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Abstract—Real active distribution networks with associated6
smart meter (SM) data are critical for power researchers. However,7
it is practically difficult for researchers to obtain such comprehen-8
sive datasets from utilities due to privacy concerns. To bridge this9
gap, an implicit generative model with Wasserstein GAN objectives,10
namely unbalanced graph generative adversarial network (UG-11
GAN), is designed to generate synthetic three-phase unbalanced12
active distribution system connectivity. The basic idea is to learn13
the distribution of random walks both over a real-world system14
and across each phase of line segments, capturing the underlying15
local properties of an individual real-world distribution network16
and generating specific synthetic networks accordingly. Then, to17
create a comprehensive synthetic test case, a network correction18
and extension process is proposed to obtain time-series nodal de-19
mands and standard distribution grid components with realistic20
parameters, including distributed energy resources (DERs) and21
capacitor banks. A Midwest distribution system with 1-year SM22
data has been utilized to validate the performance of our method.23
Case studies with several power applications demonstrate that24
synthetic active networks generated by the proposed framework25
can mimic almost all features of real-world networks while avoiding26
the disclosure of confidential information.
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synthesis, random walk, unbalanced active distribution system.29
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DER Distributed energy resource.32

D Discriminator neural network.33
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G Generator neural network. 34

KDE Kernel density estimation. 35

LSTM Long short-term memory. 36

MIQP Mixed integer quadratic programming. 37

NET Original distribution network. 38

PDF Probability density function. 39

RW Probability density function. 40

SM Smart meter. 41

UG-GAN Unbalanced graph generative adversarial net- 42

work. 43

B. Parameters and Functions of Wasserstein GAN and UG-GAN 44

A Adjacency matrix. 45

c Clipping parameter. 46

E(·) Expectation function. 47

fθ Kernel Sequential neutral network. 48

gθ′(·) Initialization parametric function. 49

m Batch size. 50

niter Number of discriminator iterations per gener- 51

ator iteration. 52

preal Possibility of real of input data x. 53

Px Distribution of the real samples x. 54

Pz Distribution of the noise signal z. 55

Q Scoring matrix. 56

T Number of random walk step. 57

V (·) Value function. 58

vi Random walk vector of the i-th step. 59

x Real data. 60

xfake Generated artificial data. 61

z Noise signal data. 62

α Learning rate. 63

θg Learning parameter of G. 64

θd Learning parameter of D. 65

θg0 Initial learning parameter of G. 66

θd0 Initial learning parameter of D. 67

N (·) Multivariate Gaussian distribution. 68

Cat(·) Category function. 69

σ(·) Sigmoid function. 70

C. Parameters and Variables of Network Correction and Exten- 71

sion 72

E A Ne × 2 matrix indicating from and to node 73

indexes of the i-th edge. 74

hj Kernel bandwidth for the j-th variable. 75
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Kj(·) j-th kernel function.76

lij Square of current.77

vj Square of voltage.78

rij Resistance of line i− j.79

xij Reactance of line i− j.80

n Number of elements for a variable.81

Nc Number of user-defined library of conductor82

configurations.83

ts Specific time slot.84

PEi1Ei2
Active power of i-th transmission line connect-85

ing node Ei1 and Ei2.86

PIj , PLk Active power load of j-th three-phase and k-th87

single-phase.88

pGj , qGj Active and reactive capacity of grid compo-89

nent at node j.90

pDj , qDj Active and reactive load at node j.91

Pij , Qij Active and reactive power flow of line i− j.92

·min, ·max User-defined thresholds of the given variable.93

·, · Upper and lower bound of the given variable.94

uA
Lk, uB

Lk, uC
Lk Binary variables correspond to phase A, B, or95

C for k-th single-phase load connected to node96

MLk.97

uA
Ij , uB

Ij , uC
Ij Binary variables correspond to phase A, B, or98

C for j-th three-phase load connected to node99

MLk.100

uA
nζ , uB

nζ , uC
nζ Binary variables correspond to phase A, B, or101

C for node ζ.102

uA
ei, u

B
ei, u

C
ei Binary variables correspond to phase A, B, or103

C for edge i.104

D. Performance Evaluation of Generated Network105

Davg Average node degree.106

Dmax Maximum node degree.107

Dbr Branching rate.108

Demax Maximum depth.109

NL Number of single phase loads.110

NI Number of three phase loads.111

Nn Number of distribution network nodes.112

Ne Number of distribution network edges.113

PL,avg Average nodal active power of loads.114

PL,max Maximum nodal active power of loads.115

P0, Q0 Active and reactive power at the interface of116

transmission and active distribution network.117

PF Power factor.118

ρPC Assortativity coefficient.119

Δ Imbalance ratios of unbalanced distribution120

systems.121

I. INTRODUCTION122

POWER researchers seek to understand how real-world123

systems work and how real-world systems can work better.124

Therefore, knowledge of real-world systems, including topolo-125

gies, locations and parameters of electrical components, and126

customer consumption behaviors, is essential to their works.127

In practice, most utilities are hesitant to share their systems128

with the public due to data privacy concerns. One common129

solution is to use IEEE test feeders modified on real distribution130

systems for model validation and demonstration. However, the 131

main challenge is that the number of standard test feeders is very 132

limited. Hence, synthetic test systems have been developed as al- 133

ternatives to represent various real networks flexibly. Basically, 134

synthetic networks should exhibit the critical topological and 135

electrical characteristics of real-world networks with user’s be- 136

haviors, but they are entirely fictitious, and users cannot extract 137

any real-world network information from synthetic networks by 138

reverse engineering. 139

Previous works mainly focus on generating synthetic trans- 140

mission networks, which can be classified into two categories: 141

statistics-based [1], [2], [3], [4], [5], [6], [7] and machine 142

learning-based [8], [9] methods. The statistics-based methods 143

performed extensive data analytics on a large amount of real- 144

world power grid data to manually quantify the key properties, 145

both topological and electrical, of network, such as node degree, 146

load distribution, and parameters of grid components. Based 147

on these properties, synthetic networks can be generated using 148

graph theory and grid planning simulations. Specifically, refer- 149

ence [1] and [2] present the methods to get a set of statistical 150

metrics by analyzing empirical probability density function of 151

transmission network electrical parameters. These metrics are 152

significantly important both in the network creation and val- 153

idation stage. With these properties, reference [3] presents a 154

systematic synthetic power grid creation method, which can be 155

seen as a general solution for realizing this task. Latter researches 156

based on statistics-based methods mostly focus on customizing 157

a more realistic power grid for a specific study field, including 158

testing the influence of geomagnetic disturbance [4], economic 159

criteria [5], and communication and control network [6] on 160

real-world gird. Instead of statistics-based methods, machine 161

learning-based methods are also introduced in this field by 162

predicting the connectivity of the grid directly according to 163

the distribution of the training networks properties. In [8], [9], 164

network imitating methods were proposed to generate grids with 165

similar properties to the given networks. Both methods are based 166

on the small-world assumption [7], which has been proved by 167

most scholars in field of transmission systems, i.e., a type of 168

system in which most buses are not directly connected, but the 169

neighbor buses of any given bus are likely to be directly con- 170

nected and most buses can be reached from other buses by a small 171

number of buses. Recently, some works start rethinking whether 172

small world is an accurate model for transmission grids [10] by a 173

small group of researches, and attempt to design new techniques, 174

e.g., methods based on system planning sensitivities [10], to 175

produce a more realistic synthetic grid. It is worth noting that 176

the network created by these methods is able to basically meet 177

requirements of actual applications. 178

Compared to transmission network synthesis, research on 179

active distribution network synthesis is still at a preliminary 180

stage. Some studies [11], [12] have extended the transmission- 181

level statistics-based methods to distribution grids by intro- 182

ducing several indices representing topological properties of 183

distribution networks. However, distribution networks definitely 184

no longer satisfy the small-world assumption, which impacts 185

the performance of these methods. Moreover, the regional na- 186

ture of the distribution systems is greatly ignored in these 187

works. For example, urban and rural distribution networks have 188
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different properties in both topology properties and power flow189

distribution. Based on our observations of real-world data, the190

characteristics of distribution networks depend heavily on street191

layout, space availability, customer density, and even utilities’192

own preferences. Such observations indicate that each distribu-193

tion network has a great deal of specificity. Consequently, some194

researchers have used local geographical and social statistic195

data, such as google maps and Census data, to simulate the196

system planning process for distribution network synthesis [13],197

[14], [15]. In fact, it is an alternative way since existing works198

cannot extract all key information for a specific distribution199

network. Although the best one among them [15] is able to200

create a realistic large-scale network, it still largely depends201

on the expert experience of planning and huge amount detailed202

local geographical, social statistic, and electrical data. Others203

try to develop representative synthetic test feeders directly from204

real systems using hierarchical clustering analysis manually. For205

example, in [16], 24 networks were presented from 575 real206

distribution feeders, which characterize distribution systems in207

different regions of the U.S. Apart from this, authors of [15]208

extend their works to synthetic combined transmission and209

distribution networks synthesis task [17] and do validate in an210

electrical manner, trying to build a more realistic synthetic grid211

with larger scale.212

While previous works provide valuable insights, some chal-213

lenges remain unanswered or only partly covered in this area214

and can be summarized as follows: (1) Existing statistics-based215

works [11], [12], [16] normally rely on a large amount of real-216

world data to extract statistical grid properties. Besides, other217

planning simulation-based works [13], [14], [15] also require218

a mass of detailed local geographical and social statistic data.219

Such a strategy not only poses a challenge for data acquisition220

and privacy but also raises concerns about the generalizability221

of the methods. When researchers generate synthetic grids for222

model development and validation, they need to first extend223

their datasets by collecting massive real-world data, which is224

very expensive. (2) Previous methods [11], [12], [16] ignore225

the significant diversity of distribution systems due to different226

geographic environments and grid infrastructures. For exam-227

ple, urban distribution systems show very different topological228

and electrical factors than rural systems.(3) For all existing229

works [11], [12], [13], [14], [15], [16], it is not well studied230

how to create realistic unbalanced active distribution systems,231

which is exactly one of the key features in practical distribution232

grids. (4) The previous works [11], [12], [13], [14], [15], [16]233

pay more attention to the grid connectivity generation, rather234

than the interaction between topology, loads, and electrical235

components. Besides, they do not provide time-series nodal load236

data reflecting the users’ behavior, and it limits the scope of237

application scenarios.238

To address these challenges, we propose a data-driven frame-239

work that uses limited real-world data to generate a compre-240

hensive active distribution test feeder. Here, “comprehensive-241

ness” means that it contains time-series nodal demands and242

standard distribution grid components with realistic parameters.243

To achieve this, first, an unbalanced graph generative adversarial244

network (UG-GAN) method is designed to produce synthetic245

node connectivity. Specifically, we formulate the network syn- 246

thesis problem as learning the distribution of biased random 247

walks1 both over a single real-world network and across each 248

phase of line segments. Also, we modify the standard GAN 249

architecture to handle the discrete nature of the network data. 250

When the UG-GAN is trained, synthetic node connectivity can 251

be obtained by repeatedly generating random walks. Then, 252

based on this synthetic topology, we utilize a non-parametric 253

uncertainty quantification method known as kernel density esti- 254

mation (KDE) to generate time-series load consumption data for 255

each node. Finally, an optimization-based component placement 256

model is proposed to determine the locations and parameters of 257

various grid components. The goal of this optimization model 258

is to consider the interactions between topology, loads, and 259

electrical components in distribution systems. Unlike previous 260

works that validate synthetic networks only in a statistical 261

manner, our method is tested in a power system manner. More 262

precisely, the generated test case is applied in three different 263

power applications. Case studies demonstrate that our synthetic 264

active distribution system has similar electrical properties and 265

significantly different external characteristics to the input net- 266

work, which respects the data autonomy of the data owner. 267

By using the proposed method, researchers and engineers can 268

mimic one particular real-world network and generate a set of 269

comprehensive testing cases with similar proprieties. As a result, 270

data providers will no longer have any concerns about making 271

desensitized data publicly available in response to requests from 272

industry and academia. In other words, data providers will be 273

more willing to share synthetic systems generated using our 274

methods rather than sharing their real-world systems directly. 275

Also, although this work is fine-tuned on our dataset to optimize 276

the values of the model hyperparameters, the methodology is 277

general and can be applied to any other radial distribution sys- 278

tems for system synthesis after retraining/fine-tuning to capture 279

the unseen distribution of random walks. This is true for any 280

data-driven solution. Furthermore, our model has good scala- 281

bility. Specifically, the proposed method operates on random 282

walks and only considers the non-zero entries of the adjacency 283

matrix instead of generating the entire adjacency matrix, which 284

requires computation and memory as a quadratic function of the 285

number of nodes. Such a strategy efficiently exploits the sparsity 286

of real-world active distribution systems to enhance scalability. 287

Meanwhile, given that system synthesis is a purely offline anal- 288

ysis, the computation burden of the proposed UG-GAN does not 289

directly impact the performance of our method. 290

In summary, the innovative contributions of this paper can be 291

summarized as follows: 292
� The proposed model follows an adversarial generative 293

framework that allows the use of limited real-world data 294

(at least all key information of one real distribution net- 295

work) to capture the specificity of individual three-phase 296

unbalanced active distribution systems while maintaining 297

confidential information. 298

1Biased random walk is a randomly sampled path that consists of a succession
of random steps on a given graph. Unlike in a pure random walk, the probabilities
of the potential new states are unequal due to the topology of the given graph.
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� The proposed method can generate a comprehensive distri-299

bution test case that contains three-phase unbalanced topol-300

ogy, more detailed time-series nodal load data, and more301

types of standard grid components in order for broader302

application scenarios.303
� Topological and electrical indices, together with three304

power applications, are introduced to verify that the gen-305

erated active distribution systems are realistic.306

II. UG-GAN BASED UNBALANCED DISTRIBUTION307

NETWORK SYNTHESIS308

In this section, a UG-GAN is proposed to generate unbalanced309

distribution networks by using a single network. To help the310

reader understand our model, we first review Wasserstein GAN,311

including basic idea, formulation, and training process, then312

describe the details of our UG-GAN.313

A. Wasserstein Generative Adversarial Network314

Wasserstein Generative Adversarial Network (Wasserstein315

GAN) is a novel GAN architecture [18] that improves the316

training stability and provides a loss function to describe the317

quality of the generated samples [19]. It is with the ability318

to learn the underlying distribution Px of the real samples x,319

by finding out a mapping relationship from a known sampled320

distribution Pz (such as Gaussian distribution) to an artificial321

sample that follows Px. This function can be realized by two322

deep neural networks: a generator (G) and a discriminator323

(D). The interaction between these two networks is formulated324

as a game-theoretic two-player nested min-max optimization325

V (G,D). For concreteness, they are described as follows:326

1) Generator Neural Network (G): G defines an end-to-end327

neural network trained to transform a noise signal z to the328

generated artificial data xfake:329

xfake = G(z; θg) (1)

where θg denotes the learning parameter of G. z is the noise sig-330

nal with a known probability density distribution. In this work,331

we choose the noise with multivariate Gaussian distribution,332

shown as:333

z = N (0, zσ) ∼ Pz (2)

General speaking, any machine learning model (like artificial334

neural network, convolutional neural network, long short-term335

memory or ensemble model) can be embedded into G, accord-336

ing to the specific requirements of different tasks, so that the337

generated artificial data satisfies the distribution of real data Px.338

2) Discriminator Neural Network (D): D is trained to max-339

imize the probability of assigning the correct labels to both340

real examples and artificially generated samples from G. It341

outputs a single scalar preal ranging from 0 to 1, representing the342

possibility that the input datax is from the real dataset rather than343

generated artificially byG. The network with learning parameter344

θd is listed as:345

preal = D(x; θd) (3)

Fig. 1. Proposed UG-GAN architecture.

3) Value Function V (G,D) and its Training Process: As 346

mentioned above, G can be regarded as a model to learn a 347

mapping relationship G(z; θg) from noise with known distri- 348

bution to real data space. Thus, the training object is obviously 349

to make the generated artificial data as realistic as the real ones 350

from the perspective of D, by maximizing the expectation of 351

generated artificial data Ez[D(G(Z))]. Meanwhile, D(x; θd) 352

is defined as another neural network to distinguish real data 353

from artificial ones, with an objection maximizing the expecta- 354

tion difference between real data Ex[D(x)] and generated data 355

Ez[D(G(Z))]. Therefore, a suitable value functionV (G,D) for 356

these two interconnected networks is the key idea of GAN, by 357

modeling as a game-theoretic two-player minimax optimization 358

problem. Noted that this value function is specially designed in 359

Wasserstein GAN to improve the stability of the training process 360

on the basis of traditional GAN, shown as: 361

min
G

max
D

V (G,D) = Ex[D(x)]− Ez[D(G(z))] (4)

Two networks are trained simultaneously via an adversarial 362

process using the above value function, until reaching a unique 363

global optimum. More details can be found in [18]. 364

B. UG-GAN for Unbalanced Network Synthesis 365

In power systems, despite novel generative models have great 366

success in dealing with real-valued data, such as wind and outage 367

scenario generation [20], [21], adapting generative models to 368

handle discrete network data is still an open problem. Therefore, 369

in this paper, we propose a new algorithm, UG-GAN, to address 370

the needs of our task. The main idea is illustrated in Fig. 1. 371

Basically, the proposed model captures graphical features of a 372

network by learning the distribution of biased random walks 373

over the network. As demonstrated concretely in [22], random 374

walk is a stochastic sampled path that consists of a succession 375

of random steps on a given network. A distribution grid can 376

be decomposed into a set of random walks that contain both 377

local and global graphical features. Generally speaking, similar 378

networks share similar distribution of sampled random walks, as 379

long as the sampled random walks are sufficient. Following this 380

theory, random walk sampling is employed to convert network 381

data to sequential data. 382

1) Random Walk Sampling and its Encoding Scheme: To 383

indicate the process of random walk sampling and encoding 384
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Fig. 2. An example of random walk sampling and its encoding scheme.

Fig. 3. Proposed two-dimensional one-hot encoding scheme for unbalanced
distribution systems.

scheme, an 8-node radial network is illustrated as an example, as385

shown in Fig. 2. Here, we assume that each edge in this network386

has the same probability of being selected. For example, when387

the current position of the random walk is node 3, the probability388

of edge 3-2, 3-4, 3-5 being sampled at the next step is regarded389

as the same. It is worth noting that a single random walk does390

not necessarily include all system nodes. In this example, nodes391

5 and 8 or edge 3-5 and 7-8 are not sampled. However, as the392

number of random walks increases, all nodes and edges will be393

sampled thousands times. It is clear that the distribution of these394

sampled random walks on graphs highly depends on the given395

graph topology. Also, as the number of nodes in the network396

increases, more random walks are required to cover the entire397

graph. As a result, the conversion from a grid topology to a set of398

random walks can be regarded as an equivalent transformation,399

and our task is no longer to learn the hidden features of grid, but400

the extract features from those random walk. Then, a one-hot401

encoding scheme is employed to further convert the random402

walk to the integer representation, as shown in the right part of403

Fig. 2.404

Considering that unbalanced multi-phase distribution systems405

(e.g., with single and three-phase laterals) are prevalent in the406

U.S., we propose a new two-dimensional one-hot encoding407

scheme to embody the phase information of the input network.408

It extends one additional dimension for each random walk409

step based on one-hot encoding scheme, to determine the state410

including both node and phase information at the same time. In411

other words, we use a two-dimensional matrix to indicate the412

state of each random walk step. Note that for this matrix, only413

one element is equal to 1 to ensure consistency with grid physics.414

As shown in Fig. 3, the input of D and the output of G can be415

rearranged into a three-dimensional tensor for each random walk416

sampled from the original network. Specifically, the first two417

dimensions are represented by a two-dimensional matrix with418

Nn columns and four rows, denoting the phase information of 419

each random walk step (phase A, B, C, and ABC respectively, 420

moreover, if two-phase loads exist, it should be seven rows). 421

The third dimension is the length of the random walk. For this 422

example, as for the first layer of tensor in Fig. 3, only the elements 423

in the first row and third column are equal to 1, which means 424

the first node of this selected random walk is a three-phase node 425

with index 1. 426

Apart from processing phase information, it is necessary to 427

select line conductors and their configurations. To achieve this, a 428

library of conductor types and configurations is used, which can 429

be easily found in utility guidance for distribution systems under 430

specific voltage levels [23], [24]. We have embedded this selec- 431

tion solution into the unbalanced topology synthesis process as 432

a unified problem. In doing so, an additional dimension is added 433

on the basis of the two-dimensional one-hot encoding scheme 434

for the selection of line conductors with their configurations. 435

Specifically, the input of the discriminator and the output of the 436

generator in the proposed UG-GAN model can be rearranged 437

into a four-dimensional tensor for each random walk sampled 438

from the original network or generated by the generator network. 439

The first two dimensions are represented by a two-dimensional 440

matrix with Nn columns and Nc rows, where Nc is determined 441

based on a user-defined library of conductor configurations. The 442

third dimension is the length of the random walk. The fourth one 443

denotes the four or seven possible types of phase information 444

of each random walk step. In other words, it is extended to 445

a three-dimensional one-hot encoding scheme, and each little 446

square shown in Fig. 3 is split into several elements, representing 447

all possible conductor types. In such case, conductor can be 448

sampled, for each step of random walk, from the library of 449

utility guidance using the same encoding scheme aforemen- 450

tioned, apart from determining a specific phase and network 451

connectivity. Similar approaches can be further employed for 452

other in-series grid component placement, which is seen as a 453

special conductor type, like circuit break, regulator, and etc. 454

2) Structure of Generator Neural Network in UG-GAN: 455

Given an input distribution network, defined by a binary adja- 456

cency matrix,A ∈ {0, 1}Nn×Nn , we first sample a large number 457

of random walks RW := {v1, v2, . . ., vT } of length T from A. 458

Then, these random walks are used as the training set of G, 459

which can be formulated as follows: 460

(ht, Ct, pt) = fθ(ht−1, Ct−1, vt−1) (5a)

vt ∼ Cat(σ(pt)) (5b)

(h0, C0) = gθ′(z), v0 = 0 (5c)

whereσ(·) is the sigmoid function,Cat(·) is a category function, 461

and gθ′(z) denotes a parametric function from the noise signal 462

generated by the multivariate Gaussian distribution to initialize 463

a sequential neutral network fθ. In this work, a modified long 464

short-term memory (LSTM) is utilized to represent fθ . As shown 465

in Fig. 4, for each time step t, LSTM cell outputs two values: 466

current state vector ht and Ct, and discrete possibility vector 467

pt for all possible nodes to be sampled at the next time step 468

t+ 1. Since sampling from a categorical distribution is the non- 469

differentiable operation that impedes backpropagation, we have 470
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Fig. 4. LSTM-based generator architecture of UG-GAN.

applied the Gumbel-Max trick to solve this problem [25]. After471

relaxation, the exact node vt of random walk can be sampled472

according to pt using (5b).473

3) Structure of Discriminator Neural Network in UG-GAN:474

D is based on the standard LSTM architecture to distinguish475

sequential random walks generated by G from the ones sam-476

pled from the real distribution network. Further, an input data477

preprocessing and an output activation layer are added to D.478

More precisely, at each time step, the random walk vector vt479

encoded in a two-dimensional one-hot format is reshaped before480

fed into LSTM as input. The output of the discriminator is a481

scalar indicating the probability that the input random walk is482

real.483

4) Training Algorithm of UG-GAN: In this subsection, we484

present the training algorithm of UG-GAN giving the reader485

a clear picture of the training process. Frankly speaking, the486

training process of UG-GAN follows the line of Wasserstein487

GAN [18] with minor modifications, as it prevents mode collapse488

and leads to more stable training. As shown in Algorithm 1, it re-489

quires the original distribution network with several parameters490

as input, and outputs the final parameters of G and D.491

After the training process, G can implicitly represent the un-492

derlying distribution of biased random walks over the real-world493

network and D cannot distinguish the true random walks from494

the artificial random walks. The biased second-order random495

walk sampling strategy described in [26] is utilized in G. Based496

on the random walks generated by G, a scoring matrix Q is con-497

structed, not only measuring the possibility of connectivity for498

each node, but also providing phase information and conductor499

configurations if connected.500

III. ACTIVE DISTRIBUTION NETWORK CORRECTION,501

EXTENSION AND EVALUATION502

When the graphical features of the real-world network are cap-503

tured by the UG-GAN, an active distribution network correction504

and extension framework is developed to provide a comprehen-505

sive distribution test case, including realistic nodal load data and506

standard grid components with detailed parameters.507

A. Time-Series Load Data Synthesis508

The basic idea of load data synthesis is to estimate the proba-509

bility density of multiple load behaviors and then sample them510

Algorithm 1: UG-GAN Training Algorithm.
Require:

α, the learning rate.
c, the clipping parameter.
m, the batch size.
nd, the number of iterations of the discriminator per
generator iteration.
θd0, initial discriminator’s parameters.
θg0, initial generator’s parameters.
NET , original distribution network.

Output:
θd, parameters of discriminator.
θg , parameters of generator.

1: Sample a huge amount of random walks RW from the
input distribution network NET , and encoding them
as the real input dataset x.

2: while not converged do
3: for niter = 0, . . ., nd do
4: Sample {x(i)}mi=1 ∼ Px a batch from the real

data.
5: Sample {z(i)}mi=1 ∼ Pz a batch of prior samples.
6: Gθd ← ∇θd [

1
m

∑m
i=1 D(x(i); θd)−

1
m

∑m
i=1 D(G(z(i); θg); θd)]

7: θd ← θd + α ·RMSProp(θd, Gθd)
8: θd ← clip(θd,−c, c)
9: end for

10: Sample {z(i)}mi=1 ∼ Pz a batch of prior samples.
11: Gθg ← −∇θg

1
m

∑m
i=1 D(G(z(i); θg); θd)

12: θg ← θg − α ·RMSProp(θg, Gθg )
13: end while

accordingly. However, considering the highly complex load 511

uncertainty, it is difficult to do utilizing traditional parametric 512

density estimation methods with Gaussian, beta, and GMM dis- 513

tribution model assumptions. This is because these methods rely 514

on model assumptions that may introduce significant modeling 515

bias in uncertainty quantification. 516

To address this challenge, a non-parametric method, known 517

as kernel density estimation (KDE), is employed to estimate the 518

probability density function (PDF) of different load behaviors,2 519

and generate the time-series load data for each primary nodes by 520

sampling the estimated PDFs. For concreteness, the proposed 521

algorithm is summarized as three steps. The first step is to 522

collect the time-series load data of all types of users. Then, these 523

load data are classified using an unsupervised clustering algo- 524

rithm [27] to reduce the uncertainty of load behaviors. For each 525

type of customer, the Davies-Bouldin validation index (DBI) is 526

utilized [28] to determine the optimal number of clusters. The 527

relational behind DBI is to quantify the ratio of within-cluster 528

and between-cluster similarities. The second step is to estimate 529

load PDF of each cluster. Let X is a matrix of d variables drawn 530

from the load distribution of a cluster with an unknown density 531

2Electricity customers can be roughly divided into three main types with com-
pletely different consumption behaviors: residential, commercial and industrial
loads.
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f , which is formulated by:532

f(x1, x2, . . ., xd) =
1

n ·∏d
j=1 hj

n∑
i=1

d∏
j=1

Kj

(
xj −Xij

hj

)

(6)
where n donates the number of elements for a variable, and hj533

is the kernel bandwidth for the j-th variable. Kj(·) is the j-th534

kernel function. The Gaussian kernel function is adopted here.535

In this application, load data is considered as a time varying536

variable, thus for a specific time slot ts, the conditional density537

function of per unit load can be expressed as:538

f(PL|t = ts) =
f(PL, t = ts)

f(t = ts)
(7)

The final step is to generate synthetic load data by sampling from539

each PDF. To further protect data privacy, we only provide the540

nodal load data of generated primary network rather than each541

end user.542

For distribution systems with distributed energy resources543

(DERs) and renewable distributed generators (DGs), the algo-544

rithm aforementioned can also be employed with minor modifi-545

cations. It is worth noting that most DGs and part of DERs are546

invested by power consumers, and they are normally installed547

behind-the-meter. In this case, when the utilities only have the548

smart meter data, the proposed method can be first utilized to549

generate net demand and then applied the data-driven disaggre-550

gation methods, such as our previous work [29] desgined for551

residential rooftop solar photovoltaics (PVs), to obtain power552

generation data and native demand. If the utilities install devices553

to monitor the solar generation, our method can be applied to554

generate two time series: one for native demand and one for555

renewable generation. The main difference is that the generator556

output data is clustered according to the scenarios, like weather557

events (e.g., high wind day, sunny day), generator types, and558

other influential factors.559

B. Load Assignment and Topology Correction560

By using on the Q matrix generated by UG-GAN, one sim-561

ple solution determining the topology, phase information and562

conductor configurations of the synthetic network is to choose563

the edges and their corresponding line conductors with the564

highest probability. However, such a solution does not take565

into account the strong coupling relationship between topology566

and load distribution, which leads to significant differences567

between generated networks and actual grids. For example, in568

practical systems, utilities prefer to connect industrial customers569

with an individual three-phase node (without other residential570

customers) to ensure the reliability of the power supply. Besides,571

there may also be restrictions in the selection of upstream and572

downstream3 line conductors. Therefore, an optimization-based573

3The upstream and downstream relationships of the nodes and edges are used
to define the power flow properties of the distribution network. For example, for
a conductor with the power flow from node A to B, we name A as the upstream
node and B as the downstream one. The definition of upstream and downstream
edges are similar. In other words, we choose to use the concept of upstream and
downstream nodes and edges to indicate the electrical properties as well as the
topological characteristics.

joint framework of load assignment and topology correction is 574

proposed, in order to assign all loads to the generated system 575

while performing topology corrections. Specifically, this joint 576

framework is cast as a Mixed Integer Quadratic Programming 577

(MIQP) problem. Among them, 12 binary variables are de- 578

fined to represent the connectivity between loads (including 579

NL single-phase and NI three-phase loads) and the generated 580

network with Nn nodes and Ne edges: 581

uA
Lk, u

B
Lk, u

C
Lk, u

A
Ij , u

B
Ij , u

C
Ij , u

A
nζ ,

uB
nζ , u

C
nζ , u

A
ei, u

B
ei, u

C
ei ∈ {0, 1} (8)

The first three variables correspond to individual phase 582

for k-th single-phase load connected to node MLk, where 583

k = 1, 2, 3, . . ., NL. The fourth to sixth variables indicate in- 584

dividual phase for j-th three-phase load connected to node MIj , 585

where j = 1, 2, 3, . . ., NI . The last six denote individual phase 586

for node ζ and edge i, respectively. 587

First, optimization objective is formulated as follows to de- 588

termine a final network according to matrix Q. 589

Obj =

Ne∑
i=1

((Qi,1 − uA
ei)

2 + (Qi,2 − uB
ei)

2 + (Qi,3 − uC
ei)

2)

(9)
Second, several constraints are added to ensure consistency 590

with grid physics. We will describe them one-by-one. For the 591

k-th single-phase load, it can merely be assigned to a specific 592

phase of the network. Thus, the constraints corresponding to the 593

binary variables of each phase can be written as: 594

uA
Lk + uB

Lk + uC
Lk = 1 (10)

In a similar manner, for the j-th three-phase load which is 595

connected to the ζ-th node, the constraints of phase-A binary 596

variables can be written as: 597

uA
Ij = 1, uA

nζ = 1 j ∈ ζ (11)

For all customers connected to node MLk (k ∈ ζ), the binary 598

variables associated with the load and node satisfy boolean 599

logical relationship “or”. We use phase-A as an example to 600

explain this: uA
nk will be 1 when a single-phase load connects 601

to phase-A of this node or a three-phase load connects to this 602

node, otherwise it will be 0. In this work, we convert this boolean 603

operation to a set of constraints as follows: 604

uA
nζ ≥ uA

Lk, uA
nζ ≤

∑
k

uA
Lk, k ∈ ζ (12)

Considering that the vast majority of distribution networks in 605

normal operation are tree-like structures [12], the upstream and 606

downstream edges and nodes in the generated topology should 607

meet several rules. Obviously, when the upstream edge is a three- 608

phase branch, the downstream one can be either a single or three- 609

phase branch. In contrast, the downstream one can merely be a 610

single-phase branch when the upstream edge is a single-phase 611

branch. Meanwhile, the phase information of the downstream 612

node should be aligned with that of upstream edges. These two 613

rules are formulated as a set of constraints described in (13). 614

uA
nEi1

≥ uA
nEi2

, uA
ei = uA

nEi2
(13)
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where E donotes a Ne × 2 matrix. In the i-th row, first and615

second column elements,Ei1 andEi2 (Ei1 < Ei2), are the from616

and to node indexes of the i-th edge, i = 1, 2, 3, . . ., Ne. Further,617

a constraint is added to the model for avoiding overloads in the618

generated synthetic network:619

PEi1Ei2
<= PEi1Ei2

<= PEi1Ei2
(14)

where, PEi1
Ei2 indicates the active power of i-th transmission620

line connecting node Ei1 and Ei2. PEi1
Ei2 and PEi1Ei2

are the621

upper and lower bound of the active power of the certain line.622

Finally, the following equations are added as constraints on the623

model in order to prevent unreasonable three-phase imbalance624

ratios in the synthetic network:625

PA =
∑
j

1

3
uA
IjPIj +

∑
k

uA
LkPLk (15)

Δmin ≤ Δ = max{|PA−PB |,|PA−PC |,|PB−PC |}
PA+PB+PC ≤ Δmax (16)

wherePIj andPLk are the j-th three-phase andk-th single-phase626

active power load. Δmin and Δmax are the user-defined thresh-627

olds, near the imbalance ratios of original real-world unbalanced628

distribution systems.629

C. Extension of Network With Grid Components630

The proposed UG-GAN with the network correction process631

can generate a synthetic active distribution network with the632

related nodal consumption data. However, without standard grid633

components, the synthetic distribution system cannot be treated634

as a comprehensive test case. Thus, in this work, by imitating635

the real planning process, a Mixed Integer Second-order Cone636

Programming (MISCP) problem is formulated to place several637

grid components, including capacitor banks and distributed en-638

ergy resources (DER), on the basis of the synthetic network.639

The objective function is written to minimize the power losses640

as follows:641

min
∑

(i,j)∈E
rij lij (17)

where rij denotes the resistance of line i− j, lij = |Iij |2, i.e. the642

square of current, and ∀(i, j) ∈ E. Obviously, reducing network643

losses is not the only factor to be considered in grid component644

planning. Some components are directly invested by customers645

with the goal of local economic optimization. Therefore, the646

objective function described above can be modified according647

to the actual needs of the generated synthetic networks. One648

point to note is that the modified function must still be a linear649

function of lij and uj to ensure the solvability of the formulated650

MISCP optimization problem.651

Further, this optimization problem should be subject to652

multiple constraints to force the installed components to653

be realistic. In general, the constraints of this optimization654

problem can be divided into two parts. The first part shown in655

(18) restricts the location and capacity of each grid component.656

Among them, the first two inequality constraints restrict the657

active and reactive power injections of each grid component to658

be equipped. The third one describes the overall limits of active659

power, determining the possibility of power flow reversal. The 660

last constraint refers to the limitation of the component number. 661⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ujpGj ≤ pGj ≤ ujpGj , j 
= 0

ujqGj ≤ qGj ≤ ujqGj , j 
= 0∑
j∈Nn,j 
=0

pGj ≤ εp
∑

j∈Nn

pDj∑
j∈Nn,j 
=0

uj ≤ NG

(18)

where uj is a binary variable indicating whether the grid 662

component with active capacity pGj and reactive capacity qGj 663

is installed at node j. pDj is the active load at node j. • and • 664

are the upper and lower bound of the variable. 665

The second part is the power flow constraints of the synthetic 666

network. Considering that classic power flow constraints are 667

non-linear equations, the overall optimization problem can only 668

be formulated as a mixed integer non-linear programming prob- 669

lem, which is hard to solve. To alleviate such difficulty, a relaxed 670

branch flow model [30] is employed in this subsection, which 671

is thus modeled so as a set of second-order cone constraints as 672

follows: 673⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pj =
∑

k:j→k Pjk −
∑

i:i→j(Pij − rij lij) + gjvj
qj =

∑
k:j→k Qjk −

∑
i:i→j(Qij − xij lij) + bjvj

vj = vi − 2(rijPij + xijQij) + (r2ij + x2
ij)lij∥∥∥∥∥∥

2Pij

2Qij

lij − vi

∥∥∥∥∥∥
2

≤ lij + vi

V 2
j ≤ vj ≤ V 2

j

I2ij ≤ lij ≤ I2ij
pj = pGj − pDj

qj = qGj − qDj

(19)
where vj = |V j |2,Pij andQij are the active and reactive power 674

flow of line i− j, xij is the reactance of line i− j. 675

Overall, various standard grid components, e.g., capacitor 676

banks and DERs, are placed in this generated synthetic net- 677

work using the proposed network extension method, changing 678

or even reversing the distribution of synthetic network power 679

flow. It enables the generated synthetic network is similar to a 680

realistic active distribution network. It should be noted that the 681

proposed network extension method cannot be integrated with 682

our UG-GAN algorithm because the goal is to mimic a specific 683

network rather than replicate the original network. 684

D. Performance Evaluation 685

In order to evaluate the performance of the proposed method, 686

topological and electrical indices are defined as follows. More- 687

over, several power applications are introduced in this subsection 688

to further demonstrate that our synthetic networks are useful for 689

power researchers and utility engineers, replacing the unavail- 690

able real-world data. 691

1) Topological and Electrical Indices: Based on previous 692

work [12], several statistical and electrical based metrics are 693

utilized in both graph and power aspects to prove that our model 694

reproduces the most known properties inherent to real-world 695

networks, which are listed below: 696
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Fig. 5. Four statistical indices for the three distribution systems.

� Nn,Ne: The number of nodes and edges of synthetic active697

distribution network, which reflect the scale of the network.698
� Davg , Dmax, Dbr, ρPC : These four node degree-based699

indices are average node degree, maximum node degree,700

branching rate and assortativity coefficient, respectively.701

Among them, node degree represents the number of edges702

that are incident to a certain node, branching rate denotes703

the percentage of the number of nodes with degree greater704

than three, and assortativity coefficient is examined in705

terms of node degrees using the Pearson Correlation co-706

efficient. These indices reflect the local graph properties707

of the active distribution systems. For example, urban or708

higher voltage level networks normally tend to branch out709

more compared to rural or lower voltage level ones.710
� Demax: Maximum depth. It can be used to roughly de-711

scribe the strength of the voltage drop in radial distribution712

systems.713
� PL,avg, PL,max: Average and maximum nodal active714

power of loads, which reflect the baseline load level of715

the generated network.716
� Δ: Three-phase unbalanced ratio defined in (16). This717

index reveals the unbalanced degree of the network.718
� P0, Q0: Active and reactive power at the interface of719

transmission and active distribution network.720
� PF : Power factor of the generated system.721

Meanwhile, to prove that our model is not to simply repli-722

cate the original network, the ratio of overlapping edges (Roe)723

between the real system and our synthetic system.724

2) Application Verification: To further demonstrate that our725

generated active distribution network is realistic and useful,726

we review a question, that is, how to truly define whether the727

generated network is successful or not. It is indeed a more728

challenging problem, even compared to the network synthesis729

task. Most of the previous works only rely on statistical indices,730

obtained from a large amount of real-world data [1], [2], [3], [4],731

[5], [6], [7], [11], [12], [16]. However, as we mentioned before,732

topology properties are quite different for various distribution733

networks. This can also be confirmed using real data, as shown734

in Fig. 5. This figure shows four different indices (i.e., Davg ,735

Dmax, Dbr, ρPC) for the three distribution systems in the same736

region. It is clear that the statistical indices of the three systems737

are quite different, especially for Dbr and ρPC . Thus, synthetic738

Fig. 6. Flow chart of the proposed method.

distribution system should be generated by a single network. 739

Moreover, even if the statistical indices of synthetic networks are 740

similar to those of real networks, it is difficult to guarantee that 741

these networks can be used as alternatives for representing real 742

networks. In our view, synthetic networks should be validated 743

in a power system manner. In other words, the synthetic net- 744

works generated by our method should achieve similar results 745

as the real network in various power applications. Hence, we 746

have tested three common applications: power flow analysis, 747

DERs placement, and transmission and distribution power flow 748

co-analysis. Among them, power flow analysis is performed to 749

verify that the synthetic system satisfies static stability limits, 750

including voltage and line power flow limits. Besides, DERs 751

placement and transmission and distribution power flow co- 752

analysis are carried out to demonstrate that the co-operation of 753

transmission system and active distribution network with partial 754

reverse power flow is of no abnormality. 755

IV. ACTIVE DISTRIBUTION SYSTEM SYNTHESIS FRAMEWORK 756

In this section, we summarize the the proposed framework 757

as a flowchart shown in Fig. 6, so as to present a clear view of 758

the methodology. It can be observed that the whole process is 759

divided into three parts: data processing stage, UG-GAN based 760

network synthesis stage, and network correction, extension and 761

evaluation stage. 762

In the first stage, data processing stage, the data needs to be 763

collected and pre-processed in order to prepare for the latter 764

two phases. Priority to listing the detailed data requirements, 765

we should emphasize the purpose and the high-value use case 766

of this paper again. When system operators need to share their 767

networks and data with researchers or the third agents but have 768

user privacy concerns, they can perform the proposed method 769

to obtain the corresponding synthetic networks for different net- 770

works separately. Considering that different distribution network 771

may share different properties, all we need to generate a synthetic 772

network is all key information of a single real-world network. 773

The detailed information to be collected is as follows: 774

1) Detailed three-phase unbalanced distribution network 775

topology information with its parameter, including 776
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Fig. 7. Diagram of the original unbalanced distribution network.

network connectivity, phase information (phase A, B, C,777

AB, AC, BC, or ABC), and conductor parameters.778

2) Time-series load data of different types of customers,779

including residential, commercial and industrial loads.780

3) Grid components information, including in-series grid781

components (e.g., transformer, circuit break and regulator)782

and in-parallel grid components (e.g., capacity banks and783

DERs) (if exists).784

4) Renewable distributed generators (DGs) information of785

the given distribution network (if exists).786

5) Other optional components.787

It is worth noting that data can be easily collected from788

utilities and their widely equipped smart meters. Then, data789

should be pre-processing (e.g., data cleaning), according to the790

requirement of the latter stages.791

In terms of the second stage, a UG-GAN is proposed to syn-792

thesize unbalanced distribution networks by using the collected793

network topology and in-series grid components information.794

Specifically, a large set of random walks are sampled and en-795

coded using the proposed method described in Section II-B1),796

making sufficient data preparation for UG-GAN training. At the797

same time, the generator and discriminator neural networks of798

UG-GAN are modeled respectively, using the proposed method799

introduced in Section II-B2) and 3). After that, the UG-GAN800

can be trained, and we can get the scoring matrix Q accordingly,801

determining the synthetic network connectivity.802

As for the last stage, active distribution network correction,803

extension and evaluation process is developed to provide a final804

comprehensive distribution test case. This stage can be separated805

to four sub-parts. First, time-series load data and renewable dis-806

tributed generators data is estimated using the historical dataset807

and KDE method, introduced in Section III-A. It is worth noting808

that these users or distributed generators are mostly installed809

behind-the-meter, so as we can get the detailed time-series810

historical data at the first stage. Second, the estimated load data811

is required to be assigned to the corrected network topology812

obtained from Section II, using the MIQP problem formulated813

in Section III-B. Besides, in order to extend the network to a more814

realistic and comprehensive test case, grid components need to815

be placed in the network aforementioned, with the approach816

described in Section III-C. So far, a distribution network has been817

obtained, with the similar electrical properties as the original 818

network without privacy concerns. Finally, as introduced in 819

Section III-D, the performance of synthetic network is evaluated 820

using topological and electrical indices, together with power 821

applications. 822

V. CASE STUDY 823

This section explores the effectiveness of our proposed 824

data-driven unbalanced network synthesis method by means of 825

a case study. As detailed below, a 60-bus synthetic three-phase 826

unbalanced distribution network is generated. Our simulation 827

is mostly implemented in TensorFlow, an open-source machine 828

learning platform, while optimization part in MATLAB with 829

Yalmip and Cplex package. All cases are tested on a standard 830

computer with Intel Core i7-8850H 2.6 GHz CPU, 16 GB RAM. 831

A. Data Requirements 832

In this section, the input system is a real-world distribution 833

network data obtained from a Midwest U.S. utility [31], shown 834

as Fig. 7. It is supplied by a 69 kV substation with 60 primary 835

nodes and various grid components such as capacitor banks and 836

line switches. Detailed information required to be collected in 837

this case study is listed as follows. 838

1) The topological information of the 60-bus distribution 839

network aforementioned. 840

2) Time-series load data of all types customers. 841

3) 5 types of grid components, including, transformer, circuit 842

break, regulator, capacity banks and DERs. 843

Besides, in the UG-GAN training process, all random walks 844

are sampled from this specific distribution network, with the 845

same number as the ones generated from G network. In this 846

case study, we sampled 128 random walks per iteration for 847

discrimination and training in UG-GAN. 848

B. Distribution Network Synthesis Results 849

In this subsection, the detailed synthesis process is illustrated, 850

and selected statistical and electrical-based indices are compared 851

with the real-world input network, in order to verify the proposed 852

method. 853

1) Visualization of Topology Synthesis Process: In the first 854

few iterations of UG-GAN training, G and D of UG-GAN 855

are still in a preliminary state with the initial parameters, as 856

shown in Fig. 8(a). As a result, the generated network has 857

many drawbacks, like isolated nodes, circle topology and etc. 858

Then, in the early stage of the UG-GAN training process, when 859

G performs poorly (the generated network is quite different 860

from the real one), D can reject the generated random walks 861

with a high degree of confidence. Therefore, in this stage, 862

the discriminator loss drops dramatically to a small value, as 863

shown in Fig. 9. After that, the two deep neural networks of 864

UG-GAN are updated simultaneously via the adversarial process 865

so that a more realistic topology can be generated, as shown 866

in Fig. 8(b)–(g). When the training process is iterated 3,000 867

times, see Fig. 8(h), all topological properties of the generated 868

distribution network are similar to those of the original network. 869
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Fig. 8. Training process of UG-GAN.

Fig. 9. UG-GAN Loss values of generator and discriminator.

Note that all edge-related information is determined at this stage870

by using UG-GAN, including distribution grid components (like871

circuit breaks) connected in series, cable type of each line, and872

etc.873

2) Result of Load Data Synthesis Process: By using the874

proposed KDE-based method, the time-series data of 504 single-875

phase loads and 5 three-phase loads are generated and assigned876

to a certain phase on one of the 60 nodes in the generated network877

aforementioned. Fig. 11(a) and (b) illustrate the probability878

density diagram of a residential load and sampled time-series879

load data, respectively. To eliminate the possible customer’s880

private information, the available customer power measurements881

are aggregated at the secondary transformer level by summing882

them at different times. Then, nodal loads are assigned to a883

certain phase of the generated network with minor topology884

correction using the formulated MIQP optimization problem to885

ensure the unbalanced degree within certain limits.886

3) Synthetic Distribution System Description: The generated887

synthetic unbalanced distribution network consists of a 13.8 kV888

60-node primary feeder that is supplied by a 69-kV substation. In889

this network, there are 57 branches in total, 48 of which are three-890

phase branches using 4 types of overhead lines and underground891

Fig. 10. Diagram of the synthetic unbalanced distribution network.

Fig. 11. Probability density diagrams of the residential customers.

cables, and 9 of which are single-phase branches with 3 types of 892

single-phase cables. The total length of the synthetic system 893

is 3.34 miles. The three different types of unbalanced loads 894

are assigned to 46 different nodes via secondary distribution 895

transformers. Among them, an industrial three-phase load is 896

connected to node #41, and residential or commercial loads 897

are mixed together and connected to other nodes. Based on the 898

results of our optimization-based component placement model, 899

a capacitor bank is equipped near node #41 to provide reactive 900

power support. Besides, 3 normally-closed circuit breaks are 901

equipped in this network on lines 0-1, 9-10, and 33-36. The 902

detailed structure of the generated network is illustrated in 903

Fig. 10. 904

4) Indices Comparison of Generated Network: When the 905

synthetic network is obtained, the aforementioned indices, in- 906

dicating both topological and electrical properties, are used to 907

compare the original and generated distribution networks, as 908

shown in Table I. It can be clearly observed that all the represen- 909

tative statistical and electrical indices are similar. Meanwhile, 910

the ratio of overlapping edges between two networks is about 911

0.5, preventing extracting real network confidential information 912

by reverse engineering. Considering that the use of visualization 913

can improve the interpretation of the results, we present the 914

two networks directly, as shown in Fig. 7 (original network) 915
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Fig. 12. Voltage and power flow of the synthetic distribution network.

Fig. 13. Test system of transmission and distribution network co-simulation.

Fig. 14. Test result of transmission and distribution system co-analysis.

and Fig. 10 (synthetic network), so as to directly visualize the916

differences between the two networks.917

To further demonstrate the effectiveness of our approach, we918

have conducted qualitative and numerical comparisons with the919

TABLE I
COMPARISON OF TOPOLOGICAL AND ELECTRICAL PROPERTIES BETWEEN THE

GENERATED AND ORIGINAL DISTRIBUTION NETWORK

TABLE II
COMPARISON OF INDICES OF DISTRIBUTION NETWORK BETWEEN

DIFFERENT METHODS

existing work. It is worth noting that the proposed method fo- 920

cuses on mimicking one particular network without any context 921

data assumptions, e.g., local geographical and social statistic 922

data, which poses a challenge for comparison with existing 923

statistical-based methods. Also, the generated network on these 924

methods are normally the three-phase balanced grid. Hence, 925

to ensure a fair comparison among the existing grid synthesis 926

method, we have compared the proposed method with a random 927

tree algorithm that is the only method without involving any 928

context data [32]. Specifically, by using this method, 50 different 929

synthetic networks have been generated for investigation, as 930

shown in Table II. Obviously, the topological indices of the 931

synthetic networks generated by the previous method are far 932

from the original network, especially for Dbr, ρPC and Demax. 933

Moreover, based on our observations, almost all randomly gen- 934

erated networks fail to satisfy the physical laws of the actual 935

distribution system. For example, the upstream edge is a one- 936

phase branch while the downstream one is a three-phase branch. 937

Thus, such synthetic networks cannot be used to represent real- 938

world systems in power system studies. As for other methods, 939

including statistics-based method and simulated planning-based 940

method, our proposed method is completely different in terms 941

of purpose, algorithm, and input and output data. Thus, it is 942

difficult to perform a fair quantitative comparison, since other 943
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TABLE III
QUALITATIVE COMPARISON BETWEEN PROPOSED METHOD AND SIMILAR APPROACHES

methods cannot obtain a synthetic network using the same input944

data as our method, and vice versa. For example, statistic-based945

methods require thousands of distribution network for key sta-946

tistical properties qualification, and simulated planning-based947

methods need a large amount of local geographical and social948

data. Therefore, we merely perform a qualitative comparison949

table shown in Table III, to illustrate the advantages of the950

proposed approach.951

In addition, training time of UG-GAN and memory952

consumption are tested, to further evaluate the computational953

performance of the proposed method. The training time ranges954

from 1.4 to 1.8 seconds per iteration, with total time 4651955

seconds for all 3000 iterations in this case. In terms of memory956

consumption, 1334 MB is used while training. In all, our957

method can be easily implemented on any standard computer958

with no additional configuration.959

C. Application Examples960

To further prove that the synthetic network generated by our961

model is realistic, a set of application examples are presented in962

this subsection.963

1) Baseline Power Flow Analysis: Convergent AC power964

flow is the primary consideration to justify the network.965

Normally, when the load and system parameters are within rea-966

sonable limits, a converged AC power flow result can be obtained967

using the three-phase backward-forward algorithm [33]. The key968

point is to verify whether the voltage magnitude of each node is969

within the given limit (e.g., 0.95-1 p.u.). Fig. 12 illustrates the970

voltage magnitude of each node under the baseline power flow.971

In addition, the size of the solid circle represents the load of the972

node, and the thickness of the line represents the size of the line973

power. Noted that the voltage of bus #1 is assumed to be 1 p.u. in974

this case. It can be seen that the voltage of the generated system975

is within 0.966 p.u. to 1 p.u., which satisfies the voltage limits976

requirement. Besides, we also calculate the power flow on all977

overhead lines and underground cables based on the generated978

time series loads data, and they are all within the limit of chosen979

line conductors. Among them, the power flow on line 2-3 is the980

closest to the conductor limit in high load periods. Noted that,981

it still remains power flow margin.982

2) Distributed Energy Resources Placement for Loss Reduc-983

tion: In actual active distribution systems, DERs are also possi-984

bly installed by utilities for network loss reduction or renewable985

energy consumption. In this case, industrial load located at node986

#41 accounts for nearly two-thirds of the total load, and thus987

TABLE IV
RESULTS OF DISTRIBUTED ENERGY RESOURCES PLACEMENT

has a great influence on the total loss of this system. Thus, we 988

try to vary the power flow of each line by installing DERs to 989

reduce the loss. Based on the predetermined specific type of the 990

DER [34], DERs placement is similar to the capacitor banks 991

installation using the proposed MISCP formulation with minor 992

modifications regarding the constraints on power injection. It is 993

assumed that the total capacity of the DERs cannot be greater 994

than the maximum load of the system. The results, including 995

optimal sizes, locations, and the total amount of loss reduction, 996

are shown in Table IV. Installing DER is not only an application 997

of the generated active distribution network, but also expanding 998

the scope of the application. 999

3) Transmission and Distribution Power Flow Co-Analysis: 1000

As we discussed before, considering the unbalanced architecture 1001

of the distribution system, a zero-sequence current might be 1002

injected into the transmission system. Moreover, the character- 1003

istics of power flow are generally be changed with the installation 1004

of various components, such as capacitor banks and DERs, in 1005

current distribution networks. As a result, distribution network 1006

can no longer be directly regarded as an equivalent load of the 1007

transmission network. Transmission and distribution network 1008

time-series power flow co-analysis is important for ISO, using 1009

the detailed distribution network with similar properties. An 1010

application example is presented in this subsection. 1011

The test system is obtained by replacing the aggregated load 1012

at bus 6 of the standard IEEE 9-bus transmission system with the 1013

generated distribution network, see Fig. 13. The test is carried 1014

out using Matlab and OpenDSS and the results are shown in 1015

Fig. 14. It can be observed that the voltage and power flow are 1016

within an acceptable range. 1017

VI. CONCLUSION 1018

This paper has proposed a deep learning-based framework 1019

to generate synthetic three-phase unbalanced active distribution 1020

networks using limited real data. Our method can implicitly 1021

capture the topological and electrical properties of real-world 1022

networks without revealing critical information. Moreover, the 1023
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proposed method not only outputs grid connectivity but also1024

effectively generates relevant time-series load data and loca-1025

tions and capacity of various grid components to obtain a1026

comprehensive test case. With the proposed method, utilities1027

will no longer have any concerns about making desensitized1028

data publicly available at the request of industry and academia.1029

Moreover, it is also possible for ISO of the transmission system1030

to carry out transmission and distribution co-simulation based1031

on generated networks for joint evaluation of the mutual effect of1032

different systems. The results of case studies illustrate that these1033

expectations can be met using the proposed method. Overall,1034

our proposed method is able to consider the sparse network1035

connectivity of the synthetic network merely by learning the1036

distribution of biased random walks, and as a result, it greatly1037

reduces the computation burden and improves the scalability at1038

the stage of network synthesis. However, global convergence1039

of the optimization problems may affect the scalability of our1040

method, posed by large-scale distribution networks, in the net-1041

work correction and extension process. Thus, the direction of1042

our future research will focus on this issue, so as to extend our1043

method to larger-scale distribution network synthesis task.1044
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