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via Graph Neural Networks and PMU Data
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Abstract—Phasor measurement units (PMUs) are being widely4
installed on power systems, providing a unique opportunity to5
enhance wide-area situational awareness. One essential application6
is the use of PMU data for real-time event identification. However,7
how to take full advantage of all PMU data in event identifica-8
tion is still an open problem. Thus, we propose a novel method9
that performs event identification by mining interaction graphs10
among different PMUs. The proposed interaction graph inference11
method follows an entirely data-driven manner without knowing12
the physical topology. Moreover, unlike previous works that treat13
interactive learning and event identification as two different stages,14
our method learns interactions jointly with the identification task,15
thereby improving the accuracy of graph learning and ensuring16
seamless integration between the two stages. Moreover, to capture17
multi-scale event patterns, a dilated inception-based method is18
investigated to perform feature extraction of PMU data. To test the19
proposed data-driven approach, a large real-world dataset from20
tens of PMU sources and the corresponding event logs have been21
utilized in this work. Numerical results validate that our method22
has higher classification accuracy compared to previous methods.

Q2

Q3

23

Index Terms—Event identification, graph neural network,24
interaction graph inference, phasor measurement units.25

I. INTRODUCTION26

POWER systems are in need of better situational awareness27

due to the integration of new technologies such as dis-28

tributed renewable generation and electric vehicles. Recently, a29

rapid growth in the number of phasor measurement units (PMUs)30

has been observed in power systems. In the U.S., by the end of31

2017, the number of recorded PMUs was about 1,900, which is a32

nine-fold growth from 2009. Compared to the traditional power33

system monitoring devices, PMUs provide highly granular (e.g.,34

30 or 60 samples per second) and synchronized measurements,35

including voltage and current phasor, frequency, and frequency36

variation, which enables capturing most dynamics of power37

systems. Hence, researchers and practitioners are exploring a38

variety of methods to use PMU data for enhancing system39

monitoring and control. One of the important applications is40
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real-time event identification, which is directly related to event 41

analysis [1]. Event identification models trained on PMU data 42

not only provide supervisory monitoring, but also maintain 43

partial system awareness when supervisory control and data 44

acquisition (SCADA) is dysfunctional, as was the case during 45

the 2003 North American large-scale blackout [2]. 46

In recent years, a number of papers have explored data-driven 47

methods for event identification to enhance situational aware- 48

ness of power systems using PMU data. The previous works in 49

this area can be broadly classified into two categories based on 50

the number of PMUs used for model development: Class I: each 51

PMU is treated independently, and a single PMU data stream for 52

each event is assigned as one data sample [3]–[9]. In [3], a signal 53

processing-based methodology consisting of the swinging door 54

trending algorithm and dynamic programming was proposed 55

to identify power events. In [4], principal component analysis 56

(PCA) was used to detect abnormal system behavior and adopt 57

system visualizations. In [5], by using PMU data in Korea, 58

a wavelet-based event classification model was developed by 59

observing the difference between voltage and frequency signals. 60

In [6], an empirical model decomposition was utilized to assess 61

power system events using wide-area post-event records. In 62

[7], an online event detection algorithm was developed based 63

on the change of core subspaces of the PMU data at the 64

occurrence of an event. In [8], the extended Kalman-filtering 65

algorithm was applied to detect and classify voltage events. 66

In [9], a knowledge-based criterion was proposed to classify 67

power system events. Class II: Instead of using data from a 68

single PMU, several papers perform event classification tasks 69

using multiple PMU measurements, which integrate interactive 70

relationships of different PMUs [10]–[15]. In these methods, the 71

data of each event that includes multiple PMU data streams is 72

assigned as one data sample for model development. In [10], a 73

scheme was proposed for supervisory protection and situational 74

awareness, which presented a new metric to identify PMU with 75

the strongest signature and an extreme learning machine-based 76

event classifier. In [11], a data-driven algorithm was proposed, 77

which consists of an unequal-interval method for dimensionality 78

reduction and a PCA-based search method for event detection. 79

The basic idea is to measure similarities and local outlier factors 80

between any two PMU data streams. In [12], a data-driven event 81

classification method was proposed by characterizing an event 82

utilizing a low-dimensional row subspace spanned by the dom- 83

inant singular vectors of a high-dimensional spatial-temporal 84

PMU data matrix. In [13], a correlation-based method was 85

developed to concurrently monitor multiple PMU data streams 86
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TABLE I
AVAILABLE LITERATURE ON DATA-DRIVEN EVENT CLASSIFICATION IN POWER SYSTEMS

for identifying system events. In [14], an event characterization87

algorithm was presented using computation of spectral kurtosis88

on sum of intrinsic mode functions. In [15], a new nonparametric89

learning framework was proposed for the novelty detection90

problem with multiple correlated time series by extending the91

classical smoothness and fitness optimization. A summary of92

the literature is shown in Table I.93

While these methods have led to meaningful guidelines and94

invaluable insights, some questions remain open with respect95

to real-time PMU-based event identification. Basically, Class96

I models focus on analyzing events using data recorded by97

individual PMUs. This indicates that the interactive relationship98

among different PMUs are simply ignored. When applying these99

event identification models to the actual grids, some PMUs100

may report events whereas others report normal, resulting in101

conflicting opinions due to data heterogeneity. On the other102

hand, Class II methods are generally based on a simplifying103

assumption that each PMU has the same interactive relationship104

with the rest of PMUs. This means representing the interaction105

with a fully connected graph. However, such an assumption may106

not be realistic due to the complexity of power systems. A natural107

solution to this problem is to apply statistical indicators, such as108

correlation or causality, to infer interaction directly from the data109

[16]. This solution is based on time and frequency domain co-110

herency relation between dynamics observed at different PMUs,111

which is backed by long-term industrial experience. However,112

there are still several practical challenges to achieving this113

goal: 1) Performing interaction learning and event identification114

as two separate stages would diminish the accuracy of event115

classification. 2) Most previous works require prior information116

on event location and system topology that is often not available117

to researchers due to privacy protection. For example, we are118

granted access to a dataset consisting of tens of PMUs with a 119

time span of two consecutive years without disclosure of the 120

grid topology. 3) Existing machine learning-based models that 121

utilize multiple PMU data streams as input can lead to high 122

model complexity, which makes their practical implementation 123

costly. 124

Another fundamental challenge for data-driven event detec- 125

tion and identification is the scarcity of real-world PMU data. 126

Most data-driven models use a small amount of PMU data 127

with limited labeled events or synthetic data. For example, in 128

the study of the disturbance files at Public Service Company 129

of New Mexico (PNM), only 97 events were labeled in the 130

log-book, which are too few for training and testing a realis- 131

tic event classifier [2]. In [17], hundreds of labeled frequency 132

events from the FNET/GridEye system were used to train a 133

deep learning-based frequency event detector. Generally speak- 134

ing, small-scale datasets often do not cover enough scenarios 135

and are too few to train and test a reliable event classifier 136

realistically. 137

To address these challenges and the shortcomings in previous 138

literature, we propose a novel graphical method that can integrate 139

the interactive relationships of different PMUs to perform real- 140

time event classification without requiring any knowledge of the 141

system model/topology. Overall, we develop a deep learning- 142

based model and train it with historical PMU data with the corre- 143

sponding power system event labels. When the training process 144

completes, the fitted model can be used as an online classifier 145

to inform system operators of the types of system events using 146

multiple PMU measurements. The uniqueness of the proposed 147

method is the simultaneous optimization of interaction graph 148

inference, feature engineering, and event identification tasks, 149

which can effectively mitigate the uncertainty of individual 150
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PMU data and improve the performance of the event classifier.151

To achieve this, spatial-based graph neural networks (GNNs)152

are integrated with an autoencoder architecture. In the encoder,153

for each labeled event, the latent relationship representing the154

probability of the existence of an edge between a pair of PMUs155

is estimated using a graph representation algorithm known as156

the deep relational network [18]. Based on the latent graph157

relationship, a multi-layer graph structure is obtained via a de-158

terministic graph sampling strategy. In the decoder, to efficiently159

construct event features based on the patterns of different event160

types, we propose an innovative dilated inception approach for161

extracting PMU data features. This method consists of multiple162

dilated convolutional layers with different dilation rates in a par-163

allel manner, which can automatically capture multi-scale data164

features with limited parameters. By combining the interaction165

graph and data features, the graphical event classification can166

be performed. It should be noted that the proposed method is167

fine-tuned on our dataset to construct an end-to-end mapping168

relationship between PMU data features and event types pre-169

defined by data providers in this work. However, the proposed170

methodology is general. It can be used to perform various power171

event classification tasks (e.g., IEEE 1159 classification) when172

sufficient real event labels are available. The main contributions173

of this paper can be summarized as follows:174
� The proposed method learns latent interaction graph jointly175

with feature engineering and event identification model,176

thus improving the accuracy of the graph learning and177

ensuring seamless integration between the learned inter-178

actions and event identification.179
� The proposed event identification method integrates the180

spatial correlations of different PMUs fully in a data-driven181

manner, rather than assuming much a prior model knowl-182

edge, such as physical topology and event location.183
� Instead of generating a single statistical graph to repre-184

sent the pair-wise relationships among PMUs in different185

events, our approach generates different graphs for differ-186

ent power system events, thus dealing with uncertainty in187

the location and type of events.188
� The proposed model has been developed and tested based189

on a two-year real-world PMU dataset collected from the190

entire Western Interconnection in the U.S. The large num-191

ber of real event labels contained in this dataset provides a192

good foundation for developing an efficient and practical193

event identification model.194

The rest of this paper is constructed as follows: Section II195

introduces the available PMU dataset and data pre-processing.196

In Section III, data-driven interactive relationship inference197

and graphical event classification are described. The numerical198

results are analyzed in Section IV. Section V presents research199

conclusions.200

II. DATA DESCRIPTION AND PRE-PROCESSING201

The proposed method is motivated by insights from real PMU202

data. The available data is obtained from 440 PMUs installed203

across three U.S. transmission interconnections, including the204

Fig. 1. Plots of multiple PMU data for a real-life power event.

Texas, Western, and Eastern Interconnection.1 The rates of 205

sampling are 30 and 60 frames per second, and the measured 206

variables include voltage and current phasor, system frequency, 207

rate of change of frequency, and PMU status flag. For 208

convenience, let A, B, and C denote the three interconnections 209

hereinafter. Fig. 1 shows the voltage magnitude values and 210

frequency variations of all PMUs in interconnection B for a 211

specific event. Based on this figure, it is clear that all PMUs in an 212

area have captured the event. However, even though the nature of 213

the variations in PMU data will be similar (i.e., event patterns and 214

start timestamps are almost the same), the amount of variations 215

will be different [2]. Further, as demonstrated in the figure, 216

several PMUs show negligible event features, which should be 217

excluded from the inputs to the event classification model. To 218

achieve this, one simple solution is to select the PMU that shows 219

the biggest impact based on context information or specific 220

metrics [10]. However, context information may be unavailable 221

a prior and metrics are hard to calculate in real time. Thus, in this 222

work, we propose a more natural solution that utilizes data from 223

all PMUs as input to the model and automatically selects the suit- 224

able PMUs and the associated data by discovering the interaction 225

graphs. 226

Apart from PMU measurements, real event labels are needed 227

to provide the ground truth for developing a practical PMU- 228

based event identifier. In this work, a total of 6,767 event 229

labels, consisting of 6,133 known events and 634 unknown 230

events (where the event type entry is empty or unspecified), are 231

utilized to extract the event data. Each event label includes the 232

interconnection number, start timestamp, end timestamp, event 233

type, event cause as well as event description. The timestamps 234

of these event labels are determined by SCADA’s outage alarm 235

reception time in the control room. Also, the types of events have 236

been verified with the corresponding protection relay records, 237

ensuring a high level of confidence in the event labels. It should 238

1The dataset is stored as Parquet form and includes around two years of
measurements, from 2016 to 2017. We have utilized Python and MATLAB to
read and analyze the whole dataset, which is larger than 20TB (around 670
billion data samples).
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be noted that the definition of each event type is entirely up to239

the data provider. The detailed detection criteria for all types of240

events are unavailable for us due to the protection of sensitive241

information.242

To prevent erroneous event detection due to data quality243

issues (i.e., bad data, dropouts, communication issues, and time244

errors), the available PMU dataset is initially passed through245

data pre-processing. Heterogeneous data quality issues are clas-246

sified based on PMU status flag information. Following IEEE247

C37.118.2-2011 standard, when the value of the status flag is248

0in decimal format, data can be used properly; otherwise, data249

should be removed due to various PMU malfunctions. Also,250

we have utilized the engineering intuitions to design several251

simple threshold-based methods for further detecting the data252

quality problems not identified by PMU, such as out-of-range253

problem. Then, based on our data quality assessment, when254

a consecutive data quality issue occurs, the data is excluded255

from our study because it is hard to provide high accuracy data256

imputation for these consecutive bad data points. The remaining257

missing/bad data are filled and corrected by interpolation. In258

this work, an analysis window with length T is utilized to259

extract event samples. The value of T is assigned as 2-second260

based on previous works and observations of real PMU data261

[2], [19]. When the analysis window is large, the event clas-262

sification model may suffer from the curse of dimensionality,263

thus resulting in serious overfitting problems. Also, as the input264

dimensionality increases, the computational complexity of the265

data-driven event classification model grows significantly. This266

will impact the real-time application of the model. Hence, the267

analysis window does not need to cover all event data, but needs268

to provide sufficient event features for identifying event types.269

Considering that the resolution of available event logs is in the270

order of minutes, we have used a statistical method to reach271

a finer scale [20]. When the resolution of event logs is in the272

order of seconds, this statistical algorithm can be bypassed.273

Given that the available PMU dataset is more than 20TB, we274

have extracted post-event data for efficient event classification275

model development and testing based on the start timestamps276

of historical events recorded in the event log. It should be noted277

that we do not use all available data for model training due278

to the risk of data imbalance problems.2 After data extraction,279

the time-series PMU data is converted into image-like data by280

applying a Markov-based feature reconstruction method from281

our previous work [20]. To simulate the real situation faced282

by system operators, any manual modification to the event283

labels is avoided in this work. Even though the structure of284

the proposed model is fine-tuned on our dataset, the method-285

ology is general and can be applied to any PMU datasets after286

some fine-tuning procedures. This is true for any data-driven287

solution.288

2The data imbalance problem refers to the uneven distribution of the number
of observations in each category. In this work, the size of the post-event data
is much smaller compared to the data in normal conditions. After training a
supervised classification model using this dataset, the model always tends to
classify the data points as normal operations to optimal classification accuracy.

III. GRAPHICAL PMU-BASED EVENT CLASSIFICATION 289

In this section, we lay out the proposed graphical event 290

classification method. To help the reader understand our model, 291

we first briefly revisit the concepts and properties of GNN, and 292

then describe our method in detail. 293

Many real-world problems involve data that can be repre- 294

sented as a graph whose vertices and edges correspond to sets 295

of entities and their relationships, respectively. Given that usual 296

deep learning techniques are not applicable,3 these problems 297

have motivated the development of a class of neural networks 298

for processing data represented by graph data structures, called 299

GNNs. The key idea of GNN is to generate a representation of 300

nodes, which actually depends on the structure of the graph, as 301

well as any available feature information. According to existing 302

studies [21], GNNs can be broadly categorized into spatial-based 303

and spectral-based approaches. In general, spectral-based GNNs 304

use eigendecompositions of the graph Laplacian to produce a 305

generalization of spatial convolutions to graph, while provid- 306

ing access to information over short and long spatiotemporal 307

scales simultaneously [22]. In comparison, spatial-based GNNs 308

involve a form of neural message-passing that propagates in- 309

formation over the graph by a local diffusion process [23]. The 310

proposed method falls into this categorization. 311

In this work, spatial-based GNNs are combined with autoen- 312

coder to perform interaction learning and event classification 313

jointly in an unsupervised way. Specifically, the encoder adopts 314

spatial-based GNNs that act on the fully connected graph with 315

multiple rounds of message passing and infer the potential 316

interaction distribution based on all PMU measurements. The 317

decoder uses another spatial-based GNN to identify event types 318

based on PMU features and constructed graphs. The overall 319

model is schematically described in Fig. 2. Our work follows 320

the line of research that learns to infer relational graphs while 321

learning the dynamics from observational data [18][24]. Unlike 322

previous methods that focus on data prediction, the proposed 323

method is capable of extracting multi-scale event features and 324

performing accurate power system event classification. More- 325

over, since the interactions among different PMUs are im- 326

pacted by the event location, our approach produces one graph 327

structure for each event rather than a single statistics-based 328

graph. Compared with existing bilevel optimization-based graph 329

learning approach [24], the graph structure in our model is 330

parameterized by neural networks rather than being treated as a 331

parameter, thus significantly reducing the computational burden 332

of data-driven interaction graph inference. In addition, the online 333

computational cost of the proposed learning-based method is 334

much lower than the optimization-based method, thanks to the 335

neural network implementation. In the following, we describe 336

the proposed model in detail. 337

A. Interaction Graph Inference and Sampling 338

Let us first settle the notations. In this work, each PMU 339

and the corresponding data (i.e., voltage magnitude value) can 340

3Convolutional neural networks are well-developed for grid-structured inputs.
Recurrent neural networks are well-defined only over sequence data.
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Fig. 2. Overall structure of the proposed method.

be considered as a node and an initial node feature. Initial341

node features consist of {V ,L}, where V := {v1, . . ., vh} is342

the voltage magnitude set from PMUs, L := {l1, . . ., lh} is the343

corresponding event label set from the event logs, and h is344

the total number of events. Specifically, vi ∈ RN×T is a set345

of voltage magnitude collected from N PMUs during event i346

within time windows with length T . Note that all PMU data in347

the same interconnection for a specific event are considered as348

one data sample in this work.349

The goal of the encoder is to compute the latent relationship350

Ei,j := {e1i,j , . . ., eNi,j}, where ei,j represents the probability of351

edge existence between PMUs i and j. To achieve this, we utilize352

deep neural relational inference to pass local information [25]:353

eki,j = fk
e ([e

k
i , e

k
j , x(i,j)]) (1)

ek+1
i = fk

n([
∑
i∈Nj

eki,j , xj ]) (2)

where, eki is the feature of node i in layer k, eki,j is the feature of354

edge connecting nodes i and j, Nj is the set of edges connecting355

node j. xi and x(i,j) summarize initial nodes and edge features,356

respectively, and [·, ·] denotes the concatenation operation. The357

functions fe and fn refer to node- and edge-specific neural 358

networks. The fe is mapped to compute per-edge updates. For 359

example, for PMU 1 and 2, ek1,2 is calculated based on the 360

features of PMU 1 and 2, {ek1 , ek2}, as described in Fig. 3(a). 361

The fn is utilized to compute per-node updates across all nodes. 362∑
i∈Nj

eki,j is obtained by aggregation of edge features from 363

edges that are connected to node i, as shown in Fig. 3(b). Since 364

we do not assume any a prior knowledge of the underlying 365

PMU-based interaction graph, this operation is used on the fully 366

connected graph (without self-loops). Note that if the operator 367

has some knowledge on the latent/physical connections of 368

PMUs, this fully connected graph can be easily replaced by 369

a prior knowledge-based graph. For example, a Markovian 370

influence graph formed from utility outage data is able 371

to describe the temporal relationship between the disturbance 372

dynamics of various PMUs [26]. Eqs. (1) and (2) allow for model 373

combinations that represent node-to-edge/edge-to-node map- 374

pings through multiple rounds of message-passing [27]. In this 375

work, the encoder includes the following four steps to infer Ei,j : 376

e1i = f1(vi) (3)
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Fig. 3. Interactive relationship inference procedure by using the node-to-edge
and edge-to-node operations.

Node → Edge : e1i,j = f1
e ([e

1
i , e

1
j ]) (4)

Edge → Node : e2i = f1
n(
∑
i�=j

e1(i,j)) (5)

Node → Edge : e2i,j = f2
e ([e

2
i , e

2
j ]) (6)

According to previous studies [18], two-layer fully connected377

neuron networks are utilized to model node- and edge-specific378

neural networks, which can be formulated as follows:379

f1(vi) = a(w
(2)
f1,0

+
N∑
i=1

w
(2)
f1,i

· (a(w(1)
f1,0

+
N∑

n=1

w
(1)
f1,n

· vn))
(7)

where, wf1,0, wf1,1, . . ., wf1,n represent internal weights of f1380

and the exponential linear unit is used as the activation function381

a in these networks. Compared to the commonly-used rectified382

linear unit, it has been shown that exponential linear units383

can achieve higher classification accuracy [28]. Also, to avoid384

internal covariate shift during training process, a batch normal-385

ization layer is added after the activation layer. As demonstrated386

concretely in [29], the normalization is achieved by subtracting387

the batch mean and dividing by the batch standard deviation. It388

should be noted that the layer of the graph is determined by the389

number of output neurons in f2
e , which is set as 3 in this work.390

Using Ei,j , the interaction graph is obtained via a graph391

sampling technique. Here, we apply the following deterministic392

thresholding method:393

wi,j =

{
1 if sigmod(ei,j) > r

0 otherwise
(8)

where, r is a user-defined threshold. The deterministic thresh- 394

olding method encourages sparsity if r gets closer to 1. Such a 395

discrete graph, however, poses a challenge on differentiability. 396

In other words, model parameters cannot be learned through 397

backpropagation. To tackle this issue, we have utilized the 398

Gumbel-Max trick, which provides an efficient way to draw 399

samples from the categorical distribution [30]. The detailed 400

function is described as follows: 401

z = one_hot(arg maxm[gm + log emi,j]) (9)

where, g1, . . ., gN are independent and identically distributed 402

(i.i.d) samples drawn from the Gumbel distribution with 0 lo- 403

cation and 1 scale parameter.4 Then, the softmax function is 404

utilized as a differentiable approximation to arg max: 405

zi,j =
exp((log(emi,j) + gm)/τ)∑N

m=1 exp((log(e
m
i,j) + gm)/τ)

(10)

where, τ is a smooth coefficient and is assigned as 0.5 in this 406

work. When τ → 0, this approximated distribution converges to 407

one-hot samples from Ei,j . 408

B. Feature Extraction and Event Classification 409

The goal of the decoder is to construct a mapping relationship 410

between PMU data and event types. The basic idea is to fit a 411

boundary in a high-dimensional space to separate data samples 412

with different event types. To achieve superior classification 413

performance in terms of both accuracy and efficiency, it is im- 414

perative to devise a good feature extractor. In our previous work 415

[20], a Markov-based feature extractor was utilized to capture the 416

multi-scale data features. However, this feature extractor has an 417

exponential computational burden in terms of the dimensionality 418

of the data samples, which is not appropriate in this work 419

due to the extremely high-dimensional input. Hence, a new 420

PMU-based feature extractor, dilated inception-based network, 421

is proposed to capture multi-scale features effectively [31]. The 422

proposed dilated inception-based network follows the line of 423

the well-known convolutional layer for feature extraction and 424

combination in a data-driven manner through fully end-to-end 425

training [32]. To help the reader understand our model, we first 426

review the standard convolutional layer and then describe the 427

details of our method. The convolutional layer computes the 428

convolutional operation, ∗, of the input using kernel filters to 429

extract data feature maps, which can be mathematically formu- 430

lated as follows [33]: 431

φζ
k =

∑
u∈U

xu
k−1 ∗W ζ

k + bζk (11)

where, φζ
k is the latent representation of the ζ’th feature map 432

of the k’th layer; xu
k−1 is the u’th feature map of the previous 433

layer and U is the total number of feature maps; W ζ
k and bζk are 434

the kernel filter and the bias of the ζ’th feature map of the k’th 435

4Gumbel distribution with 0 location and 1 scale parameter can be sampled
based on the inverse transform method: draw u ∼ standard uniform distribution
and compute g = − log(− log(u)).
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Fig. 4. Illustrate of the two dilated convolutional layers and max-pooling
layers.

layer, respectively. In this work, xu
k−1 ∗W ζ

k can be rewritten as436

follows:437

(xu
k−1 ∗W ζ

k )(i, j) =
U−1∑
δi=0

U−1∑
δj=0

xu
k−1(i− δi, j − δj)W

ζ
k (i, j)

(12)
where, i and j are the row and column indices of the PMU-438

based Markov matrix. Hence, the convolutional layer operates439

in a sliding-window way to output the feature maps. For each440

convolutional layer, the size of the output feature map is φζ
k ∈441

R(p−q+1)×(p−q+1), where xu
k−1 and W ζ

k are p× p and q × q442

matrices, respectively.443

The main idea of dilated convolution is to insert zeros between444

two consecutive features in the convolutional kernel, which445

significantly increases the receptive field.5 In general, the dilated446

convolution operation is defined as:447

yuk (i) =
∑
l

xu
k−1(i+ r · l) ∗W ζ

k (l) (13)

where, r is a dilation factor. For a n× n dilated kernel filter,448

the actual size of the receptive field is nd × nd, where nd =449

n+ (n− 1) · (r − 1). This indicates that higher r can capture450

more slowly-varying features over a larger temporal window.451

When r equals 1, the standard discrete convolution is equivalent452

to the 1-dilated convolution. A comparison between standard453

convolution and dilated convolution is described in Fig. 4. It is454

clear that a dilated 3× 3 convolution kernel with r = 2 has a455

similar receptive field with a standard 5× 5 convolution kernel.456

To achieve multi-scale feature extraction, four dilated convolu-457

tions with various dilation rates are used in a parallel manner. The458

values of dilation rates are determined based on the validation459

set. After each dilated convolution layer, a max-pooling layer460

is added to summarize the feature maps. Max-pooling can be461

considered as a sample-based discretization procedure based on462

the feature map from the previous layer. This is achieved by463

dividing the input matrix into N2
out pooling regions Pi,j and464

selecting the maximum value [34]:465

Pi,j ⊂ {1, 2, . . ., Nin}2, ∀(i, j) ∈ {1, 2, . . ., Nout}2. (14)

5In the context of deep learning, the receptive field is the region in the input
space where the features are generated.

In this work, a 4× 4 max-pooling is used. Thus, Nin = 4Nout 466

and Pi,j = {4i− 1, 4i} × {4j − 1, 4j}. As a result, a feature 467

matrix is obtained: Ui = {ui,1, . . ., ui,T ′ }, where T ′ is the re- 468

duced data length. 469

When the PMU features are obtained, GNN is utilized to 470

perform the event classification task [35]. Compared to previous 471

machine learning-based methods that use only data features as 472

model input, our event identifier combines data features and in- 473

teraction graph. To achieve that, a node-to-edge operation is per- 474

formed on the extracted edge feature. Then, the obtained graph 475

structure is combined with edge features using the element-wise 476

multiplication (⊗). The process can be formulated as follows: 477

hi,t =
∑
i�=j

K∑
k=1

wi,j · g1([ui,t, uj,t]) (15)

Similar to the encoder, the node-based function g1 is represented 478

by a two-layer fully connected network that includes rectified 479

linear units as the activation function, which can be formulated 480

as follows: 481

g1([ui,t, uj,t]) = max(0, w
(2)
g1,0

+
N∑
i=1

w
(2)
g1,i

·

max(0, w
(1)
g1,0

+

N∑
n=1

w(1)
g1,n

· [ui,t, uj,t]))(16)

The event classifier is achieved by adding a two-layer fully 482

connected network after vectorization, as follows: 483

l̂i = g2([vec(Ui), vec(Hi)]) (17)

where, Hi = [hi,1, . . ., hi,T ]. In this fully connected network, 484

the softmax activation function is applied to normalize the output 485

to a probability distribution over estimated event types: 486

g2([vec(Ui), vec(Hi)]) = softmax(w
(2)
g2,0

+

N∑
i=1

w
(2)
g2,i

·

max(0, w
(1)
g2,0

+
N∑

n=1

w(1)
g2,n

·[vec(Ui), vec(Hi)]) (18)

C. Hyperparameters Calibration 487

Considering that the hyperparameters of all machine learning 488

models (i.e., the number of layers and neurons, the dilation rate, 489

the deterministic threshold) affect performance, the model has 490

to be well-designed. The rationale behind the model design is to 491

make a trade-off between model complexity and classification 492

accuracy. Hence, we utilize the random search method to find 493

the appropriate hyperparameter sets in this work [36]. Basically, 494

the value of the hyperparameter is chosen by “trial and error”. 495

It is hard to say that the selected hyperparameters are optimal, 496

but these hyperparameters can provide good accuracy for the 497

available real-world dataset with limited model complexity. 498

Specific values of hyperparameters are listed in the numerical 499

section. For model training, the adaptive moment estimation 500

(Adam) algorithm with a learning rate of 0.001 is used to update 501

the learning parameters of the proposed model [37]. Adam is 502
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an adaptive learning rate optimization for training deep neural503

networks. Based on the adaptive estimation of lower-order mo-504

ments, Adam can compute individual adaptive learning rates for505

each parameter, which significantly increases the training speed506

[37].507

D. Overfitting Mitigation Strategy508

The superior performance of deep learning models relies509

heavily on the availability of massive training data samples.510

Unlike our previous work that treated each PMU independently511

and enjoyed a high level of data redundancy,6 the proposed512

graphical model is trained with the limited event-based data513

samples. Therefore, it is imperative to deal with the overfitting514

problem. To facilitate a better understanding, we first provide a515

simple explanation of the overfitting problem. Overfitting refers516

to a learning model that can only model the training data well. If517

a model suffers from an overfitting problem, the accuracy of the518

model for unseen data is questionable. Hence, three strategies519

are utilized to eliminate the overfitting problem in this work.520

Dropout: Dropout is a commonly-used regularization method521

to prevent model overfitting [38]. The basic idea of dropout is522

to randomly set the outgoing edges of hidden units to 0 at each523

iteration of the training procedure. In this work, based on the524

calibration results, the dropout ratio that specifies the probability525

at which outputs of the layer are temporarily dropping out is set526

as 0.3.527

Constraining model complexity: As demonstrated in Fig. 2,528

the proposed model possesses a relatively high model complex-529

ity compared to conventional classification models due to the530

presence of graph learning and multi-scale feature extractor.531

One natural way to reduce the risk of overfitting is to constrain532

model complexity [32]. To achieve this, the number of adaptive533

parameters (i.e., the number of hidden neurons in f1, f1
e , f1

n,534

and f2
e functions) in the network is reduced.535

Data augmentation: Theoretically, one of the best options536

for alleviating overfitting is to get more training data. It is537

well-known that collecting enough power event data is hard and538

time-consuming, yet we still could easily increase the size of539

the training dataset and reduce the degree of data imbalance540

by leveraging data augmentation technology [39]. Here, we541

utilize a horizontally flipping method to obtain additional data542

samples. To eliminate the impact of the event location, in the data543

augmentation, we do the same procedure for all PMU signals in544

a given event. Moreover, the Gaussian noise with 0 mean and545

0.04 variance is added to these additional data samples.546

E. Challenges of Imperfect PMU Data547

In actual grids, data quality issues, such as bad data, dropouts,548

and time error, arise frequently, and can easily impact any data-549

driven event classification solution, as described in the literature550

[40]. The rationale behind this is that the data qualify problems551

lead to the problem of imbalance in data dimensions. During the552

6In our previous PMU-based event classification model, we have utilized the
data of a single PMU to construct a training dataset, which is more than 200,000
data samples.

offline training process, data quality is solved by dropping data 553

points. In the online process, one common solution is to perform 554

data imputation methods (i.e., artificially generated data points 555

based on data history) to eliminate the impact of missing and 556

bad data on the proposed graphical event classification method. 557

Also, our previous work, namely spatial pyramid pooling-aided 558

method [20], can be easily integrated with the decoder of the 559

proposed graphical model to eliminate the impact of missing 560

and bad PMU data online. This SPP-aided mechanism can offer 561

a unique advantage: the dimensionality of the test data can 562

be different from that of the training data, which provides a 563

fundamental solution to the online PMU data quality problem. 564

More technical details can be found in [20]. 565

F. Application Challenges 566

As detailed below, we discuss two application challenges: 567
� In actual grids, utilities may have incomplete event logs 568

(i.e., the majority of events are unknown). It is well-known 569

that collecting tremendous high-quality event labels is 570

expensive. Most utilities may only have a limited number 571

of labeled events. This lack of knowledge may reduce the 572

accuracy and generalization of the proposed model. 573
� As a supervised learning-based model, the proposed 574

method assumes that labeled events (i.e., record in event 575

logs) and unseen events come from the same distribution. 576

In other words, all event types need to be observed and reg- 577

istered in event logs. However, such an assumption may be 578

difficult to hold in practice, among which one common case 579

in actual grids is that unspecified event contains types that 580

are never observed by system operators. When the features 581

of unseen event types are intertwined with the features of 582

recorded event types, such a class distribution mismatch 583

problem can increase the difficulty of event identification. 584

IV. NUMERICAL RESULTS 585

This section explores the practical effectiveness of our pro- 586

posed graphical event classification model by using a real- 587

world dataset. As detailed below, we test our model on PMU 588

measurements and the related event logs of interconnection B. 589

Interconnection B consists of approximately 136,000 miles of 590

transmission lines and serves more than 80 million people in 14 591

states. The entire dataset includes about 4,800 event data sam- 592

ples, including line outages, transformer outages (XFMR), and 593

frequency events, as well as 4,800 data samples under normal 594

conditions. After data cleaning, the available dataset, including 595

the PMU measurements and related event labels, is randomly 596

divided into three separate subsets for training (70% of the total 597

data), validation (15% of the total data), and testing (15% of the 598

total data). Moreover, to make the model development procedure 599

more rigorous so as to ensure that the proposed model has good 600

reliability, we have applied a k-fold cross-validation strategy, 601

where k is selected as 5 in this work. Specifically, all data except 602

the testing set is partitioned into k disjoint folds and one of the 603

k folds is used as the validation set while using all remaining 604

folds as the training set. This procedure is repeated until each 605

of the k folds has served for model validation. In other words, 606
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TABLE II
STATISTICAL SUMMARY OF THREE INTERCONNECTIONS

TABLE III
THE STRUCTURE OF THE GRAPHICAL EVENT CLASSIFICATION MODEL

all data in the available dataset have been treated as unseen data607

for model development. When the training process completes,608

all data in the testing set is treated as unseen data to assess the609

final performance of our model.610

A. Performance of the Graphical Event Classification611

The case study is conducted on a standard PC with an In-612

tel(R) Xeon(R) CPU running at 4.10GHZ with 64.0GB of RAM613

and an Nvidia Geforce GTX 1080ti 11.0GB GPU. To help614

the reader understand each step of the proposed model, the615

detailed structure of the proposed PMU-based event identifier616

is presented in Table III. In this table, we provide the type617

and output shape for each layer. As can be seen, our model618

mainly includes seven panels to achieve event classification619

using PMU data. More precisely, the encoder consists of the first620

four panels for interaction graph inference. The encoder includes621

the last three panels for data feature extraction and graphical622

neural networks. Depending on this model structure, the event623

classification performance of the proposed model is developed624

and evaluated on the training set and testing set, respectively.625

One shortcoming of the autoencoder architecture is the high626

computational complexity, especially for the training process. In627

our experiments, the training time is about 10 hours. However,628

given that the training procedure of our method is an offline629

Fig. 5. Comparison of three different graph sampling methods.

Fig. 6. Sensitivity of event classification accuracy to the graph sparsity.

process, the high computational cost of the training process does 630

not impact the real-time performance of the proposed method. 631

Based on 1440 testing samples, the average testing time for the 632

proposed method is about 0.02 seconds due to the proposed 633

parallel feature engineering. Consequently, in actual grids, when 634

the input data arrives at the phasor data concentrator (PDC) from 635

multiple PMUs, the proposed method can provide estimated 636

results in roughly 200ms, including the communication delays, 637

which is much faster than heuristics-based methods. Without 638

encoders, the average training and testing time of the dilated 639

inception-based event classifier can be reduced to 3 hours and 640

0.013 seconds, respectively. 641

The performance of the proposed method is evaluated by 642

using real event logs recorded by utilities. First, we show the 643

accuracy of our model under various graph sampling meth- 644

ods (i.e., stochastic sampling, continuous sampling, and de- 645

terministic thresholding) and feature extractors (i.e., standard 646

convolutional layer and dilated inception network). Note that 647

the following results are obtained by using the same overfit- 648

ting strategy (dropout). As shown in Fig. 5, the training and 649

testing accuracy values for the three graph sampling methods 650

are {77%, 79.5%, 84%} and {70%, 70.8%, 69%}, respectively. 651

Based on this dataset, the deterministic thresholding method 652

shows slightly better performance than other sampling methods. 653

Moreover, Fig. 6 is plotted to represent the sensitivity of the 654

classification accuracy to the graph sparsity (i.e., the thresh- 655

old of the deterministic thresholding method). As depicted in 656

the figure, the performance of the proposed model can reach 657

better accuracy with a moderate threshold value (around 0.5). 658

Extremely high or low threshold values are inappropriate. 659

Then, two different feature extractors, namely the proposed 660

dilated inception-based feature extractor and traditional CNN 661
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Fig. 7. Comparison of CNN-based feature extractor and proposed dilated
inception-based feature extractor.

Fig. 8. Comparison of three overfitting strategies.

(including 3 convolutional and 2 max-pooling layers) are com-662

pared, as shown in Fig. 7. In this figure, the training and testing663

accuracy of the proposed dilated inception-based feature extrac-664

tor, {84%, 69%}, are higher than the values of the traditional665

CNN structure, {75%, 68.5%}, which proves the enhancement666

of the multi-scale feature extractor. However, based on Figs. 5, 6,667

and 7, it is observed that the difference between the training and668

testing accuracy is not trivial. This indicates that the dropout669

strategy falls short of dealing with the overfitting problem670

in this case. Hence, we have combined two other strategies:671

constraining model complexity and data augmentation. The672

corresponding accuracy values are presented in Fig. 8. As seen673

in the figure, the training accuracy decreases from around 84%674

to around 82%. However, the testing accuracy is significantly675

higher compared to the previous cases. In this case, the combina-676

tion of dropout and data augmentation has the best performance677

in reducing the overfitting risk: the training and testing accuracy678

are {82.4%, 78%}. It is clear that the testing accuracy of the679

model will eventually achieve a similar level with the training680

accuracy if we can add more data samples.681

To show the performance of our method for different kinds of682

events, we have added a confusion matrix, as shown in Fig. 9.683

In this figure, the rows correspond to the estimated type and684

the columns correspond to the true type. The diagonal and685

off-diagonal cells correspond to events that are correctly and686

incorrectly classified, respectively. As seen in this figure, even687

though the available dataset is highly unbalanced, the proposed688

method still can identify most power system events, including689

line outages, XFMR outages, and frequency events. Moreover,690

except for accuracy, we have calculated precision, recall, and F1691

score to further show the performance of our method for each692

Fig. 9. Confusion matrix for interconnection B using the proposed model.

TABLE IV
EVENT CLASSIFICATION ANALYSIS

event type [41]. These indexes are determined as follows: 693

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F1 =
(β2 + 1) · Prec ·Recall

(β2 · Prec+Recall)
(21)

where, TP is the true positive (i.e., an event is classified as line 694

outage while its actual event type is also line outage), FP is the 695

false positive (i.e., an event is classified as line outage while its 696

actual event type is not line outage), FN is the false negative 697

(i.e., an event is classified as other while its actual event type is 698

line outage), and β is the precision weight which is selected to 699

be 1 in this work. The values of these indexes are presented in 700

Table IV. 701

Note that we are not surprised that the values of these indexes 702

do not exceed 90% on this dataset. In our opinion, there are two 703

reasons that limit the accuracy of the proposed methodology. 704

The first one is that the proposed method is based solely on a 705

real-world PMU dataset. Unlike artificial datasets with clear and 706

easy-to-see event patterns, real-world datasets suffer from noise 707

and data quality issues, leading to degraded model performance. 708

Meanwhile, we have applied the fully connected graph as the 709

basic graph in the interaction graph inference process to avoid 710

the assumption that the topology of the transmission system 711

is known. This will increase the difficulty of latent relation- 712

ship mining and therefore further impact the accuracy of the 713

algorithm. The second one is that data augmentation operations 714

can alter the data distribution during the training progress. This 715

imposes a data distribution bias between the augmented data 716
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Fig. 10. Comparison results of the proposed method and four existing event
classification models.

and the original data, which may reduce model performance.717

One of the best ways to deal with the overfitting problem in718

power event classification models is to simulate event samples719

based on the same transmission system, as described in [2].720

Given that we currently do not have access to the topology of721

the interconnections and the spatial information of PMUs due722

to privacy protection, future work will be done to meet the gap723

once we acquire this information.724

B. Method Comparison725

We have conducted numerical comparisons with two previous726

PMU-based event classification models: support vector machine727

(SVM) [2] and a convolutional neural network (CNN)-based728

event classification approach [42]. Also, to further demonstrate729

the performance of the proposed algorithm, two state-of-the-art730

classification methods, random forest (RF) and light gradient731

boosting machine (LGBM) have also been compared with our732

methods in terms of event classification accuracy using the733

same dataset [43]. To ensure a fair comparison between the734

three methods, the performances of the five methods are eval-735

uated based on the same system-level criteria. Specifically, the736

system-level criteria is calculated as the percentage of times737

that all PMUs report event type correctly. The hyperparameters738

of these methods are calibrated by using IBM AutoAI toolkit.739

As described in Fig. 1, the testing accuracy of the proposed740

method is around 78%. In contrast, SVM, CNN, RF, and LGBM741

show the testing accuracy of 63%, 60%, 61%, 67%, respectively.742

Hence, based on this real-world PMU dataset, our method out-743

performs various existing methods. This comparison result also744

corroborates the premise of this work: investigating interactive745

relationships among different PMUs is crucial for data-driven746

event classification tasks.747

C. Performance of the Interactive Graph Inference748

Fig. 11 describes the results of our data-driven interaction749

inference. In particular, Fig. 11 shows the representative graph750

structures with the best performance (i.e., deterministic thresh-751

olding, smooth coefficient is 0.5, and data augmentation). Since752

the graphs are different for each event, we aggregate all the753

graphs and then select the most frequently appearing (i.e., top754

10%) edges as the representation graph structure. Specifically,755

Fig. 11(a) is a representative graph through all training data,756

Fig. 11. Each representative graph structure (red, green, and blue) corresponds
to all data, small-scale events, and large-scale events. The size of a node is
proportional to its in-degree. (a) Representative graph structure for all training
data. (b) Representative graph structure for small-scale events. (c) Representative
graph structure for large-scale events.

which contains the most frequently activated interactions, re- 757

gardless of the type and size of the events. Fig. 11(b) and (c) 758

are representative graphs using small and large-scale events, 759

respectively. It is clear that the connectivity is related to the size 760

of the events. For example, the second graph shows relatively Q5761

sparse connectivity compared to the first and the third graphs. 762

In addition to representative graph visualizations, we per- 763

form Monte Carlo simulations and measure the dissimilarity 764

of the learned graphs over repeated simulations to evaluate the 765

performance of our method [44]. It should be noted that it is 766

not appropriate to discuss the accuracy of the learned graphs 767

because there is no interactive ground truth. The rationale for 768
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the dissimilarity assessment is that a low level of dissimilarity769

among the learned graphs implies that the learned graphs are770

valuable and the proposed method is reliable. Here, we utilize771

a metric, D-measure, to quantify graph dissimilarities between772

G1 and G2, which is calculated as follows [44]:773

D(G1, G2) = 0.45 ·
√

J(μG1
, μG2

)

log 2
+ 0.45 · |

√
Φ(G1)

−
√
Φ(G2)|+ 0.05 · (

√
J(αG1

, αG2
)

log 2

+

√
J(αGc

1
, αGc

2
)

log 2
) (22)

where, αGi
and αGc

i
are the α-centrality values of graph Gi774

and its complement. Φ(Gi) is the node dispersion of graph Gi,775

which is defined as follows:776

Φ(Gi) =
JGi

(P1, . . ., PN )

log(η + 1)
(23)

where, η is the graph’s diameter and Pi is the distance distribu-777

tion of node i in graph. JGi
(P1, . . ., PN ) is calculated from the778

set of N distance distributions in Gi using the Jensen-Shannon779

divergence:780

JGi
(P1, . . ., PN ) =

1

N

∑
i,j

pi(j) log(
pi(j)

1
N

∑N
i=1 pi(j)

) (24)

Note that μG1
= 1

N

∑N
i=1 pi(j).781

Mathematically, the theoretical lower boundary value of782

DG1,G2
is zero; this case happens only when G1 and G2 have783

the same graph distance distribution, the same graph node784

dispersion, and the same α-centrality vector. In general, a low785

D-measure indicates that the dissimilarity of the two learned786

graphs is small. In this work, based on 100 simulations, the787

average D-measure is relatively low, which is about 0.3. This788

result shows that the proposed data-driven interaction infer-789

ence works reliably, and the learned graphs are meaningful.790

Note that, by analyzing these learned interactive graphs, the791

proposed method has the potential to be extended in terms792

of event localization, i.e., finding out the physical location of793

events in the network. However, since the system topology and794

historical event locations are not available, we cannot evaluate795

this work. We leave it to future work once they are available.796

More comprehensive results will be provided.797

V. CONCLUSION798

In this paper, we have presented a novel solution to accurately799

and efficiently classify events using all PMU data in the system,800

without assuming any prior knowledge of the system. Our801

method establishes on inferring interactive relationships among802

different PMUs in a data-driven manner. We then embed it into an803

autoencoder architecture while optimizing graph inference and804

classification model to significantly improve the performance805

of the event classifier. Moreover, the proposed framework can806

automatically capture multi-scale event features with limited807

parameters by developing a dilated inception model. The scale 808

diversity is enriched by designing paralleled dilated convolu- 809

tions with various dilation ratios. Numerical experiments using 810

a large-scale real PMU dataset from Western Interconnection 811

show that our data-driven interaction inference works reliably. 812

Also, it is shown that the proposed method can achieve better 813

classification accuracy compared to existing methods. 814

Future studies will seek to extend the capabilities of the 815

proposed event identification method in two main directions. 816

First, this work has the potential to address the two application 817

challenges mentioned above by investigating unlabeled events 818

and semi-supervised learning techniques. Second, once the sys- 819

tem topology and historical event locations are available, we 820

will focus on event localization by exploiting the interaction 821

relationships between different PMUs. 822
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