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Abstract—The increasing proliferation of distributed energy
resources has posed new challenges to Volt/VAr control problems
in distribution networks. To this end, this paper proposes an
automatic self-adaptive local voltage control (ASALVC) by locally
controlling VAr outputs of distributed energy resources. In this
ASALVC strategy, each bus agent can locally and dynamically
adjust its voltage droop function in accordance with time-varying
system changes. The voltage droop function is associated with the
bus-specific time-varying slope and intercept, which can be locally
updated, merely based on local voltage measurements, without
requiring communication. Stability, convergence, and optimality
properties of this local voltage control are analytically established.
In addition, the online implementation of ASALVC is further
proposed to address the real-time system changes by adjusting
VAr outputs of DERs online. Numerical test cases are performed
to validate and demonstrate the effectiveness and superiority of
ASALVC.

Index Terms—Volt/VAr control, local voltage control, dis-
tributed energy resource, distribution network.

I. INTRODUCTION

REcent years have seen the increasing deployment and
penetration of renewable energy resources, such as pho-

tovoltaic (PV) generators and wind, in power systems, which
has led to over-/under-voltage problems due to the intermittent
and volatile nature of renewable energy resources. Volt/VAr
Control (VVC) strategies have shown a great capability to ef-
fectively resolve those voltage problems by controlling VAr
outputs owing to the rapid development of inverter-based tech-
nologies for distributed energy resources (DERs) [1].

In the past decades, VVC strategies have been extensively
and widely studied by researchers and practitioners. In gen-
eral, it can be roughly divided into three main categories: cen-
tralized voltage control, distributed voltage control, and local
voltage control.

Centralized voltage control ([2]-[4]) collects all the required
information, such as network and load parameters, and then
performs a central computation to solve the corresponding op-
timization and control problems. However, it usually suffers
from large amounts of computation time, considerable commu-
nication overload, and privacy problems, hindering scalability.
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Rather than collecting all problem parameters and perform-
ing a central calculation, distributed voltage control is com-
puted by many agents that obtain certain parameters via co-
ordinating communication [5]. According to the coordinating
communication infrastructure, it can be further divided into
hierarchical voltage control, where a central agent commu-
nicates with other agents in a hierarchical manner, and de-
centralized voltage control, where each agent communicates
with its neighbors, but there is not a central agent. For ex-
ample, hierarchical voltage control schemes, based on the Al-
ternating Direction Method of Multipliers (ADMM) or pro-
jected Newton method, are applied to coordinate electric vehi-
cle charging schedules, wind turbines, photovoltaic inverters in
[6]-[9], respectively. Different network-constrained ADMM-
based decentralized voltage control strategies are proposed in
[10]-[11], relying on the communication between neighboring
buses. Furthermore, some advanced online decentralized volt-
age control algorithms are developed in [12]-[14], where the
real-time measurements are utilized to determine the control
solution.

Compared to centralized voltage control and distributed
voltage control, local voltage control typically only relies on
local information without requiring communication, render-
ing itself a more practical and scalable implementation. The
traditional droop control [15], [16], as advocated by IEEE
1547-2018 Standard [17], is one of the most common and
popular local voltage control, which actively adjusts the VAr
output as a function of voltage following a given ‘Volt-VAr’
piecewise linear characteristic. However, as shown in [16], the
droop slope in the traditional droop control needs to be small
enough to guarantee system stability. Moreover, the work [18]
shows such a traditional droop control is not able to maintain
a feasible voltage profile under certain circumstances. A mod-
ified ‘delayed’ droop control is proposed in [19] to improve
the stability performance, but it is unclear how to determine
the delay parameter to optimally balance the stability perfor-
mance and convergence speed. The works [19]-[21] provide
stability analysis, but all of them lack the optimality anal-
ysis and system-wide performance characterization resulting
from the implementation of local voltage control. The works
[22]-[23] formulate the local voltage control as optimization
problems, exhibiting a better stability performance than the
traditional and delayed droop control, where rigorous stabil-
ity, convergence, and optimality analyses are provided. The
studies [22]-[23] are both based on the (scaled/classical) gra-
dient projection (GP) method, which can be regarded as one
type of modified voltage droop control with a constant slope
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and a time-varying intercept. However, the convergence rate
of GP is relatively slow [24], [25], which is typically charac-
terized by O(1/k) (k is the iteration number), indicating rel-
atively weak tracking capabilities to follow system variations.
Moreover, the constant slope in [22]-[23] limits the diversity
and flexibility of local voltage control to some degree.

To this end, this paper proposes an automatic self-adaptive
local voltage control (ASALVC) to solve the VVC problem
with the goal of mitigating the voltage deviations across distri-
bution networks by locally controlling VAr outputs of DERs.
This VVC problem is formulated as an optimization problem,
which is first solved by a generalized fast gradient method
(GFGM) [26], [27]. Interestingly, the GFGM iterations natu-
rally decouple into communication-free local updates, which
can be reinterpreted as our proposed local voltage control strat-
egy, by properly choosing and designing parameters. Com-
pared with existing studies, the main contributions of this study
are as follows:
• This local voltage control is automatic self-adaptive, al-

lowing each bus agent to locally and dynamically ad-
just its voltage droop function in accordance with time-
varying system changes. This voltage droop function is
associated with both the bus-specific time-varying slope
and intercept, significantly increasing the diversity and
flexibility of local voltage control.

• The time-varying slope and intercept are locally and in-
telligently updated by each bus agent merely based on
its local voltage measurements without requiring commu-
nication, where the closed-form expressions of the bus-
specific time-varying slope and intercept are analytically
explored and presented.

• This automatic self-adaptive local voltage control exhibits
an accelerated convergence rate both theoretically and
practically, characterized by O(1/k2), in static scenar-
ios, indicating a better tracking capability to follow time-
varying changes in dynamic scenarios. Stability, conver-
gence, and optimality properties of this self-adaptive local
voltage control are first analytically established and then
demonstrated by means of numerical test cases.

Remaining sections are organized as follows. The network
modeling and problem statement are discussed in Section II.
The GFGM-based VVC strategy is described in Section III.
Section IV carefully explains the transition from the GFGM-
based VVC strategy to this ASALVC by properly choosing
and designing parameters. Both the offline and online imple-
mentation of this ASALVC are demonstrated in Section IV.
Section V reports numerical test cases, and Section VI dis-
cusses ongoing and planned future studies.

II. NETWORK MODELING AND PROBLEM STATEMENT

Consider a radial distribution network with N + 1 buses.
Let {0}

⋃
N denote the bus set, where N = {1, 2, ..., N}. For

each bus j ∈ N , let Vi denote its voltage magnitude, pi and qi
denote its real and reactive power injections. Let bp(j) ∈ {0}∪
N denote the bus immediately preceding bus j along the radial
distribution network, L = {`j = (i, j)|i = bp(j), j ∈ N}
denote the line segment set. For each line segment (i, j) ∈ L,

TABLE I
NOMENCLATURE: OPERATOR

< x,y > It denotes xTy
< x,y >L It denotes xTLy
||x||2L It denotes xTLx
X � Y X − Y is semi-positive definite.
X = diag(x1, ..., xn) A square diagonal matrix with the elements

x1, ..., xn on the main diagonal.
σmin(·) It denotes the smallest eigenvalue.

let rij and xij denote its resistance and reactance, Pij and
Qij denote the real and reactive power flows from bus i to j,
respectively. Also, let Nj denote the set of all buses located
strictly after bus j along the radial network. The branch flow
model [28] to model this radial distribution network flow is
given for ∀(i, j) ∈ L as follows:

Pij −
∑
k∈Nj

Pjk = −pj + rij
P 2
ij +Q2

ij

V 2
i

(1a)

Qij −
∑
k∈Nj

Qjk = −qj + xij
P 2
ij +Q2

ij

V 2
i

(1b)

V 2
i − V 2

j = 2(rijPij + xijQij)

− (r2
ij + x2

ij)
P 2
ij +Q2

ij

V 2
i

(1c)

And we further define the column vectors V = [Vi]i∈N ,
p = [pi]i∈N , q = [qi]i∈N , P = [Pbp(j)j ](bp(j),j)∈L, Q =
[Qbp(j)j ](bp(j),j)∈L.1 Before rigorously formulating the VVC
problem, we separate q = qg − qc into two parts, i.e., qg

and qc, where qg , qc denote the reactive power contributed
by DERs and any other load reactive power consumption, re-
spectively. The nonlinear power flow relationships existing in
(1) are compactly expressed as follows:

V = h(qg,d) (2)

where d = {qc,p}. The VVC problem, based on the non-
linear power flow, aims to mitigate the voltage deviations by
controlling VAr outputs of DERs. It is represented as follows:

min
qg

m(qg) =
1

2
||h(qg,d)− Vr||2Φ (3a)

s.t. qg ≤ qg ≤ qg (3b)

where Vr ∈ Rm is the reference of voltage magnitude, Φ is a
symmetric positive-definite matrix, (3b) denotes VAr limits for
DERs. However, this VVC problem is non-convex due to the
nonlinear power flow h(qg,d), which is challenging to solve.

To facilitate the algorithm design and theoretical analysis,
the linearized distribution power flow is adopted 2:

Pij −
∑
k∈Nj

Pjk = −pj , Qij −
∑
k∈Nj

Qjk = −qj (4a)

1The real and reactive power flows over line segments `j are sorted in ac-
cordance with the ordering of these line segments from small to large j.The
bus voltage magnitudes and real/reactive power injections are sorted in accor-
dance with the ordering of these buses from small to large j.

2It is based on two assumptions: (1) The loss is negligible compared to the
line flow; (2) With respect to the relatively flat voltage profile, i.e., Vi ≈ 1,
for ∀i ∈ N , we have V 2

i − V 2
j = 2(Vi − Vj). The approximation error

introduced by the two assumptions is relatively small [23]
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Vi − Vj = rijPij + xijQij (4b)

Consider the standard matrix representation M̄ =
[m0,M

T ]T ∈ R(N+1)×N for the incidence matrix of a radial
distribution network.3 Based on M̄ , this linearized distribution
power flow can be compactly denoted by:

V = M−TRM−1p + M−TXM−1q − V0M
−Tm0 (5)

where R and X are N × N diagonal matrices with j-
th diagonal entries being the resistance and reactance of
`j , respectively. Let A = M−TXM−1 and V par(d) =
M−TRM−1p−Aqc−V0M

−Tm0, (5) can be denoted by:

V = hl(q
g,d) = Aqg + V par(d) (6)

We further define f(qg) as follows:

f(qg) =
1

2
||hl(qg,d)− Vr||2Φ

=
1

2
||Aqg + V par(d)− Vr||2Φ

(7)

And let g(qg) denote the indicator function of the box con-
straints qg ≤ qg ≤ qg . This VVC problem4, based on the
linearized distribution power flow (6), is represented as fol-
lows:

min
qg

F (qg) = f(qg) + g(qg) (8)

Note that M is a symmetric positive-definite matrix [23],
it follows that A = M−TXM−1 is a symmetric positive-
definite matrix, indicating f(qg) is convex. The VVC problem
(8) turns out to be a box-constrained convex program.

Remark 1: The linearized distribution power flow (5) is
adopted to facilitate the algorithm design and theoretical analy-
sis. Note that our proposed voltage control can also be applied
to the nonlinear distribution power flow model (1). In our nu-
merical case studies, we test the performance of our proposed
voltage control on the nonlinear power flow model.

III. VOLTAGE CONTROL USING GENERALIZED FAST
GRADIENT METHOD

In this section, we propose a GFGM-based VVC strategy
to solve the VVC problem. The GFGM-based VVC strategy
is the basis for designing automatic local self-adaptive voltage
control. The GFGM-based VVC strategy can be equivalently
converted into automatic local self-adaptive voltage control
by designing proper parameters, which will be discussed in
detail in Section IV. The stability, convergence and optimality
properties of the GFGM-based VVC strategy also apply to the
proposed automatic local self-adaptive voltage control.

3A simple numerical example illustrating the construction of M̄ for a radial
distribution network is given in [29, Appendix C].

4For this VVC problem, we do not consider the hard voltage constraint,
but instead treat the voltage constraint as a soft penalty in the objective to
facilitate the algorithm design, like [13], [23]

Algorithm 1 GFGM-Based VVC
Initialization: Set the iteration time k = 0, and γ(1) = 1, qg(0) =
y(1) = 0.

For k ≥ 1: Alternately update variables by the following steps (S1)-
(S3) until convergence:
S1: Update qg(k):

qg(k) = pL(y(k)) = argmin
qg

QL(q
g, y)

S2:Update γ(k + 1):

γ(k + 1) =
1 +

√
1 + 4γ(k)2

2

S3: Update y(k + 1):

y(k + 1) = qg(k) +
[γ(k)− 1

γ(k + 1)

][
qg(k)− qg(k − 1)

]

A. GFGM-Based Volt/Var Control
For a box-constrained convex program, it is suitable to solve

it by means of GP methods, but the convergence rate of GP
is relatively slow [24], [25], which is typically characterized
by O(1/k) (k is the iteration number). To improve the con-
vergence performance, we apply the generalized fast gradient
method [26], [27] to solve this VVC problem (8) with a global
rate of convergence, which is proven to be significantly better
compared to traditional GP methods.

Before applying GFGM to solve this VVC problem (8), we
first introduce the concept of the approximation model, which
is defined as follows:
Definition: Approximation model of F (qg). Given a sym-
metric positive-definite matrix L, we say QL(qg,y) is the
quadratic approximation model of F (qg) at a given point y if
QL(qg,y) satisfies:

F (qg)≤QL(qg,y)

= f(y)+ < ∇f(y), qg − y > +
1

2
||qg − y||2L + g(qg)

(9)

where

< ∇f(y), qg − y > = [∇f(y)]T (qg − y), and

||qg − y||2L = (qg − y)TL(qg − y)

And let pL(y) be:

pL(y) = arg min
qg

QL(qg, y) (10)

Based on the definitions of QL(qg,y) and pL(y), the specific
steps of applying GFGM to solve this VVC problem (8) are
given in Algorithm 1: GFGM-Based VVC.

B. Stability, Convergence and Optimality Analyses
The stability, convergence and optimality properties of Al-

gorithm 1: GFGM-Based VVC, are established on Proposi-
tions 1-4.
Proposition 1: Assume that f(qg) : RN −→ R is convex
and continuously differentiable and L is a symmetric positive-
definite matrix. The condition that:

f(qg) ≤ f(y)+ < ∇f(y), qg − y > +
1

2
||qg − y||2L (11)
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holds for all qg,y ∈ RN is equivalent to that:

< ∇f(qg)−∇f(y), qg − y >≤ ||qg − y||2L (12)

holds for all qg,y ∈ RN .
Proof of Proposition 1: See Appendix A.

Proposition 2: Suppose F (qg) = f(qg) + g(qg) satisfies the
following conditions:
• [P2.A] g(qg) is a convex function which may not be

differentiable.
• [P2.B] f(qg) is convex and continuously differentiable.
• [P2.C] QL(qg, y) is the quadratic approximation model

of F (qg)

Then the sequence {qg(k)}, generated by Algorithm 1:
GFGM-Based VVC, satisfies:

F (qg(k))− F (qg∗) ≤ 2||qg(0)− qg∗||2L
(k + 1)2

,∀k ≥ 1 (13)

where qg∗ is the optimal solution of (8),
Proof of Proposition 2: Proposition 2 can be easily proved
by replacing L < ·, · > and L|| · ||2 in the proofs in [26] with
< ·, · >L and || · ||2L. Q.E.D.

With respect to Proposition 2, as conditions [P2.A]-[P2.C]
hold, it shows Algorithm 1 GFGM-Based VVC can achieve
a convergence rate no worse than O(1/(k + 1)2), it exhibits
a fast convergence rate compared to GP methods with the
convergence rate O(1/k). Note that [P2.A] holds since the
indicator function of the convex set qg ≤ qg ≤ qg is a convex
function. Additionally, ∇2f(qg) = AΦA is positive definite
as Φ and A are both symmetric positive definite matrices,
indicating [P2.B] holds. One remaining challenge is [P2.C].
Note that from Proposition 1, we know that as long as L
satisfies (12), then [P2.C] will hold. Thus, to satisfy [P2.C],
the symmetric positive-definite matrix L is required to satisfy
(12). From (7), we have:

∇f(qg) = AΦ[Aqg + c(d)− Vr] (14)

It follows that:

< ∇f(qg)−∇f(y), qg − y >= ||qg − y||2AΦA (15)

From (15), it follows that (12) is satisfied if the condition (16)
holds:

L � AΦA (16)

i.e., L−AΦA is semi-positive definite.
Proposition 3: Suppose F (qg) = f(qg) + g(qg) satisfies the
following conditions:
• [P3.A] [P2.A]-[P2.C] hold.
• [P3.B] g(qg) is an indicator function, and for ∀qg,y ∈

RN , there exists a positive definite matrix H satisfying:

< ∇f(qg)−∇f(y), qg − y >≥ ||qg − y||2H (17)

Then the sequence {qg(k)}, generated by Algorithm 1:
GFGM-Based VVC, satisfies:

||qg(k)− qg∗|| ≤ 2||qg(0)− qg∗||L
(k + 1)

√
σmin(H)

(18)

where σmin(·) denotes the smallest eigenvalue.

Proof of Proposition 3: See Appendix B.
With respect to Proposition 3, it shows qg(k) will finally

converge to the optimal solution qg∗, indicating the system
is stable when [P3.A] and [P3.B] hold. The condition [P3.A],
i.e., [P2.A]-[P2.C], has been discussed in the previous analysis
regarding Proposition 2. With respect to [P3.B], it follows from
(7) that:

< ∇f(qg)−∇f(y), qg − y >= ||qg − y||2AΦA (19)

It is clear that [P3.B] always holds as we set H = AΦA.
In short, with respect to the VVC problem (8), we can

conclude that as long as L � AΦA holds, Propositions 2
and 3 will hold.

Note that the linearized distribution power flow model is
leveraged to convexify the optimal power flow problem and fa-
cilitate the algorithm design and theoretical analysis. In Propo-
sition 4, we further analyze the overall performance of Algo-
rithm 1: GFGM-Based VVC on the actual nonlinear power
flow.
Proposition 4: Let q̂g∗, m(q̂g∗) be the optimal solution and
value of problem (3), and qg∗, f(qg∗) be the optimal solution
and value of problem (8). Assume the following conditions
hold:
• [P4.A] The error between the linearized power flow

model and the exact nonlinear power flow model is
bounded. That is, there exists a δ <∞ satisfying

||h(qg,d)− hl(qg,d)||2 ≤ δ,where qg ≤ qg ≤ qg

• [P4.B] The error between the optimal objective values of
problem (3) and problem (8) is bounded. That is, there
exists a τ <∞ satisfying∣∣m(q̂g∗)− f(qg∗)

∣∣ ≤ τ
• [P4.C] [P2.A]-[P2.C] hold.

Then, it follows that:

m(qg(k))−m(q̂g∗) ≤ 1

2
||E||22δ2 +

2||qg(0)− qg∗||2L
(k + 1)2

+ τ

(20)
where E, satisfying ETE = Φ, is an upper triangular matrix
with real and positive diagonal entries.
Proof of Proposition 4: See Appendix C.

In Proposition 4, m(qg(k)) can be regarded as the objec-
tive value in the actual nonlinear power flow system after
implementing qg(k), which is determined based on the lin-
earized power flow. Proposition 4 shows that the gap between
m(qg(k)) and m(q̂g∗) is always bounded by three terms:
(i) The error τ between the optimal values of problem (3)
considering the linearized power flow constraints, and prob-
lem (8) considering the nonlinear power flow constraints; (ii)
1
2 ||E||

2
2δ

2 is in proportion to δ2; (iii) 2||qg(0)−qg∗||2L
(k+1)2 decreases

as k increases.

IV. AUTOMATIC SELF-ADAPTIVE LOCAL VOLTAGE
CONTROL DESIGN

A. Overview

In this section, we mainly focus on the transition from Algo-
rithm 1: GFGM-Based VVC to the self-adaptive local voltage
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control design. Note that γ in S2 of Algorithm 1: GFGM-
Based VVC can be simultaneously updated by each bus agent.
And S3 in Algorithm 1: GFGM-Based VVC is naturally de-
composable, which can be locally updated by each bus agent
i in the way:

yi(k + 1) = qgi (k) +
[γ(k)− 1

γ(k + 1)

][
qgi (k)− qgi (k − 1)

]
,∀i ∈ N

(21)
However, S1 in Algorithm 1: GFGM-Based VVC is not natu-
rally decomposable. The key challenge for local voltage con-
trol is how to design Φ and L such that S1 in Algorithm 1:
GFGM-Based VVC can also be locally implemented by each
bus agent.

B. Selection of Φ and L
Regarding the choice of Φ and L, there are two main con-

siderations: (i) Φ and L should satisfy (16) to make [P2.C]
hold, thus ensuring the stability, convergence and optimality
properties of voltage control; (ii) Under the selected Φ and L,
S1 in Algorithm 1: GFGM-Based VVC can be locally imple-
mented.

To this end, we first design L as a diagonal positive definite
matrix, i.e., L = diag(L1, ..., LN ). As shown in Proposition 5,
the diagonal positive definite matrix L contributes to the local
implementation of qg(k) = pL(y(k)) in S1 of Algorithm 1:
GFGM-Based VVC.
Proposition 5: As L is a diagonal positive definite matrix,
qg(k) = pL(y(k)) in S1 of Algorithm 1: GFGM-Based VVC
is equivalent to:

qgi (k) =
[
yi(k)− 1

Li

∂f(y(k))

∂yi(k)

]qi(k)

q
i
(k)
,∀i ∈ N (22)

which can be expressed in a compact form:

qg(k) = [y(k)−L−1∇f(y(k))]q
g

qg (23)

Proof of Proposition 5: See Appendix D.
With respect to (22), the remaining challenge for the local

implementation of qg(k) = pL(y(k)) is locally calculating
∂f(y(k))
∂yi(k) when L is a diagonal positive definite matrix.
Next, we further discuss how to choose L and Φ to resolve

the dilemma: the local implementation of calculating ∂f(y(k))
∂yi(k) .

From (15), it follows that:

∇f(y(k)) = AΦ[Ay(k) + c− Vr] (24)

It is obtained from Algorithm 1: GFGM-Based VVC that:

y(k) =


qg(0) = 0, k = 1

qg(k − 1)+[ γ(k−1)−1
γ(k)

][
qg(k − 1)− qg(k − 2)

]
, k ≥ 2

(25)

Substituting (25) into Ay(k) + c− Vr:

Ay(1) + c− Vr = Aqg(0) + c− Vr = V (0)− Vr (26a)

Ay(k) + c− Vr =
[
1 +

γ(k − 1)− 1

γ(k)

]
[Aqg(k − 1) + c− Vr]

− γ(k − 1)− 1

γ(k)
[Aqg(k − 2) + c− Vr]

=
[
1 +

γ(k − 1)− 1

γ(k)

]
[V (k − 1)− Vr]

− γ(k − 1)− 1

γ(k)
[V (k − 2)− Vr], k ≥ 2 (26b)

As we set Φ = A−1, (24) can be expressed as follows:

∇f(y(1)) = V (0)− Vr (27a)

∇f(y(k)) =
[
1 +

γ(k − 1)− 1

γ(k)

]
[V (k − 1)− Vr]

− γ(k − 1)− 1

γ(k)
[V (k − 2)− Vr], k ≥ 2 (27b)

Thus, for ∀i ∈ N , ∂f(y(k))
∂yi(k) can be calculated locally by:

∂f(y(1))

∂yi(1)
= Vi(0)− Vr (28a)

∂f(y(k))

∂yi(k)
=
[
1 +

γ(k − 1)− 1

γ(k)

]
[Vi(k − 1)− Vr]

− γ(k − 1)− 1

γ(k)
[Vi(k − 2)− Vr], k ≥ 2 (28b)

It is clear that ∂f(y(k))
∂yi(k) can be locally updated by each bus i

in (28).
From the above analysis, we can conclude that S1 in Algo-

rithm 1: GFGM-Based VVC can be locally implemented with
a diagonal positive definite matrix L and Φ = A−1. More-
over, with respect to the choice of L, Φ and L should satisfy
(16), thus we have:

L � AA−1A = A (29)

L = A provides the tightest bound QL(qg,y) for F (qg),
the best convergence performance of GFGM can be expected.
However, such a selection cannot facilitate the local implemen-
tation of S1 in Algorithm 1: GFGM-Based VVC. Instead L
should be a diagonal positive definite matrix satisfying L � A.
Consequently, we utilize the following convex semi-definite
programming problem to determine L:

min
L

trL =

N∑
i=1

Li (30a)

s.t. L � A,L = diag(L1, ..., LN ) (30b)

Remark 2: In a nutshell, we select Φ = A−1 and L, deter-

mined by (30). Such a choice not only satisfies (16) to hold
[P2.C], but also facilitates the local implementation of Algo-
rithm 1 :GFGM-Based VVC.

C. Reinterpretation of GFGM: Modified Droop Control

For ease of expression and analysis, we introduce µ(k) and
b(k) as follows:

µ(k) =

{
0, k = 1
γ(k−1)−1
γ(k) , k ≥ 2

(31a)

b(k) =


qg(0), k = 1

[1 + µ(k)]qg(k − 1)− µ(k)qg(k − 2)

+µ(k)L−1[V (k − 2)− Vr], k ≥ 2

(31b)

Substituting (25) and (27) into (23), we have:

qg(1) =
[
−L−1[V (0)− Vr] + qg(0)

]qg

qg
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Algorithm 2 Automatic Self-Adaptive Local Voltage Control
(ASALVC): Offline Implementation
Initialization: Set the iteration time k = 0. Each bus i sets γ(1) = 1,
qgi (0) = yi(1) = 0,

For k ≥ 1: Each bus i alternately update variables by the following
steps until convergence:
• Update µ(k), ai(k), bi(k) by (31a), (34a), (34b), respectively.

• Update qgi (k) by (33), based on Vi(k − 1).

• Update γ(k + 1):

γ(k + 1) =
1 +

√
1 + 4γ(k)2

2

=
[
− [1 + µ(1)]L−1[V (0)− Vr] + b(1)

]qg

qg (32a)

qg(k) =
[
− [1 + µ(k)]L−1[V (k − 1)− Vr]

+ y(k) + µ(k)L−1[V (k − 2)− Vr]
]qg

qg

=
[
− [1 + µ(k)]L−1[V (k − 1)− Vr] + b(k)

]qg

qg , k ≥ 2

(32b)

For ∀i ∈ N , it follows from (32) that:

qgi (k) =
[
− ai(k)[Vi(k − 1)− Vr] + bi(k)

]qgi
qgi
, k ≥ 1 (33)

with

ai(k) =
1 + µ(k)

Li
, k ≥ 1 (34a)

bi(k) =


qgi (0), k = 1

[1 + µ(k)]qgi (k − 1)− µ(k)qgi (k − 2)

+µ(k)
Li

[Vi(k − 2)− Vr], k ≥ 2

(34b)

Note that both ai(k) and bi(k) are updated locally by bus
i without the need for communication, only relying on the
previous VAr outputs and voltage measurements of bus i. In
this case, Algorithm 1: GFGM-Based VVC is equivalent to
Algorithm 2: Automatic Self-Adaptive Local Voltage Control
(ASALVC): Offline Implementation.

Remark 3: Interestingly, this local voltage described in Al-
gorithm 2 can be regarded as a modified voltage droop con-
trol with bus-specific self-adaptive coefficients. As shown in
Fig.1, the modified droop control (the yellow line segments)
for bus i is translated from the blue line segments with the
slope −ai(k).

Remark 4: The proposed ASALVC is equivalent to the
GFGM-Based VVC with Φ = A−1 and L, determined by
(30). As we discussed before, Φ = A−1 and L, determined
by (30), can always satisfy all the conditions in Propositions
1-4, thus Propositions 1-4 always hold for the ASALVC by
setting Φ = A−1 and L, determined by (30).

D. Online Implementation

To better deal with the time-varying system variations, as-
sociated with the time-varying d, the online implementation
of Algorithm 2 is proposed in this subsection.

Algorithm 3 Automatic Self-Adaptive Local Voltage Control
(ASALVC): Online Implementation
For any bus i at time step t:
• Estimate VAr Limits: Locally update qg

i
and qgi

• Reset γ(t): If t mod Tγ =0, then set γ(t) = 1.
• Reset µ(t): If t mod Tγ =0, then set µ(t) = 0; otherwise update
µ(t) by γ(t−1)−1

γ(t)
.

• Update ai(t), bi(t) by (34a), (34b), respectively.
• Update qgi (t) by (33), based on the voltage measurement Vi(t−1)
at time t− 1.
• Update γ(t+ 1):

γ(t+ 1) =
1 +

√
1 + 4γ(t)2

2

Volt

VAr

g

iq

g

iq

rV

( )ia k−Slope: ( )ib k

Fig. 1. Modified droop control with bus-specific time-varying coefficients

Remark 5: With respect to offline implementation, the de-
cision/control variables are not applied to the physical world
until those variables converge [5]. However, with respect to
online implementation, the decision/control variables are ad-
justed in real-time (for each iteration), based on the real-time
feedback from operating statuses, to adapt to real-time changes
in the environment.

The online implementation of ASALVC consists of the fol-
lowing key steps:

Update Update Update

Fig. 2. Automatic Self-Adaptive Local Voltage Control Demonstration.
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1) Estimate qg
i

and qgi : For the online implementation, VAr
limits qg

i
and qgi are updated based on the inverter capacities

and the instantaneous real power outputs of DERs. This online
update of VAr limits ensures to satisfy the inverter capacity
limit in a time-varying system, preventing inverters from over-
loading.

2) Reset γ and µ: With respect to the offline implementation,
we usually start with γ = 1, µ = 0, and then γ is updated
in each iteration. For the online implementation, we propose
to reset γ = 1 and µ = 0 every Tγ time steps to ensure the
tracking capability.

3) Update ai, bi, q
g
i and γ: Update ai, bi by (34), qgi by

(33), γ by γ(t+1) =
1+
√

1+4γ(t)2

2 . With respect to the online
implementation, the actual voltage measurement Vi, instead of
the one calculated by the linearized distribution power flow,
is used to update bi and qgi in (33)-(34).

The details of the online implementation are provided in
Algorithm 3: Automatic Self-Adaptive Local Voltage Control
(ASALVC): Online Implementation and Fig.2. As depicted in
Fig.2, each bus agent locally measures its voltage, then updates
coefficients, i.e., ai(t) and bi(t),of its modified voltage control
based on its voltage measurement, and finally determines its
local VAr output. As shown in (34), ai(t) and bi(t) can be
updated online by simple arithmetic based on the previous
VAr outputs, qi(t− 1) and qi(t− 2), and the previous voltage
measurement Vi(t− 2),

Remark 6: Though we design ASALVC and establish its the-
oretical analysis, based on the linearized distribution power
flow, under a fixed condition, the online implementation could
asymptotically mitigate the model errors due to the closed-
loop nature. More specifically, the online implementation of
ASALVC can track changing network conditions as these
changes manifest themselves in the network state, i.e., the ac-
tual voltage measurement, that is used to compute the control
solution, i.e., VAr outputs of DERs.

E. Comparisons with other droop controls

The common existing droop controls can be roughly clas-
sified into the following types:

(1) Classical Droop Control [15]-[17] (CDC): As advo-
cated in IEEE 1547-2018 Standard, the CDC adjusts the in-
verter VAr output based on the instantaneous bus voltage
mismatch. The CDC with zero dead band is updated by
qi(t + 1) =

[
− ai[Vi(t) − Vr]

]qgi
qgi

, associated with a constant
slope and a constant intercept. But it cannot guarantee opti-
mum and always suffers from stability problems.

(2) Delayed Droop Control [19] (DDC): The DDC can ad-
dress the instability issues of CDC to a great degree. The VAr
output of DDC depends on a weighted combination of the
previous voltage and VAr output: qi(t+ 1) = (1− αi)qi(t) +

αi
[
− ai[Vi(t)− Vr]

]qgi
qgi

, associated with a constant slope and
a time-varying intercept, where 0 < αi < 1 is a weighted pa-
rameter. However, the work [19] does not provide optimality
analyses.

(3) GP-Based Droop Control [22], [23] (GPDC): The GP
update is applied to the droop control, thus generating the

GPDC. It is updated by qi(t+ 1) =
[
qi(t)−ai[Vi(t)−Vr]

]qgi
qgi

,
associated with a constant slope and a time-varying intercept.
Optimality analyses are provided in [22], [23].

(4) Scaled GP-Based Droop Control [23] (SGPDC): The
scaled GP update is applied to the droop control to speed up
the convergence rate of GPDC, facilitating the development
of SGPDC. The inverse of the diagonals of Hessian matrix
is always a popular choice to scale gradients. It is updated
by qi(t + 1) =

[
qi(t) − aidi[Vi(t) − Vr]

]qgi
qgi

, associated with
a constant slope and a time-varying intercept, where di is a
scaled parameter. Optimality analyses are provided in [23].

Compared to those droop control methods, the ASALVC is
associated with the time-varying slope −ai(t) and the time-
varying intercept bi(t), significantly increasing the diversity
and flexibility of local voltage control. In addition, as dis-
cussed in Proposition 2, the convergence rate of ASALVC is
characterized by O(1/k2), it is faster than the GPDC and SG-
PDC, characterized by O(1/k). The summary of droop control
comparisons is provided in Table II.

V. CASE STUDY

A. Overview

In this section, numerical simulations are performed in the
modified single-phase IEEE 123-bus test system to validate
the effectiveness and superiority of the proposed ASALVC.
As shown in Fig.3, PV generators are distributed across the
radial distribution network.
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Fig. 3. Modified single-phase IEEE 123-bus test system.

In the numerical simulations, the base voltage for the net-
work is 4.16 kV and the base power is 100 kVA. We set the
reference of voltage magnitude as Vr = 1N , a N × 1 column
vector of ones. Though the algorithm design of this paper is
built on the linearized power flow model (4), we simulate the
ASALVC with the nonlinear AC power flow model (1) using
MATPOWER [32]. Note that the actual bus voltage magni-
tude obtained from MATPOWER, instead of the one obtained
from the linearized power flow model, is used as the voltage
measurement to update the VAr outputs of DERs.
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TABLE II
DROOP CONTROL COMPARISONS

Control Type Update Description Optimality

CDC [15]-[17] qi(t+ 1) =
[
− ai[Vi(t)− Vr]

]qgi
q
g
i

Constant slope, constant intercept w/o analyses

DDC [19] qi(t+ 1) = (1− αi)qi(t) + αi
[
− ai[Vi(t)− Vr]

]qgi
q
g
i

Constant slope, time-varying intercept w/o analyses

GPDC[22], [23] qi(t+ 1) =
[
qi(t)− ai[Vi(t)− Vr]

]qgi
q
g
i

Constant slope, time-varying intercept w/ analyses

SGPDC[23] qi(t+ 1) =
[
qi(t)− aidi[Vi(t)− Vr]

]qgi
q
g
i

Constant slope, time-varying intercept w/ analyses

ASALVC qi(t+ 1) =
[
− ai(t)[Vi(t)− Vr] + bi(t)

]qgi
q
g
i

Time-varying slope, time-varying intercept w/ analyses

B. Static Scenario

In the static scenario, each bus has a constant load 1 + j0.5
kVA and each PV inverter can supply or absorb at most 10
kVAr. Different droop controls are considered for comparison,
including the CDC, DDC, GPDC, SGPDC, ASALVC. In ad-
dition, the centralized optimization is applied to directly solve
this VVC problem (8) through the CPLEX solver [33]. For
the CDC and GPDC, we set ai = 1. For the DDC, we set
ai = 1 and αi = 0.1. For the SGPDC, we set ai = 0.01,
di = [AΦA]−1

ii , where [AΦA]ii is i-th row and i-th column
element of AΦA, where the inverse of the diagonals of Hes-
sian matrix is applied to scale gradients. With respect to the
offline implementation of ASALVC in the static scenario, there
is no need to manually set droop parameters as those param-
eters are automatically determined and adjusted by (34).

0 5 10 15 20 25 30 35 40 45 50
Iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

||V
-1

||2

10-3

ASALVC
SGPDC
GPDC
CDC
DDC
Centralized Optimization

Fig. 4. Voltage mismatch error versus iteration for various VAr controls under
the static scenario.

As depicted in Fig.4, the voltage mismatch error of CDC
and DDC is around 3× 10−3. In contrast, the ASALVC, SG-
PDC, GPDC converge to voltage mismatch errors which are
far less than the CDC and DDC. The convergence outcomes
of ALALVC, SGPDC, and GPDC closely track the centralized
optimization outcome, but the convergence outcomes of CDC
and DDC do not. As shown in Table II, the design of CDC
and DDC does not take into account the optimality property,
thus the CDC and DDC do not show a good performance in
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Fig. 5. Aggregate load in the dynamic scenario with a sudden load change.

terms of optimality. Besides, the ASALVC exhibits the best
convergence performance compared to other controls, reach-
ing convergence after 6 iterations, which is consistent with our
previous theoretical analysis.

C. Dynamic Scenario

In the dynamic scenario, the time-varying system variations
are considered. In this scenario, the capacities of PV inverters
are set as 50 kVA, and VAr limits qg, qg are updated online
based on the given inverter capacities and the instantaneous
real power of PV generators. With respect to the online im-
plementation of ASALVC in the dynamic scenario, we set
Tr = 6s, and the VAr outputs of DERs are updated every
second.

First, we consider a sudden load change in the modified
IEEE 123-bus test system. As shown in Fig.5, suppose at
t = 10s, the aggregate load suddenly increases. Taking the
voltage at bus 56 as an example, we test the responses from
different methods to this sudden load change. For those con-
trols, the parameter settings follow from the static scenario
and the VAr outputs of DERs are also updated every second.
As shown in Fig.6(a), the system is back to stable operations
after some adjustments through the CDC and DDC as there is
a sudden load change. However, the stable operating statuses,
determined by the CDC and DDC, before and after this sud-
den load change are both far away from the optimal operating
statuses, determined by the centralized optimization, before
and after this sudden load change, where the optimal operat-
ing statuses are depicted as the black dotted line in Fig.6(b).
This is due to the fact the CDC and DDC can only guarantee
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Fig. 6. The voltage at bus 56 under the dynamic scenario with a sudden load
change: (a) for the CDC and DDC; (b) for the GPDC, SGPDC, ASALVC,
and centralized optimization.

the stability under some conditions but not optimality. On the
contrary, as depicted in Fig.6(b), the stable operating statuses,
determined by the ASALVC, SGPDC, and GPDC, before and
after this sudden load change are the same as the optimal op-
erating statuses, determined by the centralized optimization,
before and after this sudden load change. Besides, with the
help of the ASALVC, the voltage at bus 56 around t = 20s
closely tracks the optimal voltage at bus 56, determined by the
centralized optimization, As there is a sudden load change, the
ASALVC can be back to the optimal operating statuses with
less time compared to the GPDC and SGPDC, indicating its
stronger capability to quickly recover from such a sudden dis-
turbance.

Next, we consider a more realistic and complex system with
continuous fast system changes. The aggregate load and PV
generation with continuous fast system changes, distributed
across the modified IEEE 123-bus test system, are shown in
Fig.7, where the time span is one day (24 hours) and the
time granularity is 6 s. That is, the load and PV generation
change rapidly every 6 seconds. Fig.8 shows the network volt-
age profiles with the ASALVC and without any control. As
seen in Fig.8(a), there are voltage violations for the test sys-
tem without any control around 18:00. However, it is observed
from Fig.8(b) and Fig.9, despite the volatility in load and PV
generation, the ASALVC can still effectively resolve voltage
violation problems, not violating the capacity constraint.

TABLE III
VOLTAGE AND CAPACITY ISSUES UNDER THE DYNAMIC SCENARIO WITH

CONTINUOUS FAST SYSTEM CHANGES

CDC DDC GPDC SGPDC ASALVC
Voltage issue Yes Yes No No No

Capacity issue No No No No No

For comparison, other droop controls, including the CDC
and DDC, GPDC, SGPDC, are taken into account to handle
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Fig. 7. Aggregate load and PV generation with continuous fast time-varying
system changes.
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Fig. 8. The network voltage profile across the modified IEEE 123-bus test
system (each curve depicts the voltage magnitude fluctuation for each bus):
(a) Without any control; (b) With the ASALVC.

continuous fast system variations.5 As shown in Table III, the
CDC and DDC suffer from voltage violation problems under
the dynamic scenario with continuous fast system changes.
For the CDC, DDC, GPDC, SGPDC, and ASALVC, there are
not capacity violation problems in the online implementation
as the VAr limits can be updated online based on the given
inverter capacities and the instantaneous real power of PV gen-
erators. The time average objective 6 across one day is selected
as the metric to evaluate control performances. As shown in
Fig.10, the performances of the CDC and DDC are poor un-
der the dynamic scenario with continuous fast system changes.
What explains this phenomenon? On the one hand, the CDC
and DDC are associated with continuous slopes and intercepts,
those droop control functions are not flexible to make full use
of inverters’ VAr outputs for voltage regulation. On the other
hand, the CDC and DDC always suffer from stability and opti-
mality problems, resulting in the poor performance in tracking

5Considering the centralized optimization is implemented after conver-
gence, it is not suitable to apply the centralized optimization to the dynamic
scenario with continuous fast system changes, thus the centralized optimiza-
tion is not carried out here.

6The time average objective is the average objective value across time. The
lower the time average objective is, the better its performance is.
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Fig. 10. Time average objectives for various VAr controls under the dynamic
scenario with continuous fast system changes: (a) the performances of the
CDC and DDC; (b) the performances of the GPDC, SGPDC, and ASALVC.

the continuous fast changes. Compared to the CDC and DDC,
the GPDC, SGPDC, ASALVC show better performances due
to the capability of considering the optimality property. As
shown in Fig.10, the ASALVC still exhibits the best perfor-
mance compared to the GPDC and SGPDC, indicating it is
more capable of maintaining a flat network voltage profile even
for the dynamic scenario with continuous fast system changes.
As we discussed before, the ASALVC shows a faster conver-
gence rate than other controls, leading to a greater tracking
capability for continuous fast system changes in the dynamic
scenario. In addition, the ASALVC is associated with both the
time-varying slope and intercept, making itself more flexible
to adapt to continuous fast system changes.

VI. CONCLUSION

This paper proposes an ASALVC strategy, where each bus
agent locally adjusts the VAr output of its DER based on its
time-varying voltage droop function. This voltage droop func-
tion is associated with the bus-specific time-varying slope and
intercept, which can be dynamically updated merely based on
the local voltage measurement. The dynamic adjustment char-
acteristic enables the ASALVC to track time-varying system
changes. Stability, convergence and optimality properties of

this local voltage control are analytically established. Through
numerical case studies, it shows the ASALVC always exhibits
the best performance compared to other controls in both static
and dynamic scenarios, validating its effectiveness and supe-
riority. Note that the proposed ASALVC can be further em-
bedded into the two-layer VVC framework to consider dis-
crete voltage regulation devices. In the upper layer, conven-
tional discrete voltage regulation devices are scheduled over a
slow timescale. In the lower layer, the VAr outputs of DERs
can be modulated by our proposed ASALVC, where the set-
ting of discrete voltage regulation devices is maintained at the
upper-layer solution. Our future research will focus on meshed
distribution networks and the data-driven learning-assisted im-
plementation of local voltage control.

APPENDIX A

Proof of Proposition 1:
We introduce the function z(x) = 1

2x
TLx − f(x). Since

f(x) is continuously differentiable, we can know z(x) is con-
tinuously differentiable. By exploiting [30, Theorem 2.1.3],
it follows that z(x) is convex if and only if < ∇z(qg) −
∇z(y), qg − y >≥ 0 holds for ∀qg,y ∈ RN , which can be
presented as follows:

< ∇z(qg)−∇z(y), qg − y >=

− < ∇f(qg)−∇f(y), qg − y > +||qg − y||2L ≥ 0
(35)

where (35) is equivalent to (12). Thus, (12) is the sufficient
and necessary conditions for z(x) is convex. From [31, Sec-
tion 3.1.3], it follows that z(x) is convex if and only if, for
∀qg,y ∈ RN :

z(qg) ≥ z(y) +∇z(y)T (qg − y)

=
1

2
yTLy − f(y)+ < Ly −∇f(y), qg − y >

= −f(y)− < ∇f(y), qg − y >

− 1

2
||qg − y||2L +

1

2
(qg)TLqg

(36)

where (36) is equivalent to (11). Thus, (11) is also the suffi-
cient and necessary conditions for z(x) is convex. From the
above analysis, it concludes this proof. Q.E.D.

APPENDIX B

Proof of Proposition 3:
It follows from Proposition 2 that (13) holds due to [P3.A].

As g(qg) is an indicator function, we know g(qg(k)) =
g(qg∗) = 0. Then (11) boils down to:

f(qg(k))− f(qg∗) ≤ 2||qg(0)− qg∗||2L
(k + 1)2

,∀k ≥ 1 (37)

We introduce z(x) = f(x)− 1
2x

THx. From [P3.B], we have:

< ∇z(qg)−∇z(y), qg − y > =

< ∇f(qg)−∇f(y), qg − y >− ||qg − y||2H
≥ ||qg − y||2H − ||qg − y||2H = 0

(38)
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By exploiting [30, Theorem 2.1.3], it follows from (38) that
z(x) is convex. For the convex function z(x), for ∀qg,y ∈
RN , it follows from [31, Section 3.1.3] that:

z(qg) ≥ z(y) +∇z(y)T (qg − y) (39)

It follows that:

f(qg) ≥ f(y)+ < ∇f(y), qg − y > +
1

2
||qg − y||2H (40)

Then, we have:

f(qg(k)) ≥ f(qg∗)+ < ∇f(qg∗), qg(k)− qg∗ >

+
1

2
||qg(k)− qg∗||2H

(41)

From [31, Section 4.2.3], it follows that:

< ∇f(qg∗), qg(k)− qg∗ >≥ 0 (42)

Combining (41) and (42), we have:

f(qg(k))− f(qg∗) ≥ 1

2
||qg(k)− qg∗||2H (43)

From (37) and (43), we have:

1

2
||qg(k)− qg∗||2H ≤

2||qg(0)− qg∗||2L
(k + 1)2

,∀k ≥ 1 (44)

Then, we obtain:

||qg(k)− qg∗||22 ≤
4||qg(0)− qg∗||2L
(k + 1)2σmin(H)

,∀k ≥ 1 (45)

Q.E.D.

APPENDIX C

Proof of Proposition 4:

m(qg(k))−m(q̂g∗)

= m(qg(k))− f(qg∗) + f(qg∗)−m(q̂g∗)

≤ m(qg(k))− f(qg∗) + τ

= m(qg(k))− f(qg(k)) + f(qg(k))− f(qg∗) + τ

≤ m(qg(k))− f(qg(k)) + 2||qg(0)− qg∗||2L
(k + 1)2

+ τ

(46)

where the first inequality follows by [P4.B], and the second
inequality follows by [P4.C] and Proposition 2. With respect
to m(qg(k))− f(qg(k)), we have:

m(qg(k))− f(qg(k))

=
1

2

[
||h(qg(k),d)− Vr||2Φ − ||hl(qg(k),d)− Vr||2Φ

]
=

1

2

[
||h(qg(k),d)− hl(qg(k),d) + hl(q

g(k),d)− Vr||2Φ

− ||hl(qg(k),d)− Vr||2Φ
]

≤ 1

2

[
||h(qg(k),d)− hl(qg(k),d)||2Φ + ||hl(qg(k),d)− Vr||2Φ

− ||hl(qg(k),d)− Vr||2Φ
]

=
1

2
||h(qg(k),d)− hl(qg(k),d)||2Φ

(47)

Since Φ is a symmetric positive definite matrix, it follows by
Cholesky decomposition that Φ can be expressed by the form
Φ = ETE. Then, we have:

||h(qg(k),d)− hl(qg(k),d)||Φ
= || E[h(qg(k),d)− hl(qg(k),d)] ||2
≤ ||E||2||h(qg(k),d)− hl(qg(k),d)||2
= ||E||2δ

(48)

Combining (46)-(48), it follows that (20) holds. Q.E.D.

APPENDIX D

Proof of Proposition 5:
From (9)-(10), qg(k) = pL(y(k)) can be represented by:

qg(k) = argmin
qg≤qg≤qg

< ∇f(y(k)), qg − y(k) > +
1

2
||qg − y(k)||2L

(49)
For the diagonal positive definite matrix L, (49) is equal to:

qg(k) = argmin
qg≤qg≤qg

N∑
i=1

{∂f(y(k))
∂yi(k)

[qgi −yi(k)]+
Li
2
[qgi −yi(k)]

2
}

(50)
It is clear that both the objective and constraint in (50) are
decomposable, thus, for any i ∈ N .qgi (k) can be solved by:

qgi (k) = arg min
qgi≤q

g
i≤q

g
i

∂f(y(k))

∂yi(k)
[qgi − yi(k)] +

Li
2

[qgi − yi(k)]2

(51)
Note that qgi (k) is a scalar, (51) is equivalently solved by (22).
In this case, qg(k) can be represented by (23). Q.E.D.
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