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Abstract—Due to the increasing penetration of volatile dis-6
tributed photovoltaic (PV) resources, real-time monitoring of cus-7
tomers at the grid-edge has become a critical task. However, this8
requires solving the distribution system state estimation (DSSE)9
jointly for both primary and secondary levels of distribution grids,10
which is computationally complex and lacks scalability to large-11
scale systems. To achieve real-time solutions for DSSE, we present12
a novel hierarchical reinforcement learning-aided framework: at13
the first layer, a weighted least squares (WLS) algorithm solves the14
DSSE over primary medium-voltage feeders; at the second layer,15
deep actor-critic (A-C) modules are trained for each secondary16
transformer using measurement residuals to estimate the states of17
low-voltage circuits and capture the impact of PVs at the grid-edge.18
While the A-C parameter learning process takes place offline,19
the trained A-C modules are deployed online for fast secondary20
grid state estimation; this is the key factor in the scalability and21
computational efficiency of the framework. To maintain moni-22
toring accuracy, the two levels exchange boundary information23
with each other at the secondary nodes, including transformer24
voltages (first layer to second layer) and active/reactive total power25
injection (second layer to first layer). This interactive information26
passing strategy results in a closed-loop structure that is able to27
track optimal solutions at both layers in a few iterations. We have28
performed numerical experiments using real utility data and feeder29
models to verify the performance of the proposed framework.30

Index Terms—Actor-critic method, joint distribution system31
state estimation, distributed PV generation, secondary distribution32
network.33

NOMENCLATURE34

A-C Actor-critic35

BCSE Branch current state estimation36

DSSE Distribution system state estimation37

DNN Deep neural network38

KDE Kernel density estimation39
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LV Low voltage 40

MV Medium voltage 41

PV Photovoltaic 42

PDF Probability density function 43

SM Smart meter 44

TDE Temporal difference error 45

cccn External input vector for secondary trans- 46

former n 47

G Gain matrix 48

H Jacobian matrix 49

IRe,n, IIm,n Real and imaginary current components of 50

secondary transformer n. 51

J Sum of squared residuals 52

lc Learning rate of A-C module 53

NMV Number of nodes in MV system 54

NLV Number of nodes in LV system 55

p̂ŝpŝps Active power injections of secondary trans- 56

formers 57

q̂ŝqŝqs Reactive power injections of secondary trans- 58

formers 59

r̂n Approximate measurement residuals of sec- 60

ondary transformer n 61

rn Actual measurement residuals of secondary 62

transformer n 63

uuun Exploratory perturbation for secondary trans- 64

former n 65

Vn Estimated voltage of secondary transformer n 66

W Weight matrix 67

WMW Weight matrix of MV network sensors 68

Wps
,Wqs Weight matrices of secondary network states 69

xpxpxp Vector of primary network states 70

xs,nxs,nxs,n Real and imaginary current components of 71

secondary network n 72

zs,nzs,nzs,n SM voltage and energy measurements of sec- 73

ondary network n 74

zMVzMVzMV MV network sensor measurements 75

Aμ,AΣ DNNs for parameterizing μn and Σn 76

αααn Parameters of critic for secondary transformer 77

n 78

δ Threshold for BCSE 79

πn Policy function of actor for secondary trans- 80

former n 81
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μn Mean vector of secondary transformern states82

θnθnθn, γnγnγn Learning parameters of DNNs in actor83

Σn Covariance matrix of secondary transformer84

n states85

ΣIRe,n
,ΣIIm,n

Components ofΣn corresponding to the states86

IRe,n and IIm,n87

σ2
ps,n

, σ2
qs,n

Variances of net active and reactive power for88

secondary transformer n89

∇αnαnαn
C Gradient of the critic DNN90

∇θnθnθnπn Gradient of policy function with respect to θnθnθn91

∇γnγnγn
πn Gradient of policy function with respect to γnγnγn92

I. INTRODUCTION93

A S MORE stochastic customer-owned distributed re-94

sources, such as photovoltaic (PV) power generators, are95

connected to low voltage (LV) secondary distribution grids, an96

urgent need grows for accurate and efficient system monitor-97

ing [1]. Specifically, topological details of secondary networks98

and the real-time measurements of customers have to be in-99

corporated into distribution system state estimation (DSSE) to100

accurately capture voltage fluctuations across LV systems and101

quantify the impacts of these variations on medium voltage102

(MV) primary distribution feeders. Recent years have seen a103

rapid growth in the deployment of smart meters (SMs), providing104

a good opportunity to achieve this [2].105

A. Literature Review and Challenges106

Most existing works have provided distribution system state107

estimation (DSSE) solutions only in a disjoint manner (i.e., by108

decoupling primary and secondary networks); these works can109

be roughly categorized into two general groups: (1) Primary110

Grid DSSE: multiple DSSE methods have been provided for MV111

primary distribution feeders, while aggregating all LV resources112

at the secondary transformers and disregarding the secondary113

grid topology and parameters [3]–[11]. The basic approach is114

to compensate for lack of a detailed secondary model in DSSE115

by estimating LV network losses, which can then be used as116

pseudo-measurements to revise measurement aggregation [12].117

(2) Secondary Grid DSSE: Another group of papers has explored118

DSSE techniques for LV secondary networks while simplifying119

primary MV feeders [13]–[19]. Here, the primary feeder has120

been generally modeled as a constant voltage source to which121

the secondary network is connected.122

All these papers use the SM measurements to monitor only123

one level of the distribution network and do not permit com-124

prehensive monitoring of the distribution network at the LV125

and MV levels. Some previous works can be extended to a126

unified model of all primary and secondary circuits. However,127

such extensions can lead to computational blow-up due to the128

extremely large size of joint primary-secondary systems, es-129

pecially for urban systems. In other words, these methods can130

take a time delay of several minutes in real-time applications,131

which may not truly reflect the current system states [20]. This132

lack of scalability contributes to unacceptable time delays in133

obtaining system states and hinders the online monitoring of134

modern distribution grids. Also, due to their disjoint approaches135

towards system monitoring, previous works in both groups can136

fail to accurately capture the potential mutual impacts of LV and 137

MV networks on each other; furthermore, the mutual impacts 138

of several neighboring secondary networks connected to the 139

same primary feeder have not been quantified. Consequently, 140

disjoint DSSE solvers become untenable and less accurate as 141

conventional distribution systems move towards more active 142

grids with higher penetration of renewable resources that can 143

cause multi-directional power flow across the grid and poses a 144

great challenge for high-confidence pseudo-measurement gener- 145

ation. Under this new situation, previous modeling assumptions, 146

such as constant voltage levels in primary feeders, can become 147

too strong. The impact of secondary network topology on voltage 148

fluctuations at the grid-edge can no longer be ignored. 149

To meet these problems, a natural solution is to devise a DSSE 150

solution that is able to jointly monitor primary and secondary 151

networks, referred to as joint DSSE. As per our knowledge on 152

the topic, studies of joint DSSE are still limited. Few recent 153

papers [21], [22] have proposed distributed multi-level archi- 154

tectures for performing DSSE at LV and MV levels. However, 155

in these cases, several critical questions remain open, which 156

may challenge the practical deployment of these joint DSSE 157

methods. 1) The DSSE algorithms only have an open-loop 158

one-directional flow of information from secondary to primary 159

feeders, which can fail to capture the mutual impacts of LV- 160

MV and LV-LV networks on each other, as the distribution 161

grids become more active. 2) Previous joint DSSE methods 162

focus on using the cloud-based infrastructure to interconnect 163

the different DSSE levels. Such an infrastructure may impose 164

additional communication costs on utilities. 3) These methods 165

require the system to be completely covered by SMs or pseudo 166

measurements. However, in actual grids, full coverage of SM 167

and high-confidence pseudo-measure generation are rare. 4) 168

Specific SM data quality problems, such as asynchronous errors 169

and missing data, are ignored in these methods, which renders 170

their practical implementation costly. 5) Primary and secondary 171

networks have distinct parametric characteristics. For example, 172

compared to MV systems, the LV networks have higher R/X 173

values and typical branch impedance levels. This characteristic 174

difference between primary and secondary systems can lead to 175

severe ill-conditioning of these joint DSSE solvers. 176

B. Overall Structure of the Proposed Hierarchical Joint DSSE 177

Framework 178

In this paper, we have proposed a hierarchical reinforce- 179

ment learning-aided framework for joint DSSE over primary 180

and secondary distribution systems using customer-side SM 181

data, as shown in Fig. 1. This work presents in detail how 182

to coordinate the hierarchical levels of the SE architecture. 183

Specifically, our framework consists of two layers: at the first 184

layer, a weighted least square (WLS)-based branch current state 185

estimation (BCSE) algorithm is performed over the primary 186

feeder to obtain the states of the MV distribution network, i.e., 187

real/imaginary branch currents. At this layer, all the secondary 188

circuits are treated as aggregated nodes with net equivalent 189

active/reactive power injections provided by the second layer 190

of the hierarchy. Note that, the load data for each secondary 191

node is treated as a variable and estimated using the second 192
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Fig. 1. Reinforcement learning-aided hierarchical DSSE framework.

layer model. Since the WLS is performed only over the primary193

feeder, it is computationally efficient. After obtaining the states194

of the primary feeder, the solver passes down the estimated195

secondary transformer nodal voltages to the second layer of196

the hierarchy. As shown in Fig. 1. This work presents in detail197

how to coordinate the hierarchical levels of the SE architecture.198

Specifically, our framework consists of two layers: at the first199

layer, a weighted least square (WLS)-based branch current state200

estimation (BCSE) algorithm is performed over the primary201

feeder to obtain the states of the MV distribution network, i.e.,202

real/imaginary branch currents. At this layer, all the secondary203

circuits are treated as aggregated nodes with net equivalent204

active/reactive power injections provided by the second layer205

of the hierarchy. Note that, the load data for each secondary206

node is treated as a variable and estimated using the second layer207

model. Since the WLS is performed only over the primary feeder,208

it is computationally efficient. After obtaining the states of the209

primary feeder, the solver passes down the estimated secondary210

transformer nodal voltages to the second layer of the hierarchy.211

At the second layer, the estimated transformer nodal voltage212

is utilized as input to update the nodal load data by solving a213

machine learning model. Specifically, a deep actor-critic (A-C)214

module [23] is trained for each LV network of secondary trans-215

formers. The goal of the A-C model is to estimate the states of216

secondary networks (i.e., secondary branch currents) by min-217

imizing the residuals of customer SM voltage measurements.218

Unlike WLS, the A-C modules leverage their past experiences219

to adaptively improve their future performance and generalize220

to unseen situations. The training process takes place offline221

and the A-C modules are employed online to estimate network222

states. Thanks to the neural network implementation of the223

A-C model, the online computation cost is several orders of224

magnitude lower than that of the WLS method. For each LV225

secondary network, a nonparametric PDF estimation approach226

is utilized to generate real and reactive power injections. The227

OpenDSS software is then leveraged to run power flow analysis.228

The computed voltages are treated as the voltage measurements, 229

along with the generated load data of the observable customers 230

and secondary transformers’ terminal voltages generated at the 231

first layer, used for A-C model offline training. The outputs 232

of the second layer of the hierarchy, which are passed back 233

to the first layer, are the net injected active/reactive powers 234

to the primary feeder for each secondary transformer. These 235

outputs are determined using the A-C-based estimated states of 236

secondary circuits. Hence, the interaction between the two layers 237

of the joint DSSE takes place at the secondary nodes, where 238

nodal voltage flows from the first layer to the second layer and 239

active/reactive power injections are passed in reverse. At each 240

iteration of this closed-loop interaction, each layer revises the 241

states of the network in response to the received inputs from 242

another layer. 243

The main contributions of our joint DSSE framework can be 244

summarized as follows: 245
� The proposed method provides comprehensive monitoring 246

of the distribution network at the LV and MV levels. The 247

estimation process has a closed-loop structure to accurately 248

quantify the mutual impacts of primary-secondary net- 249

works and secondary-secondary networks on each other. 250
� Using the proposed A-C method, utilities can achieve a 251

considerable speed-up in solving the joint DSSE in large- 252

scale grids, which allows them to monitor the whole system 253

in real-time. The distributed nature of the proposed frame- 254

work allows for allocating the computational burdens of 255

DSSE among multiple A-C modules, which further reduces 256

the computation time. 257
� Compared to the traditional WLS-based method, our deep 258

learning-aided framework eliminates the need for pseudo- 259

measurements to avoid the additional imputation error. The 260

offline training procedure is implemented using simulation 261

data. In addition, our strategy can mitigate the impact of SM 262

data quality issues, including asynchronous errors, missing 263

data, and outliers, on the training process. 264
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Fig. 2. A three-phase unbalanced MV distribution systems.

� The A-C module allows for explicit learning of the uncer-265

tainty of networks’ states caused by measurement errors266

through parametric probabilistic policy functions, which267

can enhance overall monitoring accuracy.268
� The proposed method is able to handle the topology269

changes in distribution networks. The rationale behind270

this is that the proposed method only utilizes the deep271

learning techniques to approximate the secondary-level272

estimation process. When a topology change occurs on the273

MV system, the Jacobin matrices in the first layer can be274

adjusted to accommodate this change.275

The rest of the paper is organized as follows: in Section II,276

the technical details of the proposed hierarchical joint DSSE277

are presented. In Section III, the numerical results have been278

analyzed to verify the performance of the joint DSSE method.279

In Section IV, paper conclusions are presented.280

II. DEEP ACTOR-CRITIC STRATEGY FOR JOINT DSSE281

Fig. 2 shows the common structures of distribution systems at282

the MV and LV levels. Each LV network is connected to an MV283

bus by using a single/three-phase transformer. The goal of the284

proposed method is to provide distribution system situational285

awareness for both MV and LV networks. In general, our joint286

DSSE model consists of two parts: an optimization-based solu-287

tion that infers the system states of the primary-level network,288

and a deep learning-based method that estimates the customer-289

level states and provides feedback to the first model. Note that,290

in this work, the topology and line parameters are considered291

to be available in a given distribution network. This assumption292

is realistic and consistent with the recent expansion of smart293

grid monitoring devices. In some cases without this informa-294

tion, before implementing the proposed method, our previously295

designed topology and parameter identification method [24] can296

be applied to obtain complete and accurate system models for297

MV and LV distribution grids.298

A. Primary Network BCSE299

At the first layer of the hierarchical joint DSSE, a WLS-based300

BCSE algorithm is performed over the MV network to minimize301

the sum of squared residuals (J) [25], [26]. In this paper, vector 302

is in bold. 303

min
xpxpxp

J = (zpzpzp − hhh(xpxpxp))
�W (zpzpzp − hhh(xpxpxp))

s.t. zpzpzp =

⎡
⎣
zMVzMVzMV

p̂ŝpŝps
q̂ŝqŝqs

⎤
⎦

W =

⎡
⎣
WMV 000 000
000 Wps

000
000 000 Wqs

⎤
⎦ (1)

where, xpxpxp is a vector denoting the primary network states, 304

including real and imaginary branch current values, zpzpzp is a 305

vector containing the MV network sensor measurements (zMVzMVzMV ), 306

including supervisory control and data acquisition (SCADA) 307

and distribution level phasor measurement units (μPMUs), and 308

the estimated total active/reactive power injections of secondary 309

transformers (p̂ŝpŝps, q̂ŝqŝqs) that are provided by the second layer 310

of the hierarchy.hhh is the primary network measurement function 311

that maps state values to measurements. W is a weight matrix 312

that represents the solver’s confidence level in each element 313

of zpzpzp, which consists of sub-matrices WMV , Wps
, and Wqs 314

corresponding to zMVzMVzMV , p̂ŝpŝps, and q̂ŝqŝqs, respectively. Here, WMV 315

is determined by the nominal accuracy levels of MV network 316

sensors, e.g., the weight assigned to the measurements received 317

from a specific sensor is selected as the inverse of measurement 318

error variance for that sensor [25]. The elements ofWps
, andWqs 319

are determined by the estimated uncertainty of the secondary 320

network states as elaborated in Section II-B. 321

Given the formulation (1), the WLS-based solver performs the 322

following steps to estimate the states of the primary network: 323
� Step I: Receive the latest values of p̂ŝpŝps, q̂ŝqŝqs, Wps

, and Wqs 324

from the second layer of the hierarchy (see Section II-B). 325
� Step II: Random state initialization (xpxpxp[0], k ← 1). 326
� Step III: At iteration k, update the measurement function 327

Jacobian matrix, H: 328

H =
∂hhh(xpxpxp[k − 1])

∂xpxpxp
(2)

The elements of the Jacobian matrix for the BCSE method 329

can be obtained for arbitrary feeders with known topology. 330

More details of these elements can be referred to [27]. 331

Hence, when the distribution system undergoes recon- 332

figuration, the Jacobin matrix can be easily adjusted to 333

accommodate this change.1 334
� Step IV: Update the gain matrix, G: 335

G(x) = H�(xpxpxp[k − 1])WH(xpxpxp[k − 1]) (3)
� Step V: Update the state values using the gain and Jacobian 336

matrices to reduce measurement residuals: 337

xpxpxp[k] = xpxpxp[k − 1] +G−1H�W (zpzpzp − hhh(xpxpxp[k − 1]))
(4)

1Given that the secondary transformers are generally equipped with protection
devices, when an outage happens in a radial system, a protective device isolates
the faulted area along with the loads downstream of the fault location (i.e.,
the whole secondary distribution system). In other words, the topology of the
secondary distribution systems is typically constant.
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Fig. 3. Layer II: A-C-based DSSE for secondary circuits.

� Step VI: k ← k + 1; go back to Step III until convergence,338

i.e., ||xpxpxp[k]− xpxpxp[k − 1]|| ≤ δ, with δ being a user-defined339

threshold.340
� Step VII: Given the estimated values of the branches,341

perform a forward sweep [25] to obtain the voltages of342

secondary transformers throughout the network. Pass down343

the estimated voltage of the n’th secondary transformer344

(Vn) to the corresponding A-C module in the second layer345

of the joint DSSE hierarchy.346

To deal with unbalanced systems, as pointed out in [28],347

a three-phase distribution line model that considers the self348

and mutual impedance is used in BCSE. All aforementioned349

equations still hold. Also, BCSE permits solving coupled and de-350

coupled versions of the WLS by including and ignoring mutual351

impedances. Compared to traditional state estimation solutions352

that use node voltages, BCSE adopts branch current as state353

variables, which is a more natural way of DSSE formulation for354

distribution systems [2]. The simplification of the measurement355

functions helps improve computation speed and memory usage.356

Therefore, BCSE is more suitable for large-scale distribution357

grids.358

B. Reinforcement Learning-Aided State Estimation for359

Secondary Networks360

The computational complexity of the conventional WLS tech-361

nique is mainly determined by the matrix inversion, which362

induces a complexity of O((NMV +NLV )
3). NMV and NLV363

refer to the number of nodes in the MV and LV system, re-364

spectively. In general, NLV � NMV . Thus, running a BCSE365

algorithm over the whole primary and secondary networks at366

the same time is a computationally intensive task, especially367

for large-scale urban systems (i.e., the value of NLV can be368

in the thousands). To solve this challenge, the second layer369

of the hierarchy is designed with the objective of simplifying 370

and speeding-up the joint DSSE process to achieve real-time 371

monitoring, as shown in Fig. 3. 372

Inspired by the recent success of machine learning techniques 373

in the areas of image processing and computer vision, we have 374

leveraged a reinforcement learning technique, the A-C method to 375

handle the low observability problem in real-world distribution 376

systems. Specifically, the A-C parameter learning process takes 377

place offline, and the trained A-C modules are deployed online 378

for fast secondary grid state estimation. For each secondary 379

transformer, an A-C module is trained offline using simulation 380

data. More precisely, following previous works [29]–[31], a 381

nonparametric probability density function (PDF) estimation 382

approach, known as kernel density estimation, is utilized to learn 383

the conditional PDF of customer consumption and PV outputs 384

given the time of the day, using the historical data from observed 385

distribution systems. Such a nonparametric strategy can deal 386

with the non-Gaussian distribution of renewable power. To avoid 387

under-smoothing or over-smoothing issues, a calibration process 388

has been performed to optimize the value of kernel bandwidth 389

by minimizing the overall modeling bias [32]. In some systems 390

without reactive power measurements, empirical load power 391

factors are utilized to calculate the reactive power. Based on 392

the conditional estimated PDFs, a transformation method is 393

then applied to obtain real and reactive data for each customer. 394

By using Monte Carlo simulations, the computed voltages are 395

treated as the voltage measurements, along with the generated 396

net demand data of the observable customers 2 and secondary 397

transformers’ terminal voltages generated at the first layer, used 398

for A-C model offline training. Thus, after model training, the 399

2Since residential PVs are typically integrated into distribution systems
behind-the-meter, where only the net demand is recorded by SMs. The net
demand equals native demand minus the PV generation.
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data resource required for online state estimation only include400

the measurements of the observable customers and the estimated401

secondary transformers’ voltages, which eliminates the need402

for pseudo-measurements and handles the low observability403

problem. It should be noted that additional available informa-404

tion, such as high-confidence pseudo-measurements, can also405

be added to improve the performance of the model, but is not406

required. One advantage of this training strategy is to mitigate407

the impact of SM data quality issues, such as asynchronous408

errors, missing and bad data, on the model development process.409

Further, in the online application, the proposed method can be410

easily integrated with previous data recovery methods to address411

the SM data quality problems [33], [34].412

As detailed below, the A-C module is a combination of413

policy-based and value-based reinforcement learning, which has414

advantages from both. Specifically, A-C module consists of two415

deep learning components that are trained cooperatively: (1) the416

actor represents the secondary state estimation policy function417

(πn), which receives external inputs for the n’th secondary418

circuit, including the SM voltage/energy measurements (zzzs,n),419

and the estimated transformer voltage from the first layer (Vn),420

and maps them to secondary states, xxxs,n. Here, xxxs,n are the421

real/imaginary components of secondary circuit branch currents.422

This mapping is formulated as a Dn-dimensional parametric423

multivariate Gaussian probability distribution function, where424

xxxs,n ∈ RDn [35]:425

xxxs,n ∼ πn(μnμnμn,Σn)

=
1√|Σn|(2π)Dn

e−
1
2 (xxxs,n−μnμnμn)

�Σ−1n (xxxs,n−μnμnμn) (5)

where, cccn = [zzzs,n Vn], and μnμnμn and Σn are the n’th secondary426

circuit state mean vector and covariance matrix, respectively. In427

this paper, these two statistical factors are parameterized using428

two deep neural networks (DNNs),Aμ andAΣ, with parameters429

θnθnθn and γnγnγn:430

μμμn = Aμ(cccn|θnθnθn) (6)

Σn = AΣ(cccn|γnγnγn) (7)

Basically, parameters θnθnθn and γnγnγn are the weight and biases431

assigned to the synapses in the DNNs, which need to be learned.432

This enables the operator to accurately quantify, not only the433

expected value of the secondary circuit states, but also their434

uncertainty, which is a critical element in grids with high re-435

newable penetration. (2) The critic is a DNN denoted by C with436

parameters αnαnαn for the n’th circuit, which quantifies how well437

the actor is performing. In our problem, the critic tries to predict438

the secondary network estimation residuals based on the inputs439

to the second layer:440

r̂n = C(cccn|αnαnαn) (8)

where, r̂n represents the approximate residuals; ideally, if the441

critic has perfect performance, then, r̂n = rn, meaning that442

the predicted residuals are equal to the realized measurement443

residuals rn.444

Given the defined A-C modules, the computational process at445

the second layer of the hierarchy consists of a state estimation446

stage (A), which is performed jointly with the first layer, and447

a parameter update stage (B), which is confined to the second 448

layer alone. 449
� Stage A - [Joint DSSE] 450
� Step A-I: Input the learned A-C parameters θnθnθn,γnγnγn, andαnαnαn. 451
� Step A-II: Receive the updated Vn from the first layer, and 452

construct the external input vector, cccn. 453
� Step A-III: Construct the policy function πn, according to 454

(5), using parameters θnθnθn and γnγnγn and external inputs cccn. 455
� Step A-IV: Sample secondary circuit states in real-time 456

using the constructed policy function, xxxs,n ← πn. 457
� Step A-V: Use generated states to perform a forward 458

sweep [25] over the secondary circuit to obtain the net 459

active/reactive power injections at the transformer node, 460

p̂s,n and q̂s,n, as follows: 461

p̂s,n = VnIRe,n (9)

q̂s,n = VnIIm,n (10)

where, IRe,n ∈ xxxs,n and IIm,n ∈ xxxs,n are the estimated net 462

real and imaginary current components of n’th secondary 463

transformer. 464
� Step A-VI: To constructWps

andWqs , the variances of p̂s,n 465

and q̂s,n need to be obtained. Noting that the uncertainty of 466

LV circuits states are explicitly quantified by the covariance 467

matrix of the policy function, πn, we have: 468

σ2
ps,n

= (Vn)
2ΣIRe,n

(11)

σ2
qs,n

= (Vn)
2ΣIIm,n

(12)

where, σ2
ps,n

and σ2
qs,n

are the variances of the net active 469

and reactive power for the n’th LV system, and ΣIRe,n
and 470

ΣIIm,n
are components of Σn corresponding to the states 471

IRe,n and IIm,n, respectively. These variables are deter- 472

mined using AΣ(cccn|γnγnγn). Therefore, the weights assigned 473

to ps,n and qs,n in the WLS-based solver of layer I are 474

equal to σ−2ps,n
and σ−2qs,n

, respectively. 475
� Step A-VII: Pass the net active/reactive power injection 476

of all secondary transformers to the first layer of the 477

joint DSSE framework, p̂ŝpŝps = [p̂s,1, . . ., p̂s,N ] and q̂ŝqŝqs = 478

[q̂s,1, . . ., q̂s,N ]. Go back to Step A-II until Vn is stabilized. 479
� Stage B - [A-C Parameter Update] 480
� Step B-I: After the state estimation process has converged, 481

re-sample states using the latest policy function, xxxs,n ← 482

πn + ununun, whereununun is a exploratory perturbation generated 483

using a zero-mean uniform distribution. This perturbation 484

allows the A-C module to actively search for potential 485

improvements in the learned policy and escape local min- 486

imums. 487
� Step B-II: Estimate the secondary DSSE residuals from the 488

critic, using cccn and DNN parameters αnαnαn, according to (8). 489
� Step B-III: Use generated state sample and the latest value 490

of Vn from Step A-VII, to perform a forward sweep over 491

the secondary circuit to obtain the estimated voltages; use 492

the estimated nodal voltages to obtain the realized residual, 493

rn. 494
� Step B-IV: Obtain the temporal difference error (TDE), 495

δn = rn − r̂n, and use it to update the parameters of the 496
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Fig. 4. Temporal function of the proposed hierarchical joint DSSE.

critic:497

αnαnαn ← αnαnαn + lcδn∇αnαnαn
C(cccn) (13)

where, lc is a learning rate, and∇αnαnαn
C is the gradient of the498

critic DNN with respect to its parameters. This computation499

is performed using back-propagation over the DNN [23].500
� Step B-V: Update the parameters of the actor, using the501

TDE:502

θnθnθn ← θnθnθn + laδnununun∇θnθnθnπn(cccn) (14)

γnγnγn ← γnγnγn + laδnununun∇γnγnγn
πn(cccn) (15)

with la denoting the rate of policy learning. To obtain503

the gradient of policy function with respect to DNN pa-504

rameters, [θnθnθn, γnγnγn], chain rule is applied to the two sets of505

parameters separately:506

∇θnθnθnπ(cccn) =
Σ−1n (xxxs,n −μμμn)√|Σn|(2π)Dn

e−
M
2 ∇θnθnθnAμ(cccn) (16)

∇γnγnγn
π(cccn)

=
−Σ−1n (I − (xxxs,n −μμμn)(xxxs,n −μμμn)

�Σ−1n )e−
M
2

2
√|Σn|(2π)Dn

∇γnγnγn
AΣ(cccn) (17)

where,M = (cncncn −μμμn)
�Σ−1n (cncncn −μμμn) is an auxiliary ma-507

trix. Note that ∇θnθnθnAμ and ∇γnγnγn
AΣ in (16) and (17) are508

obtained using back-propagation over the two DNNs of509

the actor.510
� Step B-VI: Move to the next time-step; go back to Step A-I.511

Fig. 4 shows the temporal functionality of the proposed A-C512

method. As can be seen, the parameters of DNNs are updated513

and replaced across time steps, while on the other hand, the514

bi-layer estimation takes place at each time step given the latest515

values of parameters. This enables the hierarchical framework516

to adapt to changes in the feeder across time, while offering517

fast real-time monitoring capability to utilities. Thus, in rare518

cases with secondary topology changes, the proposed method519

can continuously update the parameters of both DNNs to adapt to520

the new topology. Unlike most supervised learning-based DSSE 521

methods that require retraining DNNs for new topologies, our 522

approach provides a low-cost solution for topology change in 523

both primary and secondary networks. 524

C. Convergence Analysis 525

The two layers of our model continuously exchange boundary 526

information, including transformer voltages (first layer to second 527

layer) and active/reactive total power injection (second layer to 528

first layer). A major challenge in this model is to ensure the 529

convergence of system monitoring, especially at the earlier stage 530

of training when unreliable estimates generated by A-C modules 531

may cause numerical instability for WLS. To avoid this, we have 532

designed a confidence weight-based strategy. The basic idea is 533

to integrate the TDE from the second layer (i.e., A-C modules) 534

into the confidence matrix of the first layer (i.e., WLS). The 535

TDE is able to measure how well the DNNs infer system states 536

over time, which is a good metric for determining the reliability 537

of the estimated secondary network states. Therefore, the A-C 538

modules with lower TDE will receive higher confidence weights 539

at the WLS. Also, as we mentioned before, the A-C modules are 540

pre-trained using simulation data, which further reduces the risk 541

of numerical instability during online estimation. 542

III. NUMERICAL RESULTS 543

This section explores the practical performance of our joint 544

DSSE framework. As detailed below, the test system for this 545

case study is a three-phase unbalanced distribution feeder that 546

consists of a 60-node 13.8 kV primary feeder and 44 secondary 547

circuits with a total number of 238 customers from a utility 548

partner in the U.S. The topology of the primary feeder and two 549

exemplary secondary networks are shown in Fig. 5. The real 550

SCADA/SM data and MV-LV network OpenDSS models of 551

this distribution feeder are utilized to verify our method. The 552

data includes customers’ energy/voltage measurements at the 553

secondary networks, and total primary feeder active/reactive 554

power and substation voltages. More details on the data are 555

available online [36]. It should be noted that these real-world 556

measurement data is naturally imperfect. According to our utility 557

partners, an error tolerance of±1% can be expected. In addition, 558

to further validate our method under noisy conditions, error 559

samples were generated from a normal distribution with zero 560

mean and 1% variance and added to the voltage values obtained 561

from the OpenDSS simulator to represent standard measurement 562

deviations [15]. 563

To validate our hierarchical reinforcement learning-aided 564

DSSE framework, we have assumed that 30% of the customers 565

are randomly selected to install SMs in this feeder. This as- 566

sumption is consistent with the number of recently reported 567

SMs in the U.S.3. The locations of SMs are randomly selected. 568

Distributed solar resources are added to the secondary networks 569

to capture the impact of uncertain renewable resources on DSSE. 570

3By the end of 2020, an estimated 107 million SMs were deployed with an
annual growth of 8 million devices from the previous year [37]. These SMs
cover about 75% of U.S. households.
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Fig. 5. Test feeder topology and secondary network examples.

Fig. 6. Comparison of estimated system states and real values.

The penetration level of renewable power is 50% with respect571

to the long-term average peak load. The solar power data is572

adopted from [38]. In DSSE, the maximum error values for the573

real measurements is 3%. In this work, the hyperparameter set574

of the A-C modules is calibrated by using the random search575

strategy [39]. As a result, the three DNNs,Aμ,AΣ, andC, consist576

of 3 hidden layers of 10 neurons. The learning rates of actor and577

critic, la and lc, are selected as 0.01 based on the performance578

of the validation process.579

A. The Performance of the Proposed Joint DSSE Method580

The A-C module is trained for various secondary networks581

in parallel based on the simulation data and tested using the582

new data inquiry. In this experiment, for each LV network, the583

number of training data is 1000. After model training, Fig. 6584

compares the estimated primary-level distribution system states585

(i.e., branch current real and imaginary parts) with the actual586

state values using the proposed method at a specific time point.587

As is demonstrated in the figure, the outcome of our method588

closely follows the underlying states. It should be noted that our589

test network is a three-phase unbalanced distribution system and590

the phase connections of customers are known. Furthermore,591

to validate the average performance of the proposed method,592

we have tested our method over a long-term period (more than593

1500 time points). The error distribution is shown in Fig. 7. The594

Mean Absolute Percentage Error (MAPE) criterion is used here595

Fig. 7. Voltage magnitude and phase estimation using the proposed reinforce-
ment learning-aided hierarchical DSSE model.

to evaluate the accuracy of state estimation: 596

M =
100%

ns

ns∑
t=1

|
ˆA(t)−A(t)

ˆA(t)
| (18)

where, ˆA(t) andA(t) are the actual state value and the estimated 597

value. As is demonstrated in these figures, the estimation errors 598

for voltage magnitude and phase angle are 1.1% and 0.26%, 599

respectively. These results corroborate the satisfactory perfor- 600

mance of the proposed model over real data. 601

Although our A-C-aided DSSE method can eliminate the need 602

for pseudo-measurement generation, the system observability 603

(i.e., SM penetration ratio) still impacts its performance due 604

to information loss. To demonstrate the sensitivity of the joint 605



IE
EE P

ro
of

YUAN et al.: JOINT DISTRIBUTION SYSTEM STATE ESTIMATION FRAMEWORK VIA DEEP ACTOR-CRITIC LEARNING METHOD 9

Fig. 8. Sensitivity analysis: quantifying the impact of observability (i.e., smart
meter penetration) on state estimation accuracy.

Fig. 9. Statistical results of online action selection time.

DSSE accuracy to the system observability, Fig. 8 shows606

the secondary-level state estimation accuracy of the proposed607

method under various SM penetration ratios by calculating608

estimation errors for voltage magnitude and phase angle. SM609

penetration is determined by the number of customers and SMs.610

In this figure, the blue dashed line describes the state estimation611

accuracy of the proposed method under various SM penetration612

levels by calculating estimation errors for voltage magnitude613

and phase angle. When the system observability is only 10%,614

the error is around 5%. When the system observability is 50%,615

the error is around 2%. Also, the accuracy of a previous machine616

learning-based method is compared with our solution, as shown617

by the red dashed line [29]. Based on the results of the two618

data-driven methods, it is clear that the state estimation accuracy619

decreases as the percentage of SM penetration decreases. Thanks620

to its hierarchical nature, in this case, our method outperforms621

Fig. 10. Comparison results between [4], [10], [40], and the proposed method.

the existing learning-based method at all observability levels. 622

Also, these results show that the proposed method can provide 623

a comprehensive and accurate monitoring of the distribution 624

network at the LV and MV levels. 625

B. Method Comparison 626

To further demonstrate the performance of the proposed joint 627

DSSE framework, we have conducted numerical comparisons 628

with three state-of-the-art methods, including a multi-area DSSE 629

method [4], a hybrid framework [40], and an optimization-based 630

solution [10]. The three methods are simulated with the same 631

real-world datasets to calculate the accuracy of the methods. 632

The comparison results are shown in 10. As demonstrated in the 633

figure, in terms of voltage magnitude, the average estimation 634

errors are 1.1%, 1.79$, 1.51%, and 1.22% for the proposed 635

solution, [4], [40] and [10], respectively. In terms of voltage 636

phase angle, the average estimation errors are 0.26%, 0.59%, 637

0.46%, and 0.34%, respectively. In terms of online computation 638
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Fig. 11. Computation time comparisons (the proposed actor-critic-based
method versus the traditional optimization-based method).

complexity, the average times are 0.4 seconds, 1.3 seconds,639

2.8 seconds, and 3.5 seconds, respectively. A few observations640

follow: (1) The traditional optimization-based method (i.e., [4])641

is more likely to be affected by the high penetration of renewable642

power resources than methods incorporating machine learning643

techniques, thus reducing accuracy. The rationale behind this644

is that it is hard to find a good heuristic initial guess due to645

the fast changes in the system states. (2) Among the machine646

learning-based methods, the proposed solution can achieve a647

better performance compared to the previous works. (3) Even648

though previous method (i.e., [10]) can be extended to a unified649

model of all primary and secondary circuits for comprehensive650

system monitoring, this extension leads to a significant increase651

in computational burden. (4) Compared with the multi-area and652

the hybrid methods (i.e., [4] and [40]), the proposed method653

decomposes monitoring into two interconnected layers and then654

limits Jacobian matrix computations to the primary feeders, thus655

significantly accelerating real-time monitoring. This compari-656

son result demonstrates the competitiveness of our solution.657

C. Computational Complexity Analysis658

To ensure that the proposed method can provide real-time659

monitoring in practice, we have tracked the computation time.660

Note that the case study is conducted on a standard PC with an661

Intel(R) Xeon(R) CPU running at 3.70 GHz and with 32.0 GB662

of RAM. Fig. 9 presents the computation time distribution of the663

online action selection of A-C modules. Considering the uncer-664

tainty of the computation speed, 3500 Monte Carlo simulations665

have been performed. As shown in the figure, the majority of666

online action time are concentrated around 0.02 s. Moreover,667

based on the cumulative distribution function of online action668

time, almost 90% of simulations have online action time be-669

low 0.024 seconds, thus ensuring real-time system monitoring.670

Moreover, the computation time of the whole hierarchical frame-671

work is tested and compared to the WLS-based method [27].672

Fig. 11 shows the computation time distributions of our proposed673

method and an existing monitoring model [27] over a 60-node674

distribution network. As can be observed, the computation time675

is reduced from about 3 seconds to about 0.5 seconds. In this676

case, our framework is able to significantly improve the compu-677

tation time by an average factor of 6 times. It should be noted678

that our test system is a middle-size rural distribution feeder679

that has a limited number of customers. Since the computation 680

burden of the optimization method grows exponentially, our 681

method’s improvements in computation time would be higher in 682

large-scale urban systems. Such low computational complexity 683

also can help handle significant system state shift caused by 684

distributed energy resources and plug-in electric vehicles in a 685

short period of time [20]. Consequently, our joint DSSE solver 686

can truly reflect the operating point of the modern distribution 687

system. 688

IV. CONCLUSION 689

In this paper, we have presented a reinforcement learning- 690

aided hierarchical DSSE solution to jointly monitor the primary 691

and secondary distribution networks. Compared to previous 692

works, the proposed solution is scalable to large grids and can 693

accurately capture the impact of volatile grid-edge renewable 694

resources on system states. Our model enables fast online esti- 695

mation of secondary network states, while allowing for offline 696

evaluation and updates of DNNs. Further, the proposed method 697

can eliminate the need for pseudo-measurements and reduce 698

the impact of data quality issues. The hierarchical joint DSSE 699

method has been tested using real SM data and models of 700

distribution grids. It is observed that after the estimation policy 701

function is fully learned, the proposed method can accurately 702

estimate the primary and secondary system states. Moreover, 703

the results show that this solution is able to outperform previ- 704

ous monitoring methods in terms of estimation accuracy and 705

computation time. 706
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