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Abstract—This paper proposes a novel safety-critical sec-1

ondary voltage control method based on explicit neural networks2

(NNs) for islanded microgrids (MGs) that can guarantee any state3

inside the desired safety bound even during the transient. Firstly,4

an integrator is introduced in the feedback loop to fully eliminate5

the steady-state error caused by primary control. Then, consid-6

ering the impact of secondary control on the stability of the7

whole system, a set of transient stability and safety constraints8

is developed. In order to achieve online implementation that9

requires fast computation, an explicit NN-based secondary volt-10

age controller is designed to cast the time-consuming constrained11

optimization in the offline NN training phase, by leveraging the12

local Lipschitzness of activation functions. Specially, instead of13

using the NN as a black box, the explicit representation of NN14

is substituted into the closed-loop MG for transferring the sta-15

bility and safety constraints. Finally, the NN is trained by safe16

imitation learning, where an optimization problem is formulated17

by maximizing the imitation accuracy and volume of the stable18

region while satisfying the stability and safety constraints. Thus,19

the safe and stable region is approximated that any trajectory20

initiates within will converge to the equilibrium while bounded21

by safety conditions. The effectiveness of the proposed method22

is verified on a prototype MG with detailed dynamics.23

Index Terms—Neural network (NN), microgrid (MG), transient24

stability and safety, secondary voltage control.25

I. INTRODUCTION26

W ITH the increasing penetration of inverted-based27

renewables, the inertia of the power network contin-28

uously reduces, thus intensifying the challenges of ensuring29

system stability and safety. Microgrids (MGs) as localized30

small-scale power systems, that can operate in both grid-tied31

and islanded modes, have shown potential for improving the32

resilience of power networks [1], [2], [3], [4], [5]. In grid-33

connected mode, the MG is mainly governed by the main34

grid. While in islanded mode, local controls are needed to35

coordinate multiple distributed energy resources (DERs). A36

hierarchical control structure is commonly used for islanded37

MGs, which intrinsically decouples the control objectives38
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based on different time scales. Primary control stabilizes the 39

DERs at the fasted and lowest layer, which is usually imple- 40

mented with droop equations. Secondary control is needed 41

to eliminate the steady-state error caused by the droop char- 42

acteristics. Tertiary control focuses on economic dispatching 43

and operation scheduling in the slowest time scale and does 44

not directly take into consideration the transient stability and 45

safety constraints [6]. 46

According to the time scales, stability and safety can be 47

classified into steady-state and transient-state [7]. Transient 48

stability problem has been widely investigated in MG con- 49

trol, which ensures that the trajectories of MG states (e.g., 50

voltage, current, frequency, etc.) converge to the equilibrium. 51

While transient safety is rarely studied which requires each 52

critical state to satisfy certain operational conditions during 53

the transient. Transient safety issue is important for enhanc- 54

ing system reliability, as it can be of higher priority to bound 55

the system trajectories inside a certain safe region, rather than 56

only ensuring convergence without considering overshooting. 57

Conventionally, steady-state safety is considered as algebraic 58

inequality constraints in the slowest time scale at the ter- 59

tiary level [8]. However, as the reduction of network inertia, 60

large overshooting and intense fluctuations become more likely 61

to happen during the transient aroused by various distur- 62

bances [9]. As a result, it is imperative to take into account the 63

transient safety in the faster secondary level [10]. Therefore, 64

this paper focuses on the secondary control of MG considering 65

transient stability and safety constraints. 66

From the viewpoint of the time scale of MG modeling, 67

secondary control can also be classified into steady-state and 68

transient-state. In the first class, partial high-level dynamics 69

(e.g., derivative of droop equations) [11], [12] or even only 70

steady states [13], [14] are considered by using power flow 71

equations to model the MG. These methods have notable 72

scalability for regulating steady-state voltage and frequency 73

in high-dimensional MG. Operational constraints such as 74

steady-state safety and stability are uncomplicated to exe- 75

cute by means of static optimization. However, it cannot 76

satisfy transient constraints and may result in sampled-data 77

control problems in lower-level [15]. The second class con- 78

siders detailed dynamics of inverters thus enabling control of 79

MGs in transient-state [16], [17]. More efforts have been made 80

on stability-constrained optimization [8], parametric stability 81

conditions [18] and small-signal stability analysis for reduced- 82

order dynamic model [19]. Nonetheless, these methods suffer 83

from scalability issues for high-dimensional MGs. More elab- 84

orate reviews about control architecture and communication 85
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infrastructure such as centralized, decentralized and distributed86

secondary control methods are covered in [20], [21].87

The existing secondary control methods consider only sta-88

bility but not transient safety. Moreover, these methods cannot89

compute the stable region which is important for initial and90

operating points selection for operators. To fill this gap, safety-91

critical control is attracting increasing attention in the power92

systems community. Secondary control of MG with transient93

stability and safety guarantees is essentially a dynamic con-94

strained optimization problem. A classical method is model95

predictive control (MPC), which can directly handle dynamic96

constraints [22]. However, it suffers from a high computa-97

tional burden aroused by system order and prediction horizon.98

Thus, in MPC-based secondary control, the order of the MG99

dynamic model is usually highly reduced, leading to the loss of100

faster dynamics and corresponding stability and safety guaran-101

tees. Moreover, nonlinearities of MG and information disparity102

due to communication overheads are also challenging to over-103

come in such a method [7]. Another method that can guarantee104

transient stability and safety in power systems is the control105

Lyapunov function (CLF) and control barrier function (CBF)106

based method. In this method, CLF is used for stabilization107

and CBF is to ensure safety based on forward set-invariance108

principles via Lyapunov-like conditions [23]. This method109

has difficulty in artificially constructing Lyapunov and bar-110

rier functions, thus it often results in excessive computational111

cost and conservative estimation of the stable and safe region.112

This paper proposes a novel secondary voltage control113

scheme with transient stability and safety guaranteed. The114

frequency control can be achieved similarly using the proposed115

method by replacing the Q-V droop with P-f droop. To fully116

eliminate the steady-state errors of DER output voltages, an117

integrator is introduced into the feedback loop [24]. Then,118

for online implementation that requires the fast computation119

of control signal, we innovatively utilize the learning feature120

of neural networks (NNs) to cast the computational-intensive121

constrained optimization problem into offline training. The122

NN training is formulated as an optimization problem max-123

imizing the tracking accuracy and volume of approximated124

stable region, while enforcing stability and safety constraints.125

An alternating direction method of multipliers (ADMM) is126

used to efficiently solve this multi-objective optimization127

problem [25]. The well-trained NN is a nonlinear algebraic128

function that can be conveniently used online as the secondary129

voltage controller guaranteeing transient stability and safety130

of MG.131

The main contributions of this paper are concluded as the132

following three aspects:133

• A general methodology for propagating the constraints134

from MG states onto the parameters of the explicit135

NN is developed based on the local Lipschitz con-136

dition. Compared with the existing online constrained137

optimization-based control approaches, the proposed safe138

and stable secondary voltage control method has a sig-139

nificantly lower computational cost and hardware require-140

ment for online computational implementation.141

• To guarantee stable and safe MG operation, a set of novel142

transient stability and safety constraints are developed,143

convexified and integrated into the training of explicit 144

NN-based controllers. 145

• The proposed safe and stable secondary voltage control 146

method can maximize the inner approximation of the sta- 147

ble region, which provides informative visualization for 148

selecting initial and operating points. 149

The rest of the paper is organized as follows: Section II 150

introduces the safe and stable secondary control problem of 151

MG. Section III proposes an offset-free online secondary volt- 152

age control method based on explicit NN. Section IV develops 153

the offline training method of the explicit NN with stability and 154

safety constraints based on imitation learning. In Section V, 155

case studies are conducted to validate the proposed approach 156

and Section VI concludes the paper. 157

II. PROBLEM STATEMENT 158

An inverter-based islanded MG with m DERs, p RL loads 159

and q lines can be represented in a general state space 160

model [26]: 161

ẋ(t) = F(x(t),u(t)), (1a) 162

y(t) = G(x(t)), (1b) 163

where y = [uo1, . . . , uom]� is the output vector containing the 164

output voltage of each DER in the MG, uoi =
√

u2
odi + u2

oqi; 165

x = [x�inv1, . . . , x�invm, x�line1, . . . , x�lineq, x�load1, . . . , x�loadp]� is 166

the state vector of inverters, lines and loads; xinvi = 167

[δi,Pi,Qi, φdi, φqi, γdi, γqi, ildi, ilqi, uodi, uoqi, iodi, ioqi]�, i = 168

1, . . . ,m, respectively denotes the phase angle, output 169

active/reactive power, states of PI controllers, inductor cur- 170

rents, output voltages and output currents of the ith DER; 171

xlinei = [ilineDi, ilineQi]�, i = 1, . . . , q, are the currents of the 172

ith line in d-q axis; xloadi = [iloadDi, iloadQi]�, i = 1, . . . , p, are 173

the currents of the ith load in d-q axis; u = [uset1, . . . , usetm]� 174

denotes the voltage setpoint for the droop controllers of each 175

DER, and it is also the control vector to be generated by 176

the secondary controller; denoting n = 13m + 2p + 2q, 177

F : Rn × R
m → R

n is the state function and G : Rn → R
n

178

denotes the output function. This high-dimensional dynamic 179

model describes the detailed transient dynamics of the whole 180

MG, thus the transient safety of all states can be taken into 181

consideration. 182

In this framework, the inverter is directly controlled by 183

double-loop PI controllers which are also named zero-level 184

or inner control loops. The reference signal for the inner con- 185

trol loop, u∗oi(t), is generated by the primary controller using 186

droop characteristics as follows, 187

u∗odi(t) = useti(t)− DqiQi(t), u∗oqi(t) = 0 (2) 188

where Qi(t) is the output reactive power of the ith DER pass- 189

ing through a low pass filter; Dqi is the Q-V droop gain. 190

Voltage control of microgrids aims to regulate the DER out- 191

put voltage uodi to the desired value. With primary control (2) 192

only, setpoint useti is selected as the desired value but there 193

will remain a residual −DqiQi(∞) at the steady state. Thus, 194

the primary control signal u∗odi does not equal to the setpoint 195

useti. The inner-control loops can accurately regulate uodi to 196
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Fig. 1. Projection of SSR of an MG onto a two-dimensional plane composed
of two DERs output voltages. The yellow area denotes the safe region, and
the blue area is the SSR.

u∗odi with well-tuned parameters, nonetheless, this will lead to197

uodi �= useti. To eliminate this steady-state error, a secondary198

controller can be designed to automatically tune useti(t) using199

the feedback measurements.200

Secondary control as a technique for compensating the201

off-set has been widely studied, nonetheless, most existing202

methods cannot guarantee that all the critical signals are203

bounded within safe region all the time including the transient.204

Definition 1: The safe region is defined as a polytope205

that is symmetric around the steady-state operating point x∗206

(equilibrium):207

B �
{
x(t) ∈ R

n | −x̃ub ≤ Hx̃(t) ≤ x̃ub,∀t
}
, (3)208

where x̃(t) � x(t) − x∗ is the error state vector, H ∈ R
nS×n

209

selects and combines the critical states, and x̃ub ∈ R
nS ≥ 0210

contains the corresponding upper bounds. Note that the tran-211

sient safety constraint (3) is essentially a general state con-212

straint. The transient safe bound mainly depends on the safety213

concerns and physical constraints of the hardware. It is usu-214

ally larger than steady-state bound. However, to the authors’215

best knowledge, there still lacks a commonly accepted stan-216

dard suggesting the magnitude of transient safety bound for217

microgrids. To this end, we assume the steady-state bound218

as the transient bound for the DER output voltages, e.g.,219

[0.95, 1.05] p.u. for DER output voltages as shown in Fig. 1.220

If such a tight bound can be satisfied by the proposed method,221

then a looser transient bound can be respected naturally.222

Although the primary controller has been designed to sta-223

bilize the MG, the implementation of a secondary controller224

can actually influence the dynamic behavior and system sta-225

bility. Therefore, the transient stability of the closed-loop MG226

system should be guaranteed when the secondary controller is227

interfaced. Unlike other methods that can only analyze whether228

the closed-loop system is stable or not, the proposed control229

method in this paper will also provide the largest inner approx-230

imation of the stable region, i.e., the region of attraction (ROA)231

within which the initial state will converge to the equilibrium232

asymptotically. To simultaneously satisfy both the safety and233

stability conditions, we give the following definition.234

Definition 2: The safe and stable region (SSR) is defined as 235

S �
{

x0 ∈ B | lim
t→∞φ(t; x0) = x∗,φ(t; x0) ∈ B,∀t

}
, (4) 236

where x0 is an initial value, and φ denotes the solution of the 237

closed-loop system (1) with designed secondary controller u. 238

Figure 1 demonstrates the relationship between safety con- 239

straints and SSR in a two-dimensional projection. The SSR is 240

an inner approximated ROA bounded by safety constraints. 241

Our control objective is to design a novel secondary 242

controller that computes fast enough to be applied online 243

while satisfying the transient stability and safety con- 244

straints (3)-(4). For nonlinear model (1), there remain four 245

challenges to realize safe and stable secondary control: a) the 246

dynamics of state observer must be considered when deriving 247

the stability condition due to the violation of separation prop- 248

erty; b) there lacks a systematic method to establish Lyapunov 249

functions for microgrids, such that an artificially constructed 250

Lyapunov function usually leads to conservative results and 251

the stability condition is typically difficult/impossible to be 252

convexified; c) transient safety constraints are essentially state 253

constraints, which are difficult to be satisfied in the con- 254

troller design for nonlinear systems; d) the existing online 255

optimization based nonlinear control methods such as non- 256

linear MPC are online computation-costly. To this end, a 257

small-signal model developed in [26] is modified and adopted 258

in this paper. With a small enough sampling interval satisfying 259

the Nyquist-Shannon sampling theorem [22], the small-signal 260

system developed in [26] can be discretized as the following 261

difference equations with high fidelity using zero-order holder, 262

x̃(k + 1) = Amgx̃(k)+ Bmgũ(k), (5a) 263

ỹ(k) = Cmgx̃(k), (5b) 264

where (x̃, ũ, ỹ) = (x−x∗,u−u∗, y−y∗) are defined as small 265

deviations from the equilibria; k denotes the discrete-time step; 266

Amg ∈ R
n×n, Bmg ∈ R

n×m and Cmg ∈ R
m×n are state, input 267

and output matrices, respectively and their derivations can be 268

found in [26]. 269

Remark 1: An important issue in microgrid secondary con- 270

trol is the communication time delays, whose impact depends 271

on its magnitude. In normal operation situations, typically the 272

wireless communication time delays are negligible. In [27], 273

an experimental study was performed to show that the min- 274

imum expected communication time delay in IEEE 802.11 275

(WiFi) from the moment of packet reception until comple- 276

tion of broadcasting is of the order of 10 ms, which is no 277

larger than the typical sampling rate of the secondary control 278

of microgrids. In cases with bad communication conditions, 279

large time delays (of the order of 100 ms) may occur. In such a 280

situation, Eq. (5) needs to be revised to accommodate the com- 281

munication time delay and a tailored design of the secondary 282

controller for handling the large time delays is necessary for 283

maintaining stability [28], [29]. Controlling microgrids with 284

large communication time delays while guaranteeing the tran- 285

sient safety constraints simultaneously is still challenging and 286

out of the scope of this paper. 287
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III. OFFSET-FREE ONLINE SECONDARY VOLTAGE288

CONTROLLER DESIGN BASED ON EXPLICIT NN289

In this section, we first use an integrator to transform the290

output tracking problem of (5) into a stabilization problem291

of its augmented system for fully eliminating the steady-292

state error between DER output voltages and their setpoints.293

Then, an explicit NN-based controller is designed for online294

implementation, while the time-consuming stability and safety295

constraints are cast into the offline training of the NN.296

A. Setpoint Tracking Control of DER Output Voltage297

The MG secondary control problem is a setpoint tracking298

problem, i.e., regulating the output voltages of DERs y to their299

reference value yref with zero off-set. The original safe imi-300

tation learning method in [30] was designed for stabilization301

problems, i.e., regulating all the states to the equilibrium, and302

the equilibrium is required to be all zero (origin). To extend303

this method for stability and safety-constrained secondary volt-304

age control problem, we introduce the following integrator305

which dynamically feeds back the integral of off-set306

x̃I(k + 1) = x̃I(k)+ ỹref − ỹ(k), (6)307

where x̃I is the state vector of the integrator and ỹref is the308

voltage setpoint vector to be tracked by ỹ. Then, the setpoint309

tracking problem of (5) is transformed into a stabilization310

problem of the following augmented system311

x̃aug(k + 1) = Ax̃aug(k)+ Bũaug(k), (7a)312

ỹaug(k) = Cx̃aug(k) (7b)313

where the augmented state vector is defined as x̃aug(k) �314

[x̃(k) − ˜̄x, x̃I(k)]�, ˜̄x = x̄ − x∗ is the error between the new315

equilibrium x̄ and the original equilibrium x∗, the control vec-316

tor is augmented as ũaug(k) = [ũ(k) − ˜̄u], ˜̄u is determined317

by (9) and the augmented output vector ỹaug(k) = ỹ(k)− ỹref.318

The augmented system matrices are derived as319

A =
[

Amg 0n×m

−Cmg Im×m

]
,B =

[
Bmg

0

]
,C = [

Cmg 0m×m
]
. (8)320

To achieve off-set free setpoint tracking, the steady-state values321

˜̄x and ˜̄u should satisfy322 [
Amg − In×n Bmg

Cmg 0

][ ˜̄x
˜̄u
]
=

[
0

ỹref

]
. (9)323

When the augmented system (7)-(9) is stabilized by a prop-324

erly designed ũaug(k), it is equivalent that: a) the small-signal325

MG (5) is stabilized, i.e., the original MG (1) is locally326

stable around the new equilibrium x̄, because x̃(k) − ˜̄x =327

(x(k)− x∗)− (x̄− x∗) = 0; b) the DER output voltages of the328

original MG system (1), y(k) is regulated to the setpoint yref329

with zero off-set, since ỹref−ỹ(k) = (yref−y∗)−(y(k)−y∗) =330

x̃I(k + 1)− x̃I(k) = 0.331

Definition 3: By defining H̃ = [H, 0nS×m], the safe region332

for the augmented system (7) is re-defined as333

B̃ �
{

x̃aug(k) ∈ R
n+m | −x̃ub −H ˜̄x ≤ H̃x̃aug(k)334

≤ x̃ub −H ˜̄x,∀k, x̃ub ≥ 0
}
. (10)335

Definition 4: The corresponding SSR for the augmented 336

system (7) is re-defined as 337

S̃ �
{

x̃aug(0) ∈ B̃| lim
k→∞ φ̃

(
k; x̃aug(0)

) = 0 , 338

φ̃
(
k; x̃aug(0)

) ∈ B̃,∀k

}
(11) 339

where x̃aug(0) is an initial value, and φ̃ denotes the solu- 340

tion of the closed-loop system (7) with secondary controller 341

ũaug. When steady-state condition (9) holds, the safety con- 342

straint (10) and SSR (11) of the augmented system (7) 343

are equivalent to (3) and (4) of the original system (1), 344

respectively. 345

B. Secondary Controller Based on Explicit NN 346

Stabilizing all the dynamics of (7) requires full-state feed- 347

back. Yet, full-state measurements are often unavailable in 348

practical MGs. Therefore, state observers are needed to esti- 349

mate the states by using input and output data only. For linear 350

system (7), the separation property holds, so that the state 351

observer and controller can be designed separately. Assume 352

that the system is detectable, i.e., unobservable modes are sta- 353

ble, then it is simple to design a classical linear state observer 354

to obtain the estimated states ˆ̃x, which is used in the following 355

state feedback controller design. 356

The feedback controller ũaug = U( ˆ̃xaug) is designed based 357

on an L-hidden-layer feedforward NN as 358

z0(k) = ˆ̃xaug(k), (12a) 359

zi(k) = ψi(γi(k)
)
, (12b) 360

γi(k) = wizi−1(k)+ bi, (12c) 361

ũaug(k) = γL+1(k) (12d) 362

where ˆ̃xaug(k) = [ ˆ̃x(k)− ˜̄x, x̃I(k)]� is state feedback as shown 363

in Fig. 2; γi ∈ R
Ni and zi ∈ R

Ni are input/output vectors of 364

activation functions in the ith layer, respectively; ψi : RNi → 365

R
Ni is a vector collecting the activation functions element- 366

wisely; wi ∈ R
Ni×Ni−1 and bi ∈ R

Ni are weight matrix and 367

bias vector of the ith layer, respectively; Ni is the number of 368

neurons in the ith layer; i = 1, . . . ,L. 369

The equilibrium x̃aug,∗ of system (7) with controller ũaug = 370

U( ˆ̃xaug) satisfies x̃aug,∗ = Ax̃aug∗ +BU(x̃aug,∗). To ensure that 371

x̃aug,∗ = 0, the controller should satisfy U(0) = 0, which 372

translates to a nonconvex constraint on (wi,bi). To solve 373

this problem, bi is set to zero as in [30], although it leads 374

to underuse of the NN and hence may limit the achievable 375

performance. It is still a challenging problem to develop a less 376

restrictive convex constraint that ensures U(0) = 0 without 377

setting bi = 0. 378

Our objective is to offline train the NN to imitate an expert 379

controller for stabilizing the augmented system (7) while sat- 380

isfying stability and safety constraints (10)-(11). Note that the 381

explicit NN-based controller (12) is a static function such that 382

its evaluation requires low computational cost and simple hard- 383

ware. Therefore, the well-trained explicit NN-based controller 384

can be conveniently implemented online. The overall control 385

diagram is shown in Fig. 2. 386
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Fig. 2. The diagram of the proposed secondary voltage control structure based on the integrator and explicit NN. The upper part illustrates the online
implementation of the proposed control approach while the lower part shows the offline training procedure.

For the ease of stability and safety analysis, we use the387

method proposed in [30] to isolate the nonlinear activation388

functions from the linear operations of the NN:389 [
ũaug(k)
�(k)

]
= W

[ ˆ̃xaug(k)
Z(k)

]
, (13a)390

Z(k) = �(�(k)) (13b)391

where �(�) = [ψ1(γ1)
�
, . . . ,ψL(γL)

�
]� : R

N� → R
N� ,392

� = [γ1�, . . . , γL�]�, Z = [z1�, . . . , zL�]� are stacked-393

up vectors of activation functions, their inputs and outputs,394

respectively; N� = ∑L
i Ni is the total number of neurons; the395

combined weight matrix396

W =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . wL+1

w1 0 . . . 0 0
0 w2 . . . 0 0
...

...
. . .

...
...

0 0 . . . wL 0

⎤
⎥⎥⎥⎥⎥⎦ �

[
Wue WuZ
W�e W�Z

]
.397

(14)398

Note that (13a) and (13b) are linear and nonlinear compo-399

nents of the explicit NN-based controller (12). This decom-400

position simplifies the derivation of stability and safety401

constraints in the next section.402

IV. OFFLINE TRAINING OF NN WITH STABILITY AND403

SAFETY CONSTRAINTS BASED ON IMITATION LEARNING404

In this section, we first utilize local Lipschitzness of activa-405

tion functions to propagate safety constraints on states to the406

explicit NN-based controller. Then, the stability and safety407

constraints of the augmented system (7) with controller (12)408

are derived based on Lyapunov theory and convexified using409

loop transformation and similarity transformation. Finally, the410

developed constraints are added into the offline NN training411

based on imitation learning to achieve stable, safe, and fast412

offset-free online secondary voltage control.413

Fig. 3. Illustration of local slope constraints on activation function tanh. The
shaded area is the safe region for slopes of an activation function.

A. Safety Constraint Propagation 414

In the proposed explicit NN-based secondary voltage con- 415

troller, we adopt activation functions satisfying the following 416

local slope constraint, 417

kj
i ≤

ψ
j
i

(
γ

j
i

)
− ψ j

i

(
γ

j
∗i

)
γ

j
i − γ j

∗i

≤ k
j
i, ∀γ j

i ∈
[
γ j

i
, γ

j
i

]
(15) 418

for some slopes kj
i ≤ k

j
i, where ψ j

i denotes the ith activation 419

function in the jth layer. γ j
i
≤ γ

j
∗i ≤ γ

j
i is the an equilibrium 420

which can be obtained from �∗ = W�ex̃aug,∗ +W�Z�(�∗). 421

If x̃aug,∗ = 0, then �∗ = 0. Consequently, the center of slope 422

constraint (15) is shifted to the origin as shown in Fig. 3(b). 423

Most widely-used activation functions are qualified such as 424

ReLU and tanh. As illustrated in Fig. 3, the existence of slopes 425

kj
i, and k

j
i are ensured by the local Lipshitzness of the activation 426

functions [31], [32]. 427

By stacking up (15) with �∗ = 0, the local slope constraint 428

of the whole nonlinearity � can be developed in the following 429

quadratic form 430

[
�(k)
Z(k)

]�⎡
⎣ −2KK�

(
K+K

)
�(

K+K
)
� −2�

⎤
⎦

︸ ︷︷ ︸
�MK

[
�(k)
Z(k)

]
≥ 0 (16) 431
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∀�(k) ∈ [�,�], where K = diag(k1, . . . , kN�
), K =432

diag(k̄1, . . . , k̄N� ) are combined lower and upper bounds of433

slopes, respectively; � = diag(λ1, . . . , λN� ) is a multiplier434

matrix with λi ≥ 0. Local slope constraint (16) establishes435

the relation between inputs (MG states) and gradient of NN.436

Using this relation, we can propagate the safety constraints on437

states throughout the NN with the following steps:438

Step 1: Find the smallest hypercube {x̃aug | x̃aug ∈439

[x̃aug,lb, x̃aug,ub]} ⊃ B̃, where x̃aug,lb and x̃aug,ub are lower440

and upper bounds of x̃aug, respectively. Let [z0, z0] =441

[x̃aug,lb, x̃aug,ub] and j = 0.442

Step 2: Let j = j+1. Denote wj
ik as the kth element in the ith443

row of wj. Then, with (12c), the bounds of the ith activation444

input in the jth layer can be computed by solving an convex445

optimization problem [30], whose explicit solutions are446

γ̄
j
i =

1

2
wj

i

(
zj−1 + zj−1

)
+ 1

2

Nj−1∑
k=1

∣∣∣wj
ik

(
zj−1

k − zj−1
k

)∣∣∣, (17a)447

γ j
i
= 1

2
wj

i

(
zj−1 + zj−1

)
− 1

2

Nj−1∑
k=1

∣∣∣wj
ik

(
zj−1

k − zj−1
k

)∣∣∣. (17b)448

Step 3: Letting K � IN� , then the slope of the ith activation449

function in the jth layer is computed as450

kj
i = min

⎧⎨
⎩
ψ

j
i

(
γ j

i

)
− ψ j

i

(
γ

j
∗i

)
γ

j
i − γ j

∗i

,
ψ

j
i

(
γ

j
i

)
− ψ j

i

(
γ

j
∗i

)
γ

j
i − γ j

∗i

⎫⎬
⎭. (18)451

Step 4: Calculate the bounds of activation outputs of the jth452

layer as453

zj = ψj
(
γj

)
, zj = ψj(γj). (19)454

Step 5: If j = L, stop; otherwise, return to Step 2.455

With this propagation, the original safety bounds of the456

states [−x̃ub − H ˜̄x, x̃ub − H ˜̄x] are transferred to the slope457

bounds of the activation functions [K,K], such that the safety458

constraint (10) can be alternatively satisfied in the offline459

training process.460

B. Lyapunov Stability Constraint461

Although we considered a linearized MG model, nonethe-462

less, the closed-loop system is still nonlinear due to the463

substitution of a nonlinear explicit NN-based secondary volt-464

age controller. Thus, instead of eigenanalysis, we will utilize465

Lyapunov theory to develop the stability constraints.466

According to Lyapunov second method, the origin of467

system (7) with explicit NN-based controller (12) is an asymp-468

totically stable equilibrium point if there exists a Lyapunov469

function V = x̃�augRx̃aug > 0 with some symmetric positive470

definite matrix R ∈ R
n+m, such that471

V
(
x̃aug(k + 1)

)− V
(
x̃aug(k)

)
472

=
[

x̃aug(k)
ũaug(k)

]� [
A�RA− R A�RB

B�RA B�RB

]
︸ ︷︷ ︸

�MV

[
x̃aug(k)
ũaug(k)

]
< 0. (20)473

To combine the propagated safety constraint (16) with 474

Lyapunov stability constraint (20), we define the following 475

coordinate transformation [30], 476[
x̃aug(k)
ũaug(k)

]
=

[
In+m 0(n+m)×N�
Wue WuZ

]
︸ ︷︷ ︸

�TV

[
x̃aug(k)
Z(k)

]
, (21) 477

[
�(k)
Z(k)

]
=

[
W�e W�Z

0N�×(n+m) IN�

]
︸ ︷︷ ︸

�TK

[
x̃aug(k)
Z(k)

]
. (22) 478

Then, the overall stability and safety constraints are 479

proposed as the following theorem. 480

Theorem 1 (Stability and Safety): Select activation func- 481

tions of NN satisfying local slope constraint (16) for the safety 482

constraint (3) and denote the ith row of H̃ as H̃�i . 483

If there exist a symmetric positive definite matrix R and 484

positive semi-definite diagonal matrix �, such that 485

T�V MVTV + T�KMKTK ≺ 0, (23) 486

H̃�i R−1H̃i ≤
(

x̃∗ub,i − |H�i ˜̄x|
)2
, i = 1, . . . , nS, (24) 487

then, the proposed explicit NN-based secondary voltage con- 488

troller (12) can locally stabilize the MG system (1) at a new 489

equilibrium x̄ and regulate the DER output voltages to the 490

desired setpoints yref with zero offset at the steady state. 491

Moreover, it provides an inner-approximation of the SSR, 492

S̃ as the following ellipsoid, 493

	(R) �
{

x̃aug ∈ R
n+m | x̃�augRx̃aug ≤ 1

}
, (25) 494

such that any trajectories starting within 	(R) will maintain 495

in it and converge to the equilibrium asymptotically. 496

The proof of Theorem 1 is given in Appendix-A. The stabil- 497

ity and safety constraints (23)-(24) cannot be directly used in 498

the offline NN training because it is non-convex to simultane- 499

ously solve for W, R and 
. Thus, a convexification procedure 500

is carried out in the next subsection before applying them to 501

the training phase. 502

C. Convexification of Stability and Safety Constraints 503

We first normalize the slope bounds of nonlinearity �̃ from 504

[K,K] to [−1, 1] by using a loop transformation method as 505

shown in Fig. 4, which was proposed in [30]. Thus, the explicit 506

NN-based controller (13)-(14) is equivalently transformed as 507[
ũaug(k)
�(k)

]
= W̃

[ ˆ̃xaug(k)
Z̃(k)

]
, (26a) 508

W̃ =
[

W̃ue W̃uZ
W̃�e W̃�Z

]
, (26b) 509

Z̃(k) = �̃(�(k)). (26c) 510

The detailed derivation of W̃ is given in Appendix-B. Let 511

[K,K] = [−1, 1], the slope constraint (16) is equivalent to 512[
�(k)
Z̃(k)

]� [
� 0
0 −�

]
︸ ︷︷ ︸

�M̃K

[
�(k)
Z̃(k)

]
≥ 0, ∀�(k) ∈ [

�,�
]
. (27) 513



IEEE Proo
f

MA et al.: SAFE AND STABLE SECONDARY VOLTAGE CONTROL OF MGs BASED ON EXPLICIT NNs 7

Fig. 4. Diagram of loop transformation, where �1 = (K − K)/2 and
�2 = (K+K)/2.

Then, the stability constraint (23) is equivalently trans-514

formed as515

T̃�V MV T̃V + T̃�KM̃KT̃K ≺ 0, (28)516

where517

T̃V =
[

In+m 0(n+m)×N�
W̃ue W̃uZ

]
, T̃K =

[
W̃�e W̃�Z

0N�×(n+m) IN�

]
.518

The new stability constraint (28) is convex in R and � when519

W̃ is known. However, NN training requires to simultaneously520

search for R, � and W̃, which is still non-convex with (28).521

For further convexification, (28) is written as the following522

linear matrix inequalities (LMIs) using Schur complements523 ⎡
⎢⎢⎣

R 0 A� + W̃�
ueB� W̃�

�e
0 � W̃�

uZB� W̃�
�Z

A+ BW̃ue BW̃uZ R-1 0
W̃�e W̃�Z 0 �-1

⎤
⎥⎥⎦  0, (29)524

with R  0, and �  0. Define new decision variables as525

D1 � R−1  0, D2 � �−1  0, (30)526 [
D3 D4
D5 D6

]
�

[
W̃ue W̃uZ
W̃�e W̃�Z

][
D1 0
0 D2

]
(31)527

and left/right multiply (29) by diag(D1,D2, In+m+N� ). Finally,528

it has529 ⎡
⎢⎢⎣

D1 0 D1A� + D�3 B� D�5
0 D2 D�4 B� D�6

AD1 + BD3 BD4 D1 0
D5 D6 0 D2

⎤
⎥⎥⎦  0. (32)530

The new stability constraint (32) is now convex in the531

decision variables D = {D1, . . . ,D6}. Note that the origi-532

nal variables (R,�, W̃) can be retrieved from (30) and (31).533

Thus, (32) enables us to simultaneously search for (R,�, W̃)534

by seeking D instead.535

Moreover, to bound the ROA into safety constraint, (24) can536

be directly rewritten as a convex constraint on D1:537

H̃�i D1H̃i ≤
(

x̃∗ub,i − |H�i ˜̄x|
)2
, i = 1, . . . , nS. (33)538

D. NN Training Based on Imitation Learning539

The proposed explicit NN-based secondary voltage con-540

troller aims to imitate an expert control method under the541

premise of satisfying stability and safety constraints. Thus,542

the NN training is formulated as a constrained optimization 543

problem as follows, 544

min
W,D

η1

Nt

Nt∑
j=1

∥∥∥U
(

x̃∗aug,j,W
)
− U∗j

∥∥∥− η2log det(D1) (34a) 545

s.t. LMIs (30)− (33) (34b) 546

where the first term in the objective function (34a) represents 547

the training loss, Nt is the total number of training data pairs. 548

The training inputs x̃∗aug and training outputs U∗ are gener- 549

ated by the expert controller to be imitated; the second term 550

denotes the volume of the approximated SSR 	(R) that is 551

proportional to det(D1); η1, η2 > 0 are weighting parameters. 552

The inequalities (30), (32) and (33) are stability and safety 553

constraints on D, while the equality constraint (31) bridges W 554

and D, since W̃ is a nonlinear function of W. 555

Problem (34) is a two-objective constrained optimization 556

problem. The two objectives are separable and defined on 557

uncoupled convex sets. Moreover, the equality constraint (31) 558

can be used to connect the two subproblems. Thus, we adopt 559

the ADMM used in [25] to solve (34). To use ADMM, an 560

augmented Lagrangian function is first established as: 561

La(W,D,Y) = η1

Nt

Nt∑
j=1

∥∥∥U
(

x̃∗aug,j,W
)
− U∗j

∥∥∥ 562

− η2log det(D1)+ tr
(

Y�E
)
+ ρ

2
‖E‖2

F 563

(35) 564

where Y ∈ R
(m+N�)×(n+m+N�) is the Lagrangian multiplier, 565

‖·‖F represents the Frobenius norm, ρ > 0 is the penalty 566

parameter and 567

E =
[

D3 D4
D5 D6

]
− W̃

[
D1 0
0 D2

]
(36) 568

Then (34) can be solved with the following iterative steps: 569

Step 1: Update W with gradient-based methods by solving 570

Wi+1 = arg min
W

La
(
Wi,Di,Yi) (37) 571

Step 2: Update D with semi-definite programming methods 572

by solving 573

Di+1 = arg min
D

La

(
Wi+1,D,Yi

)
574

s.t. LMIs (30), (32) and (33) (38) 575

Step 3: If ‖Ei+1‖F ≤ σ , where σ > 0 is the stopping 576

tolerance, then (34) has been solved with a converged result, 577

and stop the training. Otherwise, update Y with the following 578

equation and return to Step 1: 579

Yi+1 = Yi + ρEi+1. (39) 580

Note that problem (34) is non-convex, thus the ADMM 581

cannot guarantee a global optimum, but can obtain a local opti- 582

mum. Nonetheless, the paramount task of offline training is to 583

satisfy stability and safety constraints. Once the closed-loop 584

augmented system (7) with the explicit NN-based controller 585

is stabilized, the online controller based on the integrator will 586

automatically eliminate the steady-state errors as illustrated 587
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Fig. 5. Flowchart of the offline training approach based on imitation learning.

Fig. 6. Diagram of test MG system.

TABLE I
MG PARAMETERS

26

by Theorem 1. As a result, any converged solutions or even588

local optima are acceptable in the training phase. The overall589

offline training algorithm proposed in the section is concluded590

in Fig. 5.591

V. CASE STUDIES592

A. Simulation Setup593

A widely used 220 V (per phase RMS) prototype MG with594

three inverter-based DERs is adopted as shown in Fig. 6 [26].595

Since this is a low-voltage distribution system, the network596

is resistance dominated. The parameters are given in Table I.597

All three DERs are equally rated (10 kVA), especially with598

Fig. 7. Voltage regulation performance of the proposed secondary controller.

the same droop gain, such that they can share the load power 599

equally. Without secondary control, the initial voltage setpoint 600

in primary control for each DER is given as useti = 380 V, 601

leading to steady-state errors in DER output voltages Uod at 602

the initial operating point. All the dynamic simulations are 603

conducted in MATLAB and Python environments. 604

The secondary controller is established as a feedforward 605

NN with 2 hidden layers. Each layer has N1 = N2 = 40 606

neurons with tanh as the activation functions. The hyperparam- 607

eters of the NN are tuned through cross-validation. The expert 608

controller is selected as the linear quadratic regulator (LQR), 609

which has been widely used as an optimal control method 610

in practical engineering due to its rapid transient response 611

and ability to provide an inner approximation of ROA [25]. 612

Considering discrete-time system (7), and performance index 613

J =
∞∑

k=0

(x̃�aug(k)Q̃x̃aug(k)+ ũ�aug(k)R̃ũaug(k)), 614

the optimal control law minimizing J is derived as 615

ũaug(k) = −
(

R̃+ B�P̃B
)−1

B�P̃Ax̃aug(k), (40) 616

where P̃ is the unique positive definite solution to the following 617

discrete-time algebraic Riccati equation 618

P̃ = A�P̃A− A�P̃B
(

R̃+ B�P̃B
)−1

B�P̃A+ Q̃. 619

According to a uniform distribution, 1×106 state vectors x̃aug 620

are randomly produced as the training inputs. Then, by using 621

the LQR control law (40), one can obtain the corresponding 622

control signals ũaug of the expert controller as the training 623

outputs. The learning rate is designed as 1 × 10−3/(1 + 3 × 624

epoch/nepoch), where nepoch is the total number of epochs [30]. 625

The penalty parameter ρ = 1. The weighting parameters for 626

imitation accuracy and volume of SSR are initially selected as 627

η1 = 100 and η2 = 5, respectively, which means the control 628

performance is considered as a more important factor. The 629

training algorithm based on ADMM is terminated at the 38th
630

iteration with ‖E‖F = 1.35. 631

B. Voltage Regulation Performance 632

We consider safety bounds on the DER output voltages as 633

380 × (1 ± 5%) V. As shown in Fig. 7, without secondary 634
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Fig. 8. Approximated SSR and trajectory of DER output voltages. (a) is 3D
illustration of the SSR; (b)-(d) show the 2D projections of (a).

control, there exist steady-state errors between DER output635

voltages and their setpoints 380 V. After 1 s, the proposed636

secondary controller is activated and the steady-state errors are637

fully eliminated rapidly and safely. The blue ellipsoid in Fig. 8638

shows the SSR calculated by the proposed method, which is an639

inner approximation of ROA bounded by the safety constraints640

(yellow cube). The phase plot of the trajectory of uod shows641

that output voltages cannot escape the SSR anytime.642

C. Influence of Weighting Parameters643

To test the influence of weighting factors in (34a), we fix644

η1 = 100 and change η2 to 20. As shown in Fig. 9, the con-645

troller with smaller η2 has faster transient response but larger646

overshooting, which means it is more closed to the expert647

controller and focuses more on control performance. In con-648

trast, larger η2 leads to a more sluggish response speed but649

safer overshooting. Figure 10 shows that increasing η2 can650

significantly enlarge the estimation of SSR.651

D. Ability of Handling Other State Constraints652

The proposed method can handle linear inequality con-653

straints of any controllable state variables in the form of654

Eq. (3). To validate this, case studies with state constraints655

on both DER output currents iod and voltages vod are con-656

ducted as an example. Specially, unlike DER output voltages657

that need to be maintained at a certain level for safe operation,658

the steady-state values of output currents are regulated accord-659

ing to the loading condition, such that they usually have a660

much larger variation range. Therefore, the current constraints661

in this case study are set as [0.75īod, 1.25īod], where the new662

steady-state value īod is computed via Eq. (9) and η2 = 20.663

The SSR from the viewpoint of iod is shown in Fig. 11. We can664

see the SSR is successfully bounded by the current constraints665

Fig. 9. Comparison of DER output voltage regulation performances of the
proposed method with different weighting factors.

and an initial point starting within the SSR finally converges 666

to the new equilibrium. Figure 12 compares the current tra- 667

jectories with voltage constraints only and with both voltage 668

and current constraints. As shown in the figure, by consid- 669

ering current constraints in the proposed secondary control 670

method, the currents can be bounded within the safe range. 671

It should be mentioned that all the bounds are flexible to be 672

changed according to the practical engineering requirement. 673

The influence on DER output voltage induced by consider- 674

ing current constraints is also studied. As shown in Fig. 13, 675

the SSR of DER output voltage has unsurprisingly shrunk by 676

adding current constraints. 677

E. Comparison Case Studies 678

The proposed method is compared with the expert LQR 679

controller and the conventional constrained MPC method. The 680

configuration of LQR remains the same as Section V-A. As 681

for the MPC, we consider safety constraints (3) and terminal 682

stability constraints. The constrained optimization problem is 683

solved at each time step as a quadratic programming (QP) 684

problem. As shown in Fig. 14, the LQR method though has 685

the fastest transient response velocity, nonetheless, it violates 686
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Fig. 10. Comparison of approximated SSR with different weights and ROA
approximated by LQR. (a) is 3D illustration of the SSR; (b)-(d) show the 2D
projections of (a).

Fig. 11. Approximated SSR from the viewpoint of DER output currents
subject to both voltage and current constraints. (a) is 3D illustration of the
SSR; (b)-(d) show the 2D projections of (a).

the safety bound during the transient. While the MPC method687

and the proposed method always satisfy the safety condition.688

The comparison of computational time is shown in Fig. 15.689

Note that the y-axis is scaled logarithmically, and the compu-690

tational time of LQR and the proposed method is much lower691

than that of the MPC. This is because, evaluating control sig-692

nal ũaug(k) of the proposed method and LQR method at each693

time step only requires performing several multiplications,694

additions and evaluating activation functions (required by the695

Fig. 12. Comparison of DER output currents with and without current
constraints.

proposed method only). In contrast, the MPC needs to solve 696

a QP problem at each time step, which is significantly more 697

time-consuming. The high computational cost leads to two 698

problems. Firstly, it can result in time delays when the compu- 699

tational time at each time step is larger than the sampling time 700

of the secondary control signal as shown in Fig. 15. Secondly, 701

solving the QP problem requires more expensive hardware 702

than simply evaluating a static function. 703

Figure 10 shows that the SSR approximated by the proposed 704

method is much larger than the ROA approximated by LQR. 705

This is because our training objective is also designed to 706

maximize the volume of SSR as illustrated in (34a). It also 707

shows that increasing the weighting parameter η2 can sig- 708

nificantly enlarge the volume of the approximated SSR. The 709

conventional MPC cannot directly provide a ROA approxima- 710

tion, so it is not compared in this aspect. It is worth noting 711

that, all the SSR and ROA here are inner approximations of the 712

real ones which are usually difficult to be accurately obtained. 713

F. Anti-Disturbance Performance 714

To test the anti-disturbance performance of the proposed 715

secondary voltage control method, a disturbance term is added 716

to (5) which is equivalent to connecting a controlled cur- 717

rent source in parallel to Load 1 [26]. After the system is 718
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Fig. 13. Approximated SSR from the viewpoint of DER output voltages
subject to both voltage and current constraints. (a) is 3D illustration of the
SSR; (b)-(d) show the 2D projections of (a).

Fig. 14. Comparison of DER output voltage regulation performances of
MPC, LQR and the proposed explicit NN-based method.

regulated to the steady state by secondary control, a large dis-719

turbance with 25 A current is injected to bus 1 at 2.5 s. The720

dynamic responses of MPC, LQR and the proposed explicit721

Fig. 15. Computational time of MPC, LQR and the proposed explicit NN-
based method.

Fig. 16. Comparison of anti-disturbance performances of MPC, LQR and
the proposed explicit NN-based method with different weighting factors.

NN-based method are shown in Fig. 16. We can observe that 722

the output voltage of DER1 is most influenced since it is clos- 723

est to the disturbance. The proposed method has overall better 724

robustness than MPC and LQR methods. 725

VI. CONCLUSION 726

This paper proposed a novel secondary voltage control 727

method that can guarantee the transient stability and safety of 728

microgrids (MGs). The explicit neural network (NN) enables 729

casting the time-consuming stability and safety-constrained 730

optimization problem into the offline training phase by lever- 731

aging local Lipschitzness of activation functions, such that 732

the trained explicit NN-based controller is fast enough to 733
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be implemented online. Moreover, the proposed method can734

also provide a large inner approximation of the stable region,735

within which the trajectories of MG will be bounded by736

safety constraints and converge to the equilibrium asymp-737

totically. Comparison case studies have been carried out to738

validate the effectiveness and show the advantages of the739

method.740

The future work will extend the proposed approach for non-741

linear MG models. To control transient states, a nonlinear742

state observer is required to estimate the MG states. The main743

challenge is aroused by the violation of separation property744

due to the coupling between the MG dynamics and nonlin-745

ear state observer, which leads to difficulties in deriving and746

convexifying transient stability and safety constraints.747

APPENDIX748

A. Proof of Theorem 1749

By using [33, Lemma 1], (24) enforces the ROA 	(R) into750

the safety region B̃, i.e.,751

	(R) ⊆
{

x̃aug |
∣∣∣H̃�i x̃aug

∣∣∣ ≤ x̃ub,i −
∣∣∣H�i ˜̄x∣∣∣, i = 1, . . . , nS

}
752

⊆
{

x̃aug ∈ R
n+m | −x̃ub,i −H�i ˜̄x ≤ H̃�i x̃aug753

≤ x̃ub,i −H�i ˜̄x, i = 1, . . . , nS

}
= B̃, (41)754

such that, if x̃aug(k) ∈ 	(R) ⊆ B̃, then �(k) ∈ [�,�] and755

thus (16) holds.756

Then, multiply [x̃aug(k)�,Z�(k)] and [x̃aug(k)�,Z�(k)]� at757

left and right sides of (23), respectively, it has758

V
(
x̃aug(k + 1)

)− V
(
x̃aug(k)

)+ [
�(k)
Z(k)

]�
MK

[
�(k)
Z(k)

]
< 0.759

For any x̃aug(k) ∈ 	(R), the last term of (42) is non-760

negative, thus V(x̃aug(k+ 1))− V(x̃aug(k)) < 0. By Lyapunov761

theory, any trajectory originating in 	(R) converges to the762

origin asymptotically, i.e., limk→∞ x̃aug(k) = 0. This indicates763

that 	(R) is a ROA and an invariant set [30]. Recall that764

	(R) ⊆ B̃, so 	(R) is an inner approximation of SSR (11).765

Finally, it follows in the steady state that,766

lim
k→∞ x̃(k) = ˜̄x ⇒ lim

k→∞ x(k) = x∗ + ˜̄x, (42)767

lim
k→∞ x̃I(k) = 0 ⇒ lim

k→∞ ỹ(k) = ỹref768

⇒ lim
k→∞ y(k) = yref (43)769

for any initial values satisfying x̃aug(0) ∈ 	(R).770

B. Derivation of Loop Transformation771

From Fig. 4, we can obtain772

Z(k) = �1Z̃(k)+�2�(k), (44)773

Substitute (44) into (13) yields,774

ũaug(k) = Wue ˆ̃xaug(k)+WuZ�1Z̃(k)+WuZ�2�(k), (45)775

�(k) = W�e ˆ̃xaug(k)+W�Z�1Z̃(k)+W�Z�2�(k). (46)776

Solve (46) for �(k), then we have 777

�(k) = (I−W�Z�2)
−1W�e︸ ︷︷ ︸

W̃�e

ˆ̃xaug(k) 778

+ (I−W�Z�2)
−1W�Z�1︸ ︷︷ ︸

W̃�Z

Z̃(k). (47) 779

Substitute (47) into (45), it has 780

ũaug(k) =
[
Wue +WuZ�2

(
I−W�Z�

−1
2

)
W�e

]
︸ ︷︷ ︸

W̃ue

ˆ̃xaug(k) 781

+WuZ

[
I+�2(I−W�e)

−1W�Z

]
�1︸ ︷︷ ︸

W̃uZ

Z̃. (48) 782

From the subscripts of (47)-(48), we can obtain 783

W̃ =
[

W̃ue W̃uZ
W̃�e W̃�Z

]
. (49) 784
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