,������

��

�
�

+ ��,�

��,������

��
+ ��,�� (19) 

������,� = �� ���,� �
��,�����

��

�
�

+ ��,�

��,�����

��
+ ��,�� (20) 

where ����,�
�  is the CVR factor for active power at time 

�; �������,� and ������,� are the active powers when the CVR is 

off and on, respectively; ��,������ and ��,����� are the voltages 

when the CVR is off and on, respectively. 

Thus, when given a series of power and voltage 
measurements, the flowchart to calculate the time-varying CVR 
factors is concluded in Fig. 3. 

IV. CASE STUDIES 

In this section, field measurements from two real utilities on 
the east coast of the United States are utilized.  Multiple case 
studies are conducted to validate the effectiveness of the 
proposed soft-constrained gradient analysis based CVR factor 
evaluation method. The power and voltage measurements for 
three phases are available, and the three-phase measurements 
are aggregated for a feeder to calculate its CVR factors. 

For a real distribution network with large numbers of feeders, 
one needs to determine the smallest number of representative 
feeders before performing CVR factor evaluation on them, in 
order to reduce computational burden. One cutting-edge 
method is to use random sampling and clustering methods to 
find the most representative feeder combination out of the large 
population of feeders [31]. Note that this paper focuses on 
improving the accuracy and robustness of CVR factor 
evaluation method, which is a post-work of the selection of 
feeders. Therefore, we directly use the feeder data selected by 
the utilities in the following case studies. 

A. Comparison between Determinant Problem and Over-
Determinant Problem 

To compare the load modeling and CVR factor results 
between the hard-constrained problem (7)-(8) solved by interior 
point method and the proposed soft-constrained over-

Fig. 4.  Comparison of power curves obtained by soft-constrained problem, 
hard-constrained problem and field measurements. 

Fig. 3.  Flowchart of the proposed CVR factor evaluation method. 
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determinant problem (15) solved by the least squares method, 
the 24-hour data from feeder 1 of substation 1 on September 8 
of the year 2012 is selected as an example. The original 
sampling rate of the field measurement is 4 points per minute. 
To relax the requirement on the data and to validate that the 
proposed method is still effective for data with lower sampling 
rate, the time resolution of the measurements is down-sampled 
as 15 minutes for this analysis, i.e., one pair of voltage and 
power data points in the original measurement is selected for 
every 15 minutes. 

As can be seen from Fig. 4, the power curves obtained by the 
hard-constrained problem and by the soft-constrained problem 
are both very close to the real field measurements. The mean 
squared errors are calculated as 1.64 × 10�� and 1.50 × 10��, 
respectively, which are both sufficiently small. 

However, the CVR factors obtained by the hard-constrained 
problem as shown in Fig. 5(a) are fluctuating violently. They 
can sharply increase or decrease, or even go out of the 
appropriate range, which is not reasonable in real practice. On 
the contrary, the CVR factors obtained by the over-determinant 

problem, as shown in Fig. 5(b), are varying mildly within the 
normal range, and there is no sharp increasing or decreasing. 

For explaining Fig. 5(a), we check the ZIP coefficients and 
discover that the sharp fluctuation of the CVR factors of the 
hard-constrained problem is caused by the sharp fluctuation of 
identified the ZIP coefficients. As can be observed from Fig. 6, 
the ZIP coefficients of the hard-constrained problem are 
fluctuating violently, since they are susceptible to errors and 
outliers. Different from the hard-constrained problem, the ZIP 
coefficients solved from soft-constrained over-determinant 
problem are smoother as shown in Fig. 7. The improvement is 
attributed to the consideration of temporal correlation modeled 
by the soft constrains. These comparisons demonstrate the 
robustness of the proposed soft-constrained over-determinant 
problem-based approach for CVR factor evaluation. 

B. Temporal Statistical Analysis  

The analysis based on more data is needed to present 
statistical analysis of the CVR results. Thus, we take more data 

Fig. 5.  (a) CVR factor curve of the hard-constrained problem. (b) CVR 
factor curve of the soft-constrained problem. 

Fig. 7.  Curves of the Z, I, P coefficients for the soft-constrained problem. 

Fig. 6.  Curves of the Z, I, P coefficients for the hard-constrained problem. 

Fig. 8. Identification results using the proposed load modeling approach. The red 
lines denote the real data, and the blue lines denote the estimated power. 
 

Fig. 9. The mean squared error of the identification result. 

Fig. 10. 3D plot of CVR factor with respect to day and time of substation 1 
feeder 1 located on east coast. 
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of the feeder 1 of substation 1 from September 1st to November 
30th in 2012. After discarding the days with measurement errors 
or meter’s shut-down, we screen out 55 days. The ZIP load 
modeling and the CVR factor calculation are conducted using 
the data with a time resolution of 15 minutes. 

The obtained power results of the 55 days are shown in Fig. 
8, and each line represents the results for one day. The mean 
squared error (MSE) of active power of each day is shown in 
Fig. 9. It can be seen that the errors are small enough. 

The CVR factors are then calculated as shown in Fig. 10. It 
can be seen that the CVR factors vary with time because of the 
load consumption patterns, and there are no unwanted sharp 
variations as observed in Fig. 5(a). The CVR factors’ statistical 
analysis is shown in Fig. 11. Empirically, the CVR factors in 
the temporal statistical analysis should roughly follow a 
Gaussian distribution [24], and a clear pattern of Gaussian 
distribution is observed in Fig. 11, which can validate the 
effectiveness of the proposed CVR estimation approach. 

C. Influence of Time Resolution on Statistical Analysis  

In real practice, the power and measurements may be 
available with different time resolutions due to various 
measurement devices and data processing methods adopted. 
Thus, it is meaningful to check the influence of time resolution 
of measurement data on the CVR factor calculation. 

Simulations are conducted for the measurements with time 
resolutions of 5, 15, 30, 45 mins, respectively. The calculated 
CVR curves and histograms are shown in Fig. 12 and Fig. 13, 
respectively. As can be seen that all the CVR factors fall within 
the reasonable range, but the standard deviation becomes larger 

as the time resolution decreases. Because analysis with a low 
time resolution (e.g., 45 mins) needs the load consumption 
pattern to keep constant for a long time (e.g., 135 mins if � = 3 
data points are used for each CVR factor calculation), which 
may rarely happen. Thus, it is suggested that CVR factors 
should be calculated with measurements of a higher time 
resolution, if possible, as this can lead to more accurate and 
robust CVR results, especially in the statistical sense. 

D. Influence of Geographical Location on Statistical Analysis 

More CVR factor analyses are carried out in other locations. 
Take feeder 2 of substation 4 from another utility as an example, 
59 days are screened out from August 28th to October 25th, 2012. 
The calculated CVR factors are shown in Fig. 14. For different 
time resolutions, the CVR factor evaluation results still 
basically follow the Gaussian distributions, which demonstrates 
that our proposed CVR calculation method is generic and not 
limited to the data in a particular location. 

E. Application of CVR factor to energy-saving 

As the energy crisis intensifies, the CVR as an effective 
energy-saving technique becomes more practically valuable. 
CVR factor evaluation enables operators to predict accurate 
energy-saving for a desired voltage reduction, thus helping with 
decision-making problems, e.g., Volt-VAR optimization 

Fig. 11. Histogram of CVR factors of all the data points of substation 1 feeder 
1 located on the east coast. 
 

Fig. 12. Comparison of all CVR factor curves of substation 1 feeder 1 for time
resolution=5, 15, 30, 45 mins. 
 

Fig. 13. Comparison of histograms of CVR factors of substation 1 feeder 1 for 
time resolution=5, 15, 30, 45 minutes. 

Fig. 14. Comparison of histograms of CVR factors of substation 4 feeder 2 for 
time resolution=5, 15, 30, 45 minutes. 
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[4,12,21]. In these problems, the decision variable voltage is 
computed based on CVR factor, and the accuracy of CVR factor 
evaluation has great impact on the energy-saving performance. 
Detailed implementation of the decision-making problems is 
out of the scope of this paper.  

In order to concisely illustrate the practical value of CVR 
factor evaluation, we test how much energy can be saved for a 
certain feeder if CVR is implemented on it. To study the effect 
of CVR in a real power system, we adopt the data set used in 
Case B which has 55 days of 24-hour continuous field 
measurement obtained from a real utility. The time resolution 
of the data is selected as 15 minutes, i.e., CVR factor is 
evaluated every ∆� = 15 minutes and held on between each 
two points. To guarantee voltage safety, the constraint 
������,� ≥ 0.95 is considered when implementing CVR. Then, 

using the calculated CVR factor, the saved energy consumption 
∆� can be calculated as 

∆� = � ∆���� = � ∆��∆�
�

���
 

       = � ����,�
� �������,� �1 −

max�0.95, ������,��

�������,�

� ∆�
�

���
 

where � denotes the total length of the data set. Figure 15 shows 
the time-varying reduced power for 1% voltage reduction. The 
green area under the reduced power curve denotes the total 
energy saving on feeder 1 of substation 1 during the 55 days if 
CVR is implemented, i.e., ∆� = 7.6 MWh.   

F. Robustness Analysis of the Proposed Method 

Most types of uncertainties reflected to the  (�, �) data can 
be classified into outliers, large disturbances and noises. To test 
the robustness of the proposed method in cases of these 
uncertainties, three comparison case studies are carried out in 
this subsection.  
1) Measurement Outliers 

Outliers are usually caused by measurement errors or data 
loss, and they are replaced by approximated values with 
Hampel filter in our method. We select the data with outliers of 
one day at substation 2 feeder 1 to show its influence on the 
CVR factor.  The power curves estimated by ZIP load modeling 
together with different filters are shown in Fig. 16, and the 
corresponding CVR calculation results are shown in Fig. 17. It 
can be observed that if the Hampel filter is excluded or replaced 
by moving average filter and Savitzky-Golay filter, the 
proposed method will indistinctively track the power 
measurement curve including the outliers; consequently, it will 

result in outliers of the calculated CVR factors. When the 
Hampel filter is applied, the robustness of the proposed method 
against outliers is significantly improved, which validates the 
necessity of data processing in step 2 of Fig. 3. 
2) Large Disturbance of Load 

Large disturbances are usually caused by load sudden change, 
switching induced topology change, etc. They should be 
accurately captured by load modeling but not be removed by 
robust filters. Similarly, the data with sudden natural load 
change of one day at substation 2 feeder 1 is selected for 
robustness analysis. The power curves obtained by ZIP load 

Fig. 15. Reduced power of feeder 1 of substation 1 if CVR is implemented. 
 

Fig. 16. Comparison of load modeling accuracy with outliers. 
 

Fig. 17. CVR factors obtained by different filters with outliers. 
 

Fig. 18. Comparison of load modeling accuracy with large disturbance. 
 

Fig. 19. CVR factors obtained by different filters with large disturbance. 
 

Authorized licensed use limited to: Iowa State University. Downloaded on February 27,2022 at 00:48:10 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3146842, IEEE
Transactions on Power Systems

 10 

modeling together with different filters and the related CVR 
factor calculation results are shown in Figs. 18 and 19, 
respectively. It shows that the sudden load change will result in 
a disturbance of the CVR factors, but still in the normal range. 
After a disturbance, the CVR factor immediately converges 
back, which shows the robustness of the proposed algorithm. 
The accuracy of load modeling is described by mean absolute 
percentage errors (MAPEs) as shown in Table I. It shows that 
Hampel filter performs better accuracy than the other two filters 
especially during the large disturbance, but is slightly less 
accurate than the result without robust filters. This is because 
the field measurement contains noises which are filtrated by the 
Hampel filter, so that the result with Hampel filter is smoother 
than directly using raw field measurement. The problem of 
measurement noise is further studied in the next case study. 

TABLE I: COMPARISON OF THE THREE ROBUST FILTERS ON DISTURBANCES. 

Method Without 
filter  

Moving 
average 

Savitzky-
Golay 

Hampel 

MAPE 0.88% 1.56% 1.00% 0.96% 

3) Noises of Data 
Noises widely exist in field measurements. To study the 

robustness of the proposed CVR factor evaluation method 
against noises, white noises with different signal-to-noise ratios 
(SNRs) are piece-wisely added to a selected field measurement 
(�, �) of substation 2 feeder 1. Note that smaller SNR indicates 
larger noise magnitude. When SNR ≥ 46dB , 99% average 
percent correct rate is achieved [32]. Therefore, in this case, the 
tested SNR is selected from 50 dB to 20 dB. Similarly, the 
performance of Hampel filter is compared with different robust 
filters. The active power estimated by load modeling 
with/without different data processing methods are shown in 
Fig. 20. The corresponding evaluated time-varying CVR factor 
curves are shown in Fig. 21. The errors between estimated 
powers and field measurements are quantified as MAPEs in 
TABLE II. The results show that, the proposed method with 

Hampel filter is most accurate and has the best robustness 
against noises in measurements. 

TABLE II: COMPARISON OF THE THREE ROBUST FILTERS ON NOISES. 

Method Without 
filter  

Moving 
average 

Savitzky-
Golay 

Hampel 

MAPE 1.90% 1.86% 1.47% 1.37% 

G. Comparison case study 

The proposed method is compared with two representative 
load modeling-based time-varying CVR factor evaluation 
methods: RLS with exponential load model [23] and RLS-VFF 
with ZIP load model [24]. The three methods are applied to the 
same field measurement from another utility’s substation. To 
clearly show the difference, we select data with uncertainties on 
September 24th, from 13:00 to 22:59. The sampling rate is 1 data 
point per minute.  

The three methods are compared in Table III.  As shown in 
Fig. 22 and Table III, the load modeling accuracy of the 
proposed method is a little lower than the conventional RLS 
method. This is because the field measurement contains noises 
and the MAPE here is calculated by the error between noisy 
power measurement and estimated power. The RLS method 
does not pre-filtrate the noises, thus it undesirably tracks the 
noisy power and show poorer robustness.  The proposed 
method shows better accuracy than the RLS-VFF method, 
because the VFF improves/accelerates the transient 
performance at some cost of stationary estimation quality [24].  

The calculated CVR factors are shown in Fig. 23. The 
conventional RLS method is not robust enough and it needs 
longest time to converge when disturbance occurs. Both the 
proposed soft-constrained method and RLS-VFF method are 
robust against disturbance, nonetheless, the RLS-VFF method 
still has some overshooting and requires settling time. 
Moreover, we can observe that the CVR factor calculated by 
exponential load model-based method significantly increases 
after 380 min. This is because the exponential load model 

Fig. 20. Comparison of load modeling accuracy with noises. 
 

Fig. 21. CVR factors obtained by different filters with noises. 
 

Fig. 22. Comparison of the three load modeling-based CVR factor evaluation
methods: (a) comparison of identification results, (b) voltage measurement. 
 

Fig. 23. CVR factors calculated by the three load modeling-based methods 
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intrinsically considers that the power is fully voltage-dependent 
which leads to over-estimation of CVR factor.  

TABLE III: COMPARISON OF THE THREE LOAD MODELING-BASED CVR 

FACTOR EVALUATION METHODS. 

Method Load model Robust Constrained MAPE 

RLS Exponential No No 0.19% 

RLS-VFF ZIP Yes No 1.26% 

Proposed ZIP Yes Yes 0.36% 

V. CONCLUSIONS 

A robust time-varying CVR factor evaluation method is 
proposed in this paper based on the ZIP load model. The first 
step of the proposed method is processing the raw field 
measurements to reduce the bad data and noises with a Hampel 
filter. Then, an over-determinant problem is formulated and 
solved efficiently to obtain the coefficients of the ZIP load 
model. A necessary condition for the existence and uniqueness 
of the solution of the over-determinant problem is proposed and 
strictly proved. Finally, the CVR factors are calculated based 
on the ZIP load model, measurements and desired voltage 
reduction. Based on field measurements from two utilities on 
the east coast of the USA, case studies are carried out. The 
studies show that the proposed method is very computationally 
efficient and easy-to-implement even in cases of low-time-
resolution data. An application to energy-saving problem is 
conducted to show the practical value of CVR factor evaluation. 
Compared with other existing robust CVR factor evaluation 
methods, the proposed approach shows the best robustness 
against uncertainties in the field measurements including large 
disturbances, outliers and noises.  
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