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Abstract—As the cost of the residential solar system decreases,6
rooftop photovoltaic (PV) has been widely integrated into distri-7
bution systems. Most rooftop PV systems are installed behind-the-8
meter (BTM), i.e., only the net demand is metered, while the native9
demand and PV generation are not separately recorded. Under10
this condition, the PV generation and native demand are invisible11
to utilities, which brings challenges for optimal distribution system12
operation and expansion. In this paper, we have come up with a13
novel two-layer approach to disaggregate the unknown PV gener-14
ation and native demand from the known hourly net demand data15
recorded by smart meters: 1) At the aggregate level, the proposed16
approach separates the aggregate PV generation time series from17
the aggregate net demand time series for customers with PVs. 2)18
At the customer level, the separated aggregate-level PV generation19
is allocated to individual PVs. These two layers leverage the spatial20
correlations of native demand and PV generation, respectively. One21
primary advantage of our proposed approach is that it is more22
independent and practical compared to previous works because23
it does not require PV array parameters, meteorological data24
and previously recorded solar power exemplars. This paper has25
verified our proposed approach using real native demand and PV26
generation data.27

Index Terms—Behind-the-meter, distribution system, PV28
generation estimation, rooftop photovoltaic, smart meter.29

I. INTRODUCTION30

IN THE last decade, residential rooftop photovoltaic (PV)31

has been proliferating in distribution systems. In most cases,32

utilities only install a bi-directional smart meter to record the33

net demand of customers with PVs. This type of installation is34

referred to as behind-the-meter (BTM), in which case the net35

demand equals native demand minus PV generation. Therefore,36

the PV generation produced by solar array and the native demand37

consumed by appliances are unknown to utilities. Only meter-38

ing the net demand can reduce the financial cost for utilities;39
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however, as the penetration level of PV increases, the unob- 40

servability of notable PV generation and native demand brings 41

significant challenges to distribution systems. We focus on three 42

specific applications to elaborate the necessity of estimating the 43

unknown BTM PV generation and native demand: First, the 44

unavailability of native load and PV generation might cause un- 45

acceptable forecasting errors because some forecasters require 46

reconstituting the generation and native demand time series [1], 47

[2]. In contrast, knowing BTM PV generation and native load 48

can help utilities forecast generation and load separately, thus 49

provide utilities useful information regarding load/generation 50

growth. Second, the invisibility of PV generation and native load 51

can hinder designing optimal service restoration plans [3], [4]. 52

During the restoration stage after an outage, the native demand 53

might be several times higher than the pre-outage demand due to 54

the simultaneous restarting of a large number of air-conditioning 55

appliances. This anomalous demand should be estimated for 56

optimal restoration plans because it can damage electric devices 57

when simultaneously restoring a large number of customers. 58

In practice, utilities usually multiply the normal native demand 59

before outage by a ratio to estimate the anomalous demand 60

during restoration. Also, utilities typically do not consider PVs 61

as reliable restoration sources [3]. Therefore, separating normal 62

native demand and generation is needed for designing optimal 63

restoration plans. Third, the unobservability of native demand 64

and solar generation might cause inaccurate reliability analysis. 65

When evaluating a transmission system’s reliability, each dis- 66

tribution system is generally simplified as a bus whose native 67

load duration curve is constructed [5], [6]. For those utilities 68

with a high-penetration PV integration, directly using the net 69

demand to construct the load duration curve can significantly 70

underestimate the actual native load [7]. This is because the 71

net demand is typically smaller than the native demand due to 72

the existence of PV generation. In contrast, using the native 73

demand separated from the net demand can help construct more 74

accurate load duration curves. In summary, disaggregating BTM 75

PV generation and native demand from the recorded net demand 76

can enhance distribution system observability and awareness and 77

can also provide more accurate information for transmission 78

system reliability analysis. 79

Previous works on BTM PV generation disaggregation can be 80

categorized into two types: Type I - Model-based approaches: 81

PV array performance model is employed to represent physical 82
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PV arrays. In [8], a PV model is combined with a clear sky model83

to estimate customer-level solar generation. In [9], a virtual84

equivalent PV station model is utilized to represent the aggregate85

generation of BTM PVs within a region. In [10] and [11],86

a physical PV model and a statistical model are utilized to87

estimate BTM solar generation and native demand, respectively.88

One primary disadvantage of these model-based approaches is89

that detailed PV array parameters or accurate meteorological90

data are required. However, in practice, these parameters are91

typically unavailable to utilities. Also, acquiring meteorological92

data might cause additional costs to utilities. Type II - Model-free93

approaches: In [12] and [13], net demands under heterogeneous94

weather conditions are employed to estimate BTM PV capac-95

ity, which is then multiplied by a standard solar power time96

series to infer BTM PV generations. In [14], native demand97

and PV generation are estimated using 1-second net demand98

data by identifying appliances’ states, which are then leveraged99

to estimate appliance demands and solar power. Based on the100

variation difference between load and solar power, in [15], an101

approach is proposed for estimating service transformer-level102

PV generation. In [16], regional-level generation is estimated103

by installing additional sensors to record typical PV generation104

profiles. In [17], feeder-level solar generation is estimated by105

utilizing net load measurements and a nearby PV farm’s gener-106

ation readings. Using known native loads for customers without107

PVs and the generations for a limited number of observable PVs,108

in [18], the authors formulate an optimization process to estimate109

the aggregated native load and PV generation. In [19], a feder-110

ated learning-based framework is proposed to probabilistically111

estimate community-level BTM solar generation. In [20], an112

approach is developed to estimate the reactive power by taking113

advantage of the correlation between the weekly nighttime and114

daytime native reactive power demands. Furthermore, previ-115

ously in [21] and [22], we have proposed two approaches for116

estimating the unknown BTM generation using measured solar117

power exemplars. One primary shortcoming of the model-free118

approaches is that they rely on contextual information, i.e.,119

recorded solar power exemplars or meteorological data, which120

might bring additional costs to utilities.121

Considering the shortcomings of previous approaches, this122

paper proposes a novel BTM PV generation and native de-123

mand estimation framework which does not require previously124

recorded solar power and meteorological measurements. Our125

approach is based on two findings from real data. The first finding126

is the spatial correlation of native load, i.e., the native demands of127

two sizeable residential customer groups are strongly correlated128

and have highly homogeneous shapes. The second finding is the129

spatial correlation of solar power generation, i.e., the generations130

for two PVs in a distribution system are significantly correlated131

and have highly similar profiles.132

Our proposed approach contains two layers: (1) At the aggre-133

gate level, the total generation of all BTM PVs is estimated by134

leveraging our first finding. (2) At the customer level, utilizing135

our second finding, the estimated aggregate BTM PV generation136

is allocated to individual customers. Utilizing the two findings137

improves our approach’s robustness against the customer-level138

load uncertainty [23]. The second layer contains three steps:139

Fig. 1. Overall structure of the proposed BTM PV generation estimation
approach.

first, our approach trains a model to produce multiple candidate 140

generation time series, using solar power data generated by a 141

publicly available tool. Second, our approach determines the 142

peak generation for each PV. Finally, the allocating procedure 143

is formulated as an optimization problem. The overall structure 144

of our proposed approach is shown in Fig. 1. This paper has 145

verified our proposed approach using real hourly native demand 146

and PV generation data [24]. 147

Smart meters can record individual customers’ demands at 148

an interval of one hour or shorter. Such fine-grained temporal 149

and spatial granularity can give us more details than traditional 150

monthly bills. Many researchers have developed advanced ap- 151

proaches to mine useful information from smart meter data. For 152

example, [25] utilizes smart meter measurement to perform state 153

estimation for enhancing distribution system observability, [26] 154

employs water consumption data recorded by smart water me- 155

ters to train aggregate water demand forecasters, [27] utilizes 156

high-resolution phasor measurement units’ data to conduct false 157

data detection, and data redundancy strengthening, [28] converts 158

smart meter data into manageable load profiles via linearizing 159

load patterns. Our proposed approach takes advantage of smart 160

meter data’s temporal and spatial granularity to perform BTM 161

generation estimation. 162

The main contributions of our paper are summarized as 163

follows: (1) This paper proposes an approach that does not 164

rely on PV array parameters, historical meteorological data, 165

and pre-recorded generation exemplars. This independence can 166

significantly improve the viability of our approach because ac- 167

quiring the above three types of information can bring challenges 168

or additional costs for utilities. (2) Our approach only relies on 169

the net demands of customers with PVs and the native demands 170

of customers without PVs for estimating the aggregate-level 171

PV generation. These two types of demands - net and native 172

- are typically available to utilities, making our approach sig- 173

nificantly practical. (3) Our approach innovatively estimates 174

individual PV-installed customers’ peak generations by mining 175

net demand data. The peak generations are then utilized to 176

estimate individual PV-installed customers’ BTM generation 177

time series. 178

Throughout the paper, vectors are denoted using bold italic 179

letters, and matrices are represented as bold non-italic letters. In 180

addition, we adopt the sign convention that the native demand 181

consumed by customers and the power output from PVs are both 182

positive. 183

The rest of the paper is organized as follows: Section II 184

introduces our first and second findings regarding spatial cor- 185

relation of native demand/generation. Section III presents how 186

we estimate the aggregate generation for customers with PVs. 187
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Fig. 2. Three-day actual native demand curves for three example groups with
different customer numbers.

Fig. 3. Three-day normalized native demand curves for three example groups
with different customer numbers.

Section IV presents the procedure of formulating and solving188

an optimization problem to allocate the estimated aggregate189

generation to individual PVs. In Section V, case studies are190

analyzed. Section VI concludes the paper.191

II. SPATIAL CORRELATION OF NATIVE DEMAND/PV192

GENERATION193

A. Finding 1: Native Demand Spatial Correlation Between194

Two Sizeable Groups195

By examining real residential native demand data, we find196

that once the customer numbers for two groups reach a certain197

level, their native demands are highly correlated. This finding198

is leveraged for estimating the aggregate native demand time199

series for customers with PVs.200

Specifically, we use native demand curves to illustrate the201

observed spatial correlation. Fig. 2 presents real native demand202

curves for three example groups with different customer num-203

bers, i.e., 40, 60, and 80, respectively. We can observe that these204

three curves demonstrate almost identical shapes, although they205

have different magnitudes. The high shape similarity can also206

be corroborated by Fig. 3, which presents normalized native207

demand curves corresponding to the curves in Fig. 2. Note that208

the normalized curves are obtained by dividing the real curves209

in Fig. 2 by their peaks, respectively.210

To stress the importance of Fig. 3, we first define two types211

of customer groups: the residential customers with and without212

PVs. These two customer groups are denoted as Cw and Co,213

respectively. For Co, its native demand is recorded by smart214

meters. For Cw, we only know its net demand, and we do not215

know its native demand. Our goal is to estimate Cw’s unknown216

native demand and thus to estimate its PV generation. Therefore,217

Fig. 3 inspires us that given the known native demand curve of218

Co, we can infer the unknown native demand curve of Cw by219

multiplying the native demand curve of Co by a ratio, r.220

Fig. 4. The relationship between native demand ratio and the nocturnal native
demand ratio between two example customer groups.

Since the native demands for the customers in Co are directly 221

recorded by smart meters, the native demand curve of Co can be 222

obtained by aggregating the native demand time series over the 223

customers inCo. The challenge for inferring the unknown native 224

demand curve of Cw is that the ratio, r, is unknown and needs to 225

be estimated. The unknown of r is caused by the unavailability of 226

the native demand during the daytime for the customers in Cw. 227

This is because PV generates power during the daytime, which 228

masks the native demand in the case of net metering. Thus, we 229

cannot use daytime native demand to compute r. Instead, we use 230

the nocturnal native demand to estimate r because PV does not 231

generate power during nighttime, and thus the nocturnal native 232

demand for Cw is known. Based on the above inference, we 233

propose first utilizing the nocturnal native demand to compute 234

a nocturnal native demand ratio, rn, and then approximating r 235

as rn. 236

One pre-condition for approximating r as rn is that r should 237

be close to rn. To verify this condition, we randomly select two 238

groups with different customer numbers ranging from 20 to 80. 239

Then, for each group, the native demand time series are spatially 240

aggregated over customers to obtain an aggregate native demand 241

time series. After that, we compute r using the two groups’ native 242

demand time series throughout a certain period, and compute 243

rn using the two groups’ native demand time series only during 244

nighttime within that period. Finally, we plot r against rn, as 245

shown in Fig. 4. We can see that r is almost identical with rn. 246

Therefore, we can accurately estimate r by directly letting it 247

equal rn. 248

Once we obtain the estimate of r, we can compute the un- 249

known native demand of Cw by multiplying the known native 250

demand of Co by the estimate of r. After that, estimating 251

the unknown PV generation of Cw is straightforward, i.e., by 252

subtracting the recorded net demand measurements from the 253

estimated native demand. 254

B. Finding 2: Generation Spatial Correlation Between Two 255

PVs 256

There are two primary factors that determine the generation 257

spatial correlation: (1) In most cases, a distribution system is 258

geographically bounded in a small district. (2) The most widely 259

available sampling resolution for smart meters is 1-hour. Under 260

these two conditions, different PV arrays are subject to nearly 261

identical meteorological inputs. Thus, the identical inputs can 262

result in highly similar shapes among PV generation curves. 263
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Fig. 5. Three-day real generation curves for three example PVs with different
capacities.

Fig. 6. Three-day normalized generation curves for three example PVs with
different capacities.

Fig. 5 presents three example PV generation curves correspond-264

ing to different PV array capacities. Similar to the native demand265

curves for sizeable customer groups, these three generation266

curves also demonstrate significant spatial correlation, i.e., they267

possess highly similar shapes. This high similarity can also be268

corroborated by Fig. 6, where the normalized generation curves269

corresponding to the three curves in Fig. 5 overlap with each270

other. Most importantly, Figs. 5 and 6 inspire us that estimating271

a BTM PV generation curve comes down to two steps: first,272

determine the generation curve’s shape, and then determine273

its magnitude. This two-step method can notably simplify the274

estimation of unknown BTM PV generation time series. This275

is because compared to model-based methods, our approach is276

developed on the foundation of high similarity among generation277

curves; therefore, it requires significantly less information.278

III. ESTIMATING AGGREGATE BTM PV GENERATION FOR279

CUSTOMERS WITH PVS280

As elaborated in Section II-A, the native demands of two size-281

able customer groups are highly correlated. This high correlation282

inspires us that we can infer the unknown native demand of Cw283

by multiplying the known native demand of Co by a ratio:284

P̂PPw = PPP or, (1)

where, P̂PPw = {P̂w(t)} andPPP o = {Po(t)}, t = 1, . . ., T , denote285

the estimated native demand time series for Cw and the actual286

native demand time series for Co, respectively. T is the total287

number of native demands in a selected window (e.g., one288

month). Po(t) is computed by aggregating the measured native289

demands over customers without PVs:290

Po(t) =

No∑
i=1

Po,i(t), t = 1, . . ., T, (2)

where, No represents the total number of customers in Co, i.e., 291

customers without PVs. Po,i(t) denotes the measured native 292

demand at time t for the i’th customer in Co. 293

In (1), r denotes the native demand ratio between Cw and Co, 294

and is defined as follows: 295

r =
ΣT

t=1Pw(t)

ΣT
t=1Po(t)

. (3)

However, as presented in Section II-B, since the diurnal native 296

demand for Cw is masked by PV generation and unavailable to 297

utilities, we need to estimate r using nocturnal native demand 298

measurements. This approximation method is based on the ob- 299

servation that PV does not generate power during nighttime and 300

the verification that r and rn are almost identical. Specifically, 301

we use rn to approximate r: 302

r̂ = rn =
Σt∈InPw(t)

Σt∈InPo(t)
, (4)

where, In denotes the set of nighttime hours. In our paper, In 303

refers to the hours between 9:00 P.M. and 5:00 A.M. Note that 304

for the hours in In, since PV does not generate power, Pw(t) 305

equals the known aggregate net demand, P ′
w(t). Therefore, 306

r̂ =
Σt∈InP

′
w(t)

Σt∈InPo(t)
, (5)

where, P ′
w(t) is computed by aggregating the measured net 307

demands over customers in Cw: 308

P ′
w(t) =

Nw∑
i=1

P ′
w,i(t), t = 1, . . ., T, (6)

where, Nw represents the total number of customers in Cw. 309

P ′
w,i(t) denotes the measured net demand at time t for the i’th 310

customer in Cw. 311

Then, using the estimate of r and the known native demand 312

time series for Co, we can apply (1) to compute the estimated 313

native demand time series for Cw. Finally, inferring the PV 314

generation time series for Cw, ĜGGw = {Ĝw(t)}, t = 1, . . ., T , 315

is straightforward: 316

ĜGGw = P̂PPw −PPPw,
′ (7)

where, PPP ′
w = {P ′

w(t)}, t = 1, . . ., T , denotes the known net 317

demand time series for Cw. 318

The above procedure for estimating the aggregate-level PV 319

generation and native demand for Cw are illustrated in Fig. 7. 320

IV. ESTIMATING BTM PV GENERATION FOR EACH 321

INDIVIDUAL PV 322

Knowing the aggregate BTM PV generation and native de- 323

mand might not be sufficient for some applications [29], [30]. 324

For example, some demand response schemes require known 325

customer-level native demand [12]. Therefore, estimating indi- 326

vidual customers’ BTM native demand and PV generation is of 327

significance. 328

To achieve this goal, we propose an approach to allocate the 329

estimated aggregate PV generation/native demand time series 330

to individual customers with PVs. As discussed in Section II-B, 331
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Fig. 7. Detailed structure of the proposed aggregate-level BTM PV generation/native demand estimation.

Fig. 8. Three-day normalized aggregate generation curve for all PVs and
normalized generation curve for an individual PV facing south.

estimating an individual PV’s generation curve boils down to332

determining the generation curve’s shape and its magnitude. In333

this section, our approach has three steps to perform allocating:334

(Step-I): generate candidate generation curves for individual335

PVs; (Step-II): estimate the peak generation for each PV; and336

(Step-III): allocate the estimated aggregate PV generation time337

series to individual PVs by solving an optimization problem.338

A. Generating Diverse Candidate Generation Curves for339

Individual PVs340

As discussed earlier, in a geographically bounded distribution341

system, two primary factors determining a generation curve342

are the magnitude and shape. This subsection aims to generate343

candidate generation curves for those non-south-facing PVs.344

First, we train a regression model using the data generated by345

PVWatts Calculator. Then, we feed the estimated generation346

curve of a south-facing PV into the trained model to infer the347

targeted candidate generation curves for those non-south-facing348

PVs.349

In Section III, we have obtained the estimated time series for350

the aggregate generation of all PVs. One question is whether we351

can use that shape to represent the unknown shapes of individual352

PVs. To answer this question, we have conducted a numerical353

experiment. First, we normalized the aggregate generation curve354

of all PVs by dividing the aggregate generation time series by355

its peak. Then, in the same way, we normalized the generation356

curve of an example PV facing south. The two normalized357

curves are plotted in Fig. 8. It can be seen that the normalized358

curve corresponding to the aggregate generation for all PVs359

is highly similar to the normalized curve for a south-facing360

PV. One primary reason for this similarity is that the majority361

of residential PVs face south because a south-facing PV can362

Fig. 9. Three-day normalized aggregate generation curve of all PVs and
normalized generation curves for two example PVs facing east and west,
respectively.

Fig. 10. Overall structure for producing diverse candidate PV generation
curves using power output data generated by PVWatts Calculator.

typically generate more power than PVs in other directions. Most 363

importantly, Fig. 8 tells us that a south-facing PV’s generation 364

curve can be accurately represented by the normalized aggregate 365

generation curve of all PVs. 366

Note that in distribution systems, in addition to the majority 367

of south-facing PVs, there exist some residential PVs with other 368

azimuths, such as east or west. These non-south-facing PVs’ 369

generation curves cannot be fully represented by the normalized 370

aggregate PV generation curve in Fig. 8. Specifically, compared 371

to the normalized aggregate PV generation curve, the normalized 372

generation curves for an east-facing PV and a west-facing PV 373

are somewhat “left-skewed” and “right-skewed,” respectively, 374

as shown in Fig. 9. Therefore, it is necessary to obtain candidate 375

shapes for those non-south-facing PVs’ generation curves. To 376

achieve this goal, our basic idea is first to feed PV power data 377

generated by PVWatts Calculator into a regression model to 378

capture the relationship between the generations for a south- 379

facing PV and a non-south-facing PV. Then, the aggregate 380

generation curve estimated in Section III, which can accurately 381

represent a south-facing PV’s generation curve, is fed into the 382

trained regression model to produce diverse generation curves 383

corresponding to non-south azimuths. The overall structure is 384

shown in Fig. 10: 385
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1) Training a Gaussian Process Regression Model: Since the386

shape of a south-facing PV’s generation curve can be approxi-387

mated as the shape of the aggregate generation curve of all PVs,388

one intuitive way for inferring non-south-facing PVs’ candidate389

shapes is to produce diverse shapes based on the south-facing390

PV’s estimated generation curve. This idea is based on our391

observation that there exists a mapping between the generation392

curves for PVs with different azimuths. Therefore, one critical393

step for producing diverse candidate generation curves is to iden-394

tify the relationship between a non-south-facing PV’s generation395

curve and a south-facing PV’s generation curve. To capture the396

relationship, first, we use PVWatts Calculator [31], an online397

application developed by the National Renewable Energy Lab-398

oratory (NREL), to generate power output data for PVs with399

typical azimuths, e.g., east, south, and west. Then, using the400

generated PV output power data, we train a Gaussian Process401

Regression (GPR) model to capture the relationship between the402

generation curve corresponding to a typical azimuth except for403

south (e.g., east) and the generation curve corresponding to the404

azimuth of the south. The primary reason for selecting GPR is405

that after running numerical tests, GPR demonstrated a relatively406

better performance when applied to our dataset than some other407

state-of-the-art nonlinear regression models, such as the Support408

Vector Machine model and the Polynomial regression model.409

Specifically, first, we use PVWatts Calculator to generate410

time-series data for a south-facing PV and a PV with other typical411

azimuth (e.g., east). Then, each time series is normalized so that412

the peak generation is 1 p.u. The two normalized time series413

corresponding to the south-facing PV and the non-south-facing414

PV are denoted as GGG∗
s = {G∗

s(t)} and GGG∗
ns = {G∗

ns(t)}, t =415

1, . . ., T , respectively. G∗
s(t) and G∗

ns(t) denote the normalized416

generation at time t for a south-facing PV and a non-south-facing417

PV, respectively. Our goal is to use G∗
s(t) to explain G∗

ns(t)418

because PVs in a geographically bounded distribution system419

typically have highly correlated generations. By conducting420

numerical experiments, we find that in addition to G∗
s(t), the421

hour-in-day, Hd(t), and day-in-year, Dy(t), are also related422

with G∗
ns(t). Therefore, we use G∗

s(t), Hd(t), and Dy(t) as the423

input variables and G∗
ns(t) as the output variable, respectively,424

to train a GPR model. The function of GPR is to capture the425

relationship between G∗
ns(t) and G∗

s(t). The basic idea behind426

GPR is that if the distance between two explanatory variables427

is small, the difference between their corresponding dependent428

variables will also be relatively small. Specifically, the output,429

G∗
ns(t), is denoted as a function of the input vector, XXX∗(t):430

G∗
ns(t) = f(XXX∗(t)), (8)

where, XXX∗(t) = [G∗
s(t), Hd(t), Dy(t)]

T. For GPR, f(XXX∗(t)) is431

assumed to be a random variable reflecting the uncertainty of432

functions evaluated atXXX∗(t). Specifically, the functionf(XXX∗(t))433

is distributed as a Gaussian process:434

f (XXX∗(t)) ∼ GP (μ(XXX∗(t)),K(XXX∗(t),XXX∗(t′))) , (9)

where, μ(XXX∗(t)) represents the expected value of f(XXX∗(t)),435

i.e., the value of G∗
ns(t). The covariance function,436

K(XXX∗(t),XXX∗(t′)), represents the dependence betweenG∗
ns(t)’s437

at different times. In our problem, the covariance function,438

K(·, ·), is specified by the Squared Exponential Kernel function 439

expressed as: 440

K (XXX∗(t),XXX∗(t′)) = σ2
fexp

(
− ||XXX∗(t)−XXX∗(t′)||22

2σ2

)
, (10)

where, || · ||2 represents l2-norm,σf andσ are hyper-parameters, 441

which are determined using cross-validation. Intuitively, (10) 442

measures the distance between XXX∗(t) and XXX∗(t′), which can 443

also reflect the similarity between G∗
ns(t) and G∗

ns(t
′). 444

Note that G∗
s(t) and G∗

ns(t) are generated solar powers using 445

PVWatts Calculator; thus, they are known and a T -dimensional 446

joint Gaussian distribution can be constructed as: 447⎡
⎢⎣
f (XXX∗(1))

...
f (XXX∗(T ))

⎤
⎥⎦ ∼ N (μμμ∗,ΣΣΣ∗) , (11)

where, 448

μμμ∗ =

⎡
⎢⎣
μ (XXX∗(1))

...
μ (XXX∗(T ))

⎤
⎥⎦ , (12a)

ΣΣΣ∗ =

⎡
⎢⎣
K (XXX∗(1),XXX∗(1)) · · · K (XXX∗(1),XXX∗(T ))

...
. . .

...
K (XXX∗(T ),XXX∗(1)) · · · K (XXX∗(T ),XXX∗(T ))

⎤
⎥⎦ .

(12b)

The joint Gaussian distribution formulated in (11) represents 449

a trained non-parametric model, which captures the relationship 450

between G∗
ns(t) and G∗

s(t). 451

2) Inferring a Non-South-Facing PV’s Generation Curve: 452

As shown in Fig. 8, the normalized generation curve for a south- 453

facing PV,GGGs = {Gs(t)}, t = 1, . . ., T , can be approximated as 454

the normalized estimated aggregate generation curve for all PVs: 455

GGGs =
ĜGGw

Ĝm

, (13)

where, Ĝm denotes the peak of ĜGGw. To infer the unknown gen- 456

eration time series for a non-south-facing PV,GGGns = {Gns(t)}, 457

t = 1, . . ., T , we assume Gns(t) is a function of Gs(t), i.e., 458

Gns(t) = f(Gs(t)). By appending f(Gs(t)) to the end of (11), 459

an (N + 1)-dimensional joint Gaussian distribution can be con- 460

structed as: 461⎡
⎢⎢⎢⎣
G∗

ns(1)
...

G∗
ns(T )

Gns(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
f(XXX∗(1))

...
f(XXX∗(T ))
f(XXX(t))

⎤
⎥⎥⎥⎦

∼ N
([

μμμ∗
μ1

]
,

[
ΣΣΣ∗ ΣΣΣ∗1
ΣΣΣT

∗1 Σ11

])
, (14)

where, XXX(t) = [Gs(t), Hd(t), Dy(t)]
T is a vector of explana- 462

tory variables. ΣΣΣ∗1 represents the training-test set covariances 463

and Σ11 is the test set covariance. Since G∗
ns(t), XXX

∗(t), and 464

XXX(t) are known, using the Bayes rule, the distribution ofGns(t) 465
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Fig. 11. Load duration curves for an example customer’s diurnal native
demand and diurnal net demand.

conditioned on GGG∗
ns can be computed as follows:466

Gns(t)|GGG∗
ns ∼ N (μ1(t),Σ1(t)), (15)

where, μ1(t) = ΣΣΣT
∗1ΣΣΣ

∗−1GGG∗
ns and Σ1(t) = Σ11 −467

ΣΣΣT
∗1ΣΣΣ

∗−1ΣΣΣ∗1. Note that μ1(t) denotes the most probable value468

of the estimated generation at time t for a non-south-facing PV.469

By conducting the above inferring procedure for all the t’s, we470

can obtain a candidate generation time series corresponding471

to a particular typical PV azimuth. Since there are multiple472

typical azimuths, such as east, and west, we can infer multiple473

candidate PV generation time series:474

GGGj
ns = {Gj

ns(t)}, t = 1, . . ., T, j = 1, . . ., Nns, (16)

where, Gj
ns(t) denotes the inferred PV generation at time t,475

for the j’th typical non-south-facing azimuth. Nns denotes the476

total number of typical non-south-facing PV azimuths and is477

determined by conducting numerical experiments.478

B. Estimating Peak Generation for Each Individual PV479

Simply knowing the candidate shapes for unknown generation480

curves is insufficient for allocating the estimated aggregate481

generation to individual PVs. As discussed earlier, we should482

also know the magnitudes for the candidate generation curves.483

To estimate the peak generation, we employ our observation484

from real data that the peak generation is almost identical with485

the difference between the minimum diurnal native demand and486

the minimum net demand.487

Specifically, to explain our observation regarding the correla-488

tion, we start with Fig. 11, showing the load duration curves for489

the i’th customer’s diurnal native demand,Pw,d,i(t), and diurnal490

net demand, P ′
w,d,i(t). Thus, we can compute the difference491

between the minimums of Pw,d,i(t) and P ′
w,d,i(t):492

Dw,i = Pw,d,i − P ′
w,d,i, (17)

where, Pw,d,i and P ′
w,d,i denote the minimums of Pw,d,i(t)493

and P ′
w,d,i(t) during a selected window, respectively. Note that494

Pw,d,i is positive, and P ′
w,d,i is negative. Then, our finding is495

that Dw,i is highly similar to the peak generation, Gw,m,i, as496

shown in Fig. 12. This relationship inspires us to approximate497

Fig. 12. The relationship between peak generation and the difference between
minimum diurnal native demand and minimum net demand. (a) Spring (b)
Summer

Fig. 13. The relationship between minimum diurnal native demand and min-
imum nocturnal native demand. (a) Spring (b) Summer

Gw,m,i as Dw,i: 498

Ĝw,m,i = Dw,i, i = 1, .., Nw, (18)

where, Ĝw,m,i is the estimate ofGw,m,i. However, one challenge 499

is that Dw,i depends on Pw,d,i, which is unknown due to BTM 500

PV generation. Therefore, we need to estimate Pw,d,i, which 501

is involved with another finding from real native demand data. 502

Specifically, as shown in Fig. 13, the minimum diurnal native 503

demand,Pw,d,i, can be approximated as the minimum nocturnal 504

native demand, Pw,n,i: 505

Pw,d,i ≈ Pw,n,i, i = 1, .., Nw. (19)

Note that since PV does not generate power during nighttime, 506

Pw,n,i is known to utilities. Finally, using the estimate of Pw,d,i 507

and the known P ′
w,d,i, we can compute Dw,i using (17), and 508

then compute Ĝw,m,i using (18). 509

C. Allocating the Estimated Aggregate PV Generation to 510

Individual PVs 511

Sections III, IV-A, and IV-B provide the estimated aggregate 512

generation time series of all PVs, inferred candidate generation 513

curves for individual PVs, and estimated generation peaks for 514

individual PVs, respectively. Therefore, estimating individual 515

PVs’ generation curves comes down to allocating the estimated 516

aggregate generation time series to individual PVs. This allocat- 517

ing procedure is formulated as an optimization process: 518

min
K,γγγ

||Ge ∗K ∗ 111− ĜGGw||22 + λ ∗ ||γγγ||22 (20a)

s .t . Ge ∗K ≤ 111 ∗ (ĜGGw,m + γγγ)T, (20b)

000 ≤ γγγ ≤ P0 ∗ 111, (20c)
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where, Ge = [GGGs,GGG
1
ns, . . .,GGG

Nns
ns ] is a T -by-Ne matrix, which519

denotes a collection of candidate generation curves. Ne =520

Ns + 1 denotes the total number of candidate generation curves.521

K = [KKK1, . . .,KKKNw
] is an Ne-by-Nw matrix of decision vari-522

ables, which denote the weights assigned to candidate generation523

curves for individual PVs. KKKi, i = 1, . . ., Nw, is an Ne-by-1524

vector, which denotes the weights assigned to candidate gener-525

ation curves for the i’th PV. The first 111 is an Nw-by-1 vector of526

ones. Ge ∗K results in a T -by-Nw matrix, which is a collection527

of estimated generation time series for individual PVs. The528

first term in the objective function (20a) reflects the difference529

between the estimated aggregate PV generation, ĜGGw, and the530

weighted summation of individual PV’s estimated generations,531

Ge ∗K ∗ 111. The second term in the objective function (20a)532

considers the estimation errors of peak generations. λ is a533

tuning parameter. γγγ is an Nw-by-1 vector with non-negative534

elements, which reflect the errors of approximating Gw,m,i as535

Dw,i, as shown in (18). The second 111 is a T -by-1 vector of ones.536

ĜGGw,m = [Ĝw,m,1, . . ., Ĝw,m,Nw
]T denotes an Nw-by-1 vector537

of the estimated generation peaks for all PVs. (ĜGGw,m + γγγ)538

denotes the corrected generation peaks with consideration of es-539

timation errors. 111 ∗ (ĜGGw,m + γγγ)T produces a T -by-Nw matrix,540

in which each column contains the same element. Constraint541

(20b) ensures that the estimated generation time series for each542

PV is smaller than its estimated peak generation.000 is anNw-by-1543

vector of zeros.P0 denotes the maximum error of approximating544

Gw,m,i as Dw,i for individual PVs. The third 111 is an Nw-by-1545

vector of ones. Constraint (20c) ensures that the estimation546

errors for individual PVs are non-negative and smaller than an547

upper bound. The reason for constraining the elements of γγγ as548

non-negative is that Dw,i typically under-estimates Gw,m,i, as549

shown in Fig. 13.550

The optimization process represented in (20) is a convex551

quadratic programming problem, thus, we can obtain a unique552

solution for K, i.e., K∗ = [KKK∗
1, . . .,KKK

∗
Nw

]. Then, the estimated553

generation time series for the i’th PV, ĜGGw,i = {Ĝw,i(t)}, t =554

1, . . ., T , can be computed as:555

ĜGGw,i = Ge ∗KKK∗
i , i = 1, . . ., Nw. (21)

Then, the estimated native demand time series for the i’th556

customer, P̂PPw,i = {P̂w,i(t)}, t = 1, . . ., T , can be computed as:557

P̂PPw,i = PPP ′
w,i + ĜGGw,i, i = 1, . . ., Nw. (22)

where, PPP ′
w,i = {P ′

w,i(t)}, t = 1, . . ., T, denotes the known net558

demand time series recorded by smart meter for the i’th customer559

with PVs.560

Note that (20) can be solved for a selected window. The561

window size, T , can impact estimation accuracy and runtime,562

which will be examined in the Case Study Section. The detailed563

steps for estimating customer-level PV generation are illustrated564

in Fig. 14.565

V. CASE STUDY566

In this section, the proposed two-layer BTM solar power and567

native demand estimation approach is verified using real PV568

generation and native demand data.569

Fig. 14. Detailed steps of the individual customer-level BTM PV generation
estimation.

Fig. 15. Three-day actual and estimated aggregate PV generation and native
demand curves. (a) Aggregate PV generation (b) Aggregate native demand

A. Dataset Description 570

The hourly native demand and PV generation data used in this 571

paper are from a public dataset [24]. The time range of native 572

demand and solar power is one year. This dataset contains a total 573

number of 100 customers with PVs and 115 customers without 574

PVs. For the customers with PVs, the net demand is obtained by 575

subtracting PV generation from native demand. 576

B. Aggregate-Level BTM PV Generation Estimation 577

Validation 578

Fig. 15 shows three-day actual and estimated aggregate PV 579

generation/native demand curves. It can be seen that the esti- 580

mated curves can accurately follow the actual curves. To quanti- 581

tatively evaluate the estimation accuracy, we compute the mean 582
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Fig. 16. Three-day actual and estimated PV generation and native demand
curves for an example customer with PV. (a) PV generation (b) Native demand

absolute percentage error (MAPE) as follows:583

MAPE =
100%

Nd

∑
t∈Id

∣∣∣∣∣
Ŷw(t)− Yw(t)

Yw,m

∣∣∣∣∣, (23)

where, Ŷw(t) represents Ĝw(t) or P̂w(t). Yw(t) represents584

Gw(t) or Pw(t). Yw,m represents Gw,m or Pw,m, where Gw,m585

and Pw,m denote the actual peaks of PV generation and native586

demand, respectively. Id denotes the set of daytime hours. Nd587

denotes the total number of hours in Id.588

To comprehensively evaluate the performance of our ap-589

proach, we also compute the mean squared error (MSE) and590

coefficient of variation (CV):591

MSE =
1

Nd

∑
t∈Id

(
Ŷw(t)− Yw(t)

)2

, (24)

CV =
σ

μ
, (25)

where,592

μ =
1

Nd

∑
t∈Id

(Ŷw(t)− Yw(t)), (26a)

σ =

√
1

Nd − 1

∑
t∈Id

(
(Ŷw(t)− Yw(t))− μ

)2

. (26b)

The computed MAPE’s for PV generation and native de-593

mand are 1.21% and 1.28%, respectively. The computedMSE’s594

for PV generation and native demand are about 58.09. Note that595

the actual peaks for the PV generation and native demand are596

462.5 and 437.1 kW, respectively. The computed CV ’s for PV597

generation and native demand are about -3.48. The above error598

metrics reflect the high accuracy of our proposed approach.599

C. Customer-Level BTM PV Generation Estimation Validation600

1) Estimation Performance: Fig. 16 shows three-day actual601

and estimated PV generation and native demand curves for an602

example customer with PV. We can see that the estimated curves603

TABLE I
EMPIRICAL CDF OF ESTIMATION ERROR METRICS

can accurately fit the actual curves. To comprehensively examine 604

the performance of our approach, we compute the MAPE for 605

all customers with PVs. Specifically, the MAPE’s for the i’th 606

customer are computed as follows: 607

MAPEi =
100%

Nd

∑
t∈Id

∣∣∣∣∣
Ŷw,i(t)− Yw,i(t)

Yw,m,i

∣∣∣∣∣ (27)

where Yw,i(t) represent Gw,i(t) or Pw,i(t), Ŷw,i(t) represent 608

Ĝw,i(t) or P̂w,i(t), and Yw,m,i represent Gw,m,i or Pw,m,i. 609

Gw,m,i and Pw,m,i denote the actual generation and native de- 610

mand peaks for the i’th customer, respectively. We also compute 611

the MSE and CV for each PV-installed customer: 612

MSEi =
1

Nd

∑
t∈Id

(
Ŷw,i(t)− Yw,i(t)

)2

, (28)

CVi =
σi

μi
, (29)

where, 613

μi =
1

Nd

∑
t∈Id

(Ŷw,i(t)− Yw,i(t)), (30a)

σi =

√
1

Nd

∑
t∈Id

(
(Ŷw,i(t)− Yw,i(t))− μi

)2

. (30b)

Table I summarises the empirical cumulative distribution 614

functions (CDFs) for the estimation MAPE, MSE, and 615

CV , which are constructed using all the computed MAPE’s, 616

MSE’s, and CV ’s, respectively. As can be seen, for the es- 617

timated hourly PV generation, 70% of the MAPE’s are less 618

than 6.38%. Regarding the estimated hourly native demand, 70% 619

of the MAPE’s are less than 3.67%. This effectively verifies 620

the estimation accuracy of our proposed approach. We also 621

provide the percentiles of MSE and CV based on all the PV- 622

installed customers’ generation and native demand estimates, 623

which can more comprehensively evaluate the performance of 624

our approach. 625

Note that the above results are obtained under the conditions 626

that (1) five produced candidate generation curves are employed 627

(Ne = 5), (2) the tuning parameter in (20a) is 100 (λ = 100), 628

and (3) the optimization process specified in (20) is executed for 629

individual windows with a time length of one month (T = 720 630

hours, the entire year is divided into 12 windows). 631
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Fig. 17. Three-day produced candidate generation curves corresponding to
three typical azimuths, i.e., east, south, and west.

TABLE II
IMPACT OF CANDIDATE GENERATION CURVES

2) Testing the Candidate Generation Curves: As elaborated632

in Section IV-A, diverse candidate generation curves are pro-633

duced for representing the unknown BTM generation. Thus, it634

is of interest to examine the effectiveness of producing candi-635

date curves. Fig. 17 shows three produced candidate generation636

curves corresponding to three typical azimuths, i.e., east, south,637

and west, respectively. We can observe that compared to the638

generation curve corresponding to the south, the produced curve639

corresponding to the east is “left-skewed,” and the produced640

curve corresponding to the west is “right-skewed”. Therefore,641

the produced curves demonstrate diversity, which is consistent642

with our observation on real PV generation curves shown in643

Fig. 9.644

In addition, we have also quantitatively examined the ef-645

fectiveness of producing diverse candidate generation curves.646

Specifically, we test the impact of the number of candidate647

generation curves, i.e., we solve (20) separately for three cases648

with different numbers of candidate curves: (I) one candidate649

generation curve corresponding to the azimuth of south; (II)650

three candidate generation curves corresponding to the east,651

south, and west, respectively; and (III) five candidate generation652

curves corresponding to the east, southeast, south, southwest,653

and west, respectively. The other conditions for the three cases654

are the same: λ = 100 and T = 720 hours. To evaluate the655

impact of candidate number, we compute the average MAPE656

over all PVs’ MAPE’s obtained from (27). The results are657

summarized in Table II. We can see that as the candidate number658

increases, the estimation error decreases, and the execution time659

increases. In addition, theMAPE for Case I is relatively greater660

than Case II and III, and Case II and Case III provide nearly661

identical MAPE’s. This is because three candidate curves -662

corresponding to the east, south, and west - can comprehensively663

represent the unknown BTM generation curve; adding extra664

candidate curves simply result in a slight accuracy improvement.665

3) Testing the Tuning Parameter λ: As discussed in666

Section IV-C, λ in (20) reflects the confidence of estimating667

peak generations for individual PVs. One general principle668

for determining λ is that the largest element in γγγ is a couple669

TABLE III
IMPACT OF WINDOW SIZE T

of kilo-watts. In addition, the solutions for (20) should not 670

be sensitive to λ, i.e., (20) should be robust to λ. To verify 671

the robustness of our proposed approach, we solve (20) based 672

on different values of λ, and then compute the corresponding 673

average MAPE’s for the estimated PV generation and 674

native demand. Other conditions are that T = 720 hours and 675

five candidate generation curves - corresponding to the south, 676

southeast, south, southwest, and west - are employed. The results 677

show that for the λ’s ranging from 100 to 500 with an interval 678

of 100, the average MAPE’s for PV generation and native 679

demand do not change (5.47% and 3.09%). The invariant average 680

MAPE’s demonstrate the robustness of our proposed approach. 681

4) Testing the Window Size T : Since our proposed approach 682

can be conducted for each divided window, it is of importance 683

to examine the impact of window size on estimation accuracy. 684

To do this, we perform our approach for windows with different 685

lengths and then compute the estimation MAPE. In Table III, 686

it can be seen that the averageMAPE decreases as T increases. 687

This is because for a wider window, the probability for the 688

minimum diurnal native demand,Pw,d,i, equaling the minimum 689

nocturnal native demand, Pw,n,i, is larger. Thus, we have a 690

smaller estimation error for Pw,d,i, as seen in (19). Then, based 691

on (17) and (18), it can be seen that the smaller estimation error 692

for Pw,d,i results in a more accurate Dw,i, which then brings a 693

more accurate estimate for Gw,m,i. Finally, more accurate peak 694

generation estimates result in smaller estimation errors for the 695

PV generation and native demand time series. 696

D. Performance Comparison 697

This paper compares our proposed approach with previous 698

works from two perspectives, qualitatively and quantitatively. 699

1) Qualitative Analysis: From a qualitative point of view, 700

one primary advantage of our approach is that it does not 701

require meteorological data and solar generation exemplars. For 702

the aggregate level, our approach can perform PV generation 703

estimation by only using recorded net demand data. For the 704

customer level, our approach can also work by only relying 705

on recorded smart meter data, although leveraging PVWatts 706

Calculator’s generated data can improve the estimation accuracy. 707

2) Quantitative Comparison: For the customer level, we 708

have also compared our approach with previous works. Specifi- 709

cally, we focus on comparing our approach with the method pre- 710

sented in [22] and [11], which demonstrate better performance 711

compared to previous works. Table IV summarizes the computed 712

MAPE’s for our approach and the compared approach. Note 713

that the average MAPE’s for our approach have lower and up- 714

per bounds because the considered window size, T , ranges from 715

one month to four months. As can be seen, the approach in [22] 716
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TABLE IV
AVERAGE MAPE (%) COMPARISON

TABLE V
AGGREGATE-LEVEL ESTIMATION MAPE (%)

TABLE VI
AVERAGE CUSTOMER-LEVEL ESTIMATION MAPE (%)

demonstrates a similar estimation accuracy as our approach717

does. However, our approach does not require solar exemplars,718

which makes it more independent and practical. The approach719

in [11] employs a statistical model and a physical model to720

represent the native load and the PV generation, respectively.721

Table IV shows that our approach has a better performance than722

the approach in [11] in terms of the average MAPE.723

E. Robustness Against Measurement and Communication724

Noises725

To test the robustness of our proposed approach, we add726

measurement and communication noises to the net demand727

measurements of customers with PVs and the native demand728

measurements of customers without PVs. For the measurement729

noise, we consider the Class 0.5 (having ±0.5% error) specified730

by ANSI C12.20. For the communication noise, we test five731

different packet loss rates considering that the packet loss rate732

depends on the communication bandwidth and data volume.733

For example, we purposely change 1% of the measurements734

to zero to achieve a 1% packet loss rate. To comprehensively735

evaluate our approach’s performance, we set up five cases: Case736

1 − 1% measurement lost + 0.5% random noise, Case 2 − 2%737

measurement lost + 0.5% random noise, Case 3 − 3% measure-738

ment lost + 0.5% random noise, Case 4 − 4% measurement739

lost + 0.5% random noise, and Case 5 − 5% measurement740

lost + 0.5% random noise. Then, we apply our approach to the741

above five cases and compute the MAPE for evaluating the742

robustness. The results are summarized in Tables V and VI. We743

can observe that the MAPE’s slowly increase while the noise744

level increases, demonstrating the robustness of our approach.745

F. Limitations of the Proposed Approach 746

Every method has its limitations, and there is no omnipotent 747

method that can apply to all cases. The limitation of our proposed 748

approach is that it requires time-series smart meter data with a 749

temporal granularity that can distinguish daytime and nighttime. 750

This is because our approach innovatively utilizes the temporal 751

correlation between the aggregate nocturnal native demand and 752

the aggregate diurnal native demand. Under this condition, only 753

having access to the monthly demands of those PV-installed cus- 754

tomers brings challenges to our approach because it cannot split 755

the monthly demand into two parts, the diurnal and nocturnal 756

demands, for computing the nocturnal native demand ratio. We 757

intend to address this challenge in our future work. 758

VI. CONCLUSION 759

This paper is dedicated to proposing an independent and 760

practical BTM solar power/native demand estimation approach. 761

Our proposed approach contains two interconnected layers. 762

The aggregate level leverages the spatial correlation of native 763

demand to perform the aggregate PV generation/native demand 764

estimation. The customer level utilizes the spatial correlation 765

of PV generation to allocate the estimated aggregate PV gener- 766

ation/native demand to individual customers. The Case Study 767

verifies that our approach can accurately estimate BTM PV 768

generation/native demand, significantly enhancing distribution 769

system observability and situation awareness. The numerical 770

experiments also demonstrate that our approach does not re- 771

quire meteorological data and measured solar power exemplars. 772

Therefore, our approach is more independent and thus is practi- 773

cal for utilities to implement. 774
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