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Abstract—Energy hubs, which integrate multiple energy vectors through converters, can enhance the 

value of Integrated Local Energy Systems (ILES) via increased flexibility and reduced costs. However, 

uncertain renewable energy and the non-convex, non-linear properties of energy flows complicate the 

modelling and operation of energy hub systems. This paper develops chance-constrained optimization 

methods for planning and operation of energy hub systems under uncertainty. The non-linear 

formulations of power and gas flows are relaxed by convexification methods, leading to a formulation 

of Second Order Cone Problem (SOCP), which can be efficiently solved to global optimality. The 

correlation between geographically close wind generators connected to the hub systems is modelled by 

establishing their relation using Gaussian copula. The proposed chance-constrained optimization is 

demonstrated on a six-hub system within a multi-vector energy distribution network with 7 electrical 

buses and 7 gas nodes. The value of different levels of system integration through the installation of 

energy hubs is investigated. The results show that by combining system integration via energy hubs 

with chance constrained operation, the proposed method can reduce operating costs and increase 

renewable energy yields, thereby benefitting hub system operators and customers with reduced energy 

infrastructure investment and energy costs. 

Keywords— Chance-constrained programming, copula, correlation, distribution network, energy 

hub, Integrated Local Energy Systems, uncertainty. 

1. Introduction 
Integrated Local Energy Systems couple the electricity and gas distribution networks to meet 

electrical and heat demand, thereby unlocking new business models and enhancing the value of existing 

infrastructure. However, their operation faces challenges due to the complex interaction between the 

two networks, high penetrations of distributed energy resources, and uncertainty arising from both 

supply and demand [1]. The concept of energy hubs – nodes at which energy can be converted from 

one form to another and passed between energy vectors – can help address challenges caused by 

uncertain renewable generation and significant changes in customer demand profiles. Energy hubs can 

coordinate various energy vectors to meet demand for gas, heat, and electricity, thereby significantly 

improving the efficiency of, and customer interaction with, energy systems [2, 3]. ILES operators, 

customers, and generator owners can benefit from the flexibility of energy hubs, but the added 

complexity requires optimally scheduling the energy flows across all vectors.  
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Optimization of the energy hub system involves taking optimal decisions for energy flows and 

operation of energy hub components, including converters which enable multi-vector operation, which 

have been investigated in the existing literature: [4] presents optimization for renewable-based 

integrated electricity-gas-thermal networks incorporating demand response. [5] proposes a bi-level 

model to optimal coordinate the operations between the energy hubs and distribution network. [6] 

integrates the concept of smart energy hubs into a distribution network using integrated information gap 

decision theory. [7] proposes capacity planning of energy hubs with a robust, data-driven approach. [8] 

develops a generalized heuristic approach to solve the optimal energy flow problem in the energy hub 

system. [9] and [10] propose a decomposed approach to optimize the behavior of, and flows between, 

interconnected energy hub systems using Particle Swarm Optimization. The above literature all 

investigated the optimization of multiple energy hubs considering the energy flows with different 

objectives. However, most of the solutions rely on linearization of either the non-convex AC power 

flow or gas flow, which reduces the accuracy of the results; others simulate the full power flow and gas 

flow equations, yielding a non-convex problem formulation which fails to ensure a global optimality 

and requires large computational efforts for solution using a heuristic solver. A convex representation 

of a multi-carrier network and the energy hub components would therefore be of significant value to 

ensure fast and accurate solution of the optimization problem. 

Energy hub operations and energy flows between hubs could be significantly affected by uncertainty 

in production and consumption of energy, most notably arising from renewable electricity generation. 

Several options exist to solve the energy hub optimization problem with uncertainty: robust 

optimization has been applied in [11] and [12] for planning and dispatching demand response; chance 

constrained programming and distributionally robust optimization are respectively applied in [13] and 

[14] to optimize the energy hub system; Monte Carlo simulation is applied in [15, 16] to model the 

uncertain inputs for energy management; and scenario-generation methods are applied in [17, 18] to 

simulate the uncertainty in load, price, and renewable generation; information gap decision theory is 

applied in [19] to optimize the system under uncertainty from electric vehicles of energy hub system. 

However, the uncertain outputs from renewable generators at a given hub may be correlated with those 

at other hubs which are geographically nearby [20]; these correlations are generally ignored in the above 

literature, and could lead to unplanned curtailment of renewable energy or violation of network limits. 

This feature challenges optimal system operation, particularly when renewable power generation is 

high. Therefore, the modelling of correlated uncertainties may be of significant importance in ensuring 

optimal energy hub operation. The dependent uncertain variables can be formulated by joint 

distributions, but they lead to intractable optimization problems. Some expansion methods, introduced 

in [21], can estimate the probability density functions of the joint distributions with joint moments and 

cumulants. However, the calculation of joint cumulants becomes very complex as the number of 

uncertain variables increases [21]. Hence, expansion methods are inappropriate to solve the 

optimization problem with multiple correlated uncertain variables. [22] employs the Cholesky 
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decomposition to capture the correlations, but the method can only be applied to reflect the linear 

relationships. 

The stochastic electricity price under electricity market could also affect the operations of energy 

hubs, and hence the energy flows between them. Reference [23] proposes a bidding strategy for wind 

and thermal generators participating in the day-ahead market by stochastic programming, considering 

the uncertainty in energy prices and wind energy; reference [24] employs a cooperative game approach 

to present a coordinated bidding strategy for Power-to-Gas (P2G) facilities and wind generators by 

taking into account the uncertainty of forecast error of wind generation; reference [25] proposes an 

optimal day-ahead scheduling for P2G storage and gas load management in electricity and gas markets. 

This paper focusses on the effect of uncertainty in production and consumption to the energy hub system 

and its relevant distribution systems; it is reasonable to assume that these systems are sufficiently small 

to be price-takers, and therefore the influence of energy markets is not examined. Future research, 

considering systems in which energy hubs make up a substantial proportion of the supply and demand 

base, could address this. 

Based on the existing literature, there is a need to develop an optimization model for energy hubs 

within the ILES which can: 

1. Pursue the global minimum efficiently and with high accuracy; 

2. Address the uncertainty within the system; and 

3. Accounting for correlation structures which exist between sources of uncertainty, such as 

renewable generator outputs.  

This paper achieves the first of these by applying the convexification method proposed in [26] to relax 

the non-convex power flow in a radial network; relaxing the non-convex gas flow (for a radial network) 

[27] and thereby formulating the ILES optimization problem as a convex Second Order Cone 

Programming (SOCP) problem. The second is addressed through Chance-Constrained Programming 

(CCP), which is applied to optimize the energy hub system under uncertainty. Finally, the correlation 

of wind speed forecast errors in a multi-energy hub system is modelled by Gaussian copula, which can 

fit the joint distributions with high dimensionality and incomplete parameter estimation of uncertain 

variables [28].  

Some distribution system constraints can safely be violated so long as this is infrequent and for a 

short duration; most notably, thermal constraints are set probabilistically, and in overhead line networks 

they are likely to have a higher thermal capacity during periods of high wind generation due to wind 

cooling effects [29]. Energy hubs can help to manage these constraints by using converters to mitigate 

the influence of uncertain renewable generation, while allowing an acceptably small probability of 

overload to significantly reduce operating costs. This paper proposes the use of chance constraints to 

restrict the power flow limits and applies CCP to minimize system cost while addressing the wind 

generation uncertainty with an acceptable probability level.  

The main contributions of the paper are therefore:  
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i) A novel method is presented to enable optimal planning of integrated local energy systems 

under uncertainty;  

ii) The gas and electricity networks are transformed to a convex, second order conic model, 

enabling the globally optimal operating regime to be quickly and accurately obtained; 

iii) Operation under uncertainty is enabled by applying chance constraints to the power flow 

limits in the electrical network; 

iv) Systems integration is enabled through energy hubs; the impact of the number of hubs 

installed is quantified; 

v) Correlations between sources of uncertainty are modelled by Gaussian copula, and the 

implication of neglecting these correlations is demonstrated.  

The rest of the paper is organised as follows: the modelling method for energy hub systems with 

convex-relaxed electricity and gas networks are described in Section 2. The correlated outputs from 

renewable generators are presented in Section 3. In Section 4, the optimization problem is formulated 

and the methodology is introduced. Case studies are discussed in Section 5 and conclusions are 

presented in Section 6. 

2. System Modelling 

2.1 Energy Hub Modelling 
A general energy hub model, which includes all the converters applied in this paper, is described in 

in this section and illustrated in Fig 1. The energy hub system utilizes electricity, gas, and wind energy 

to meet electrical and thermal demand. Each hub contains a Combined Heat and Power (CHP) system 

which converts gas to heat and electricity and a Ground Source Heat Pump (GSHP) which converts 

electricity to heat. Wind Turbines (WT), which convert kinetic wind energy into electric power, are also 

included in some energy hubs.  

Fig 1: A single energy hub 

The application of GSHP benefits from high and stable ground temperature, it will also be essential 

to decarbonize the energy system [30]. The outputs of GSHP (PHP_out) is quantified in (1)  

𝑃"#_%&' = 𝐶𝑂𝑃 ∙ 𝑃"#             (1) 

where, COP denotes the Coefficient of Performance of the GSHP and PHP is the electrical power input 

to GSHP and PHP_out is the heat output of the GSHP. 
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 The electrical (PCHP,E) and heat (PCHP,H) outputs of the CHP are formulated as a function of the natural 

gas injection (PCHP) in (2) 

𝑃,"#,. = 𝜂0 ∙ 𝑃,"#           (2a) 

𝑃,"#," = 𝜂'1 ∙ 𝑃,"#            (2b) 

where ηe and ηth are the electric and thermal efficiencies, respectively. 

The wind generation is expressed in terms of the wind speed 𝑣3 by piecewise function in (3) [31], 

where Prated is the wind turbine rated power. vci, vrd, vct respectively represent the cut-in, rated, and cut-

out wind speeds. 

𝑃3 = 4
0,																																												(𝑣3 < 𝑣9:, 𝑣3 > 𝑣9')
𝑃=>'0? ∙ @

ABCADE
AFGCADE

H,																					(𝑣9: ≤ 𝑣3 ≤ 𝑣=?)
𝑃=>'0?,																																									(𝑣=? < 𝑣3 < 𝑣9')

         (3) 

The energy transformation through the energy hub system in Fig. 1 is expressed in (4), where the 

output matrix (L) is equal to the converter coupling matrix (C) multiplied by the input matrix (P). 

J𝐿0L0𝐿'1
M = N

1 − 𝑣0 (1 − 𝑣0) 𝜂0(1 − 𝑣0)
𝑣0𝐶𝑂𝑃 𝑣0𝐶𝑂𝑃 𝑣QR𝜂Q1 + 𝜂0𝑣0𝐶𝑂𝑃T

U × W
𝑃0L0
𝑃3:
𝑃Q>X

Y          (4) 

Equation (4) shows that the electrical demand (Lele) and thermal demand (Lth) at time step t are 

satisfied by utilising electricity (Pele), natural gas (Pgas), and wind energy (Pwi) with the converters. νe is 

the dispatch factor, which represents the fraction of electricity input into the GSHP over the total 

electricity consumption. 

2.2 Convex Relaxation of Electricity Network 
Each energy hub is connected to a distinct bus within the electricity distribution network. The 

complex power equilibrium at bus i is expressed by the power balance equations in (5) and (6). 

𝑃Z0',: = ∑ |𝑉:|
^_
`ab |𝑉 |[𝐺:`𝑐𝑜𝑠(𝜃: − 𝜃`) + 𝐵:`𝑠𝑖𝑛(𝜃: − 𝜃`)]      (5) 

𝑄Z0',: = ∑ |𝑉:|
^_
`ab |𝑉 |[𝐺:`𝑠𝑖𝑛(𝜃: − 𝜃`) − 𝐵:`𝑠𝑖𝑛(𝜃: − 𝜃`)]      (6) 

Where 𝑃Z0',: and 𝑄Z0',: are the net active and reactive power injection at bus i, 𝑉: and 𝜃: indicate the 

power voltage and angel of bus i, 𝐺:` and 𝐵:` represent the real and imaginary parts of the element 𝑌:` 

in the admittance matrix, Ne is the total number of the buses that connect with bus i. These equations 

are non-linear and non-convex. However, according to [26], (5) and (6) can be transferred to the linear 

formulations in (10) and (11) by introducing ancillary variables ui and vi. 

𝑢: = 𝑉:p/√2,            (7) 

𝑅:` = 𝑉:𝑉 𝑐𝑜𝑠(𝜃: − 𝜃`), and         (8) 

𝐼:` = 𝑉:𝑉 𝑠𝑖𝑛(𝜃: − 𝜃`).         (9) 

𝑃Z0',: = √2𝐺::𝑢: + ∑ [𝐺:`𝑅:`
^_
`ab
`v:

+ 𝐵:`𝐼:`]           (10) 

𝑄Z0',: = −√2𝐵::𝑢: − ∑ [𝐵:`𝑅:`
^_
`ab
`v:

− 𝐺:`𝐼:`]           (11) 
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The ancillary variables 𝑅:` and 𝐼:` satisfy (12), which can be relaxed to rotated quadratic cones (13). 

2𝑢:𝑢` = 𝑅:`p + 𝐼:`p            (12) 

2𝑢:𝑢` ≥ 𝑅:`p + 𝐼:`p            (13) 

The original non-convex power flow equations can therefore be transformed to the convex SOCP 

model of (7)-(11), (13).  

2.3 Convex Relaxation of Gas Network 
Each energy hub is also connected to a specific node in the gas distribution network. The nodal gas 

flow balance for the gas node i is expressed in (14) [27]. 

𝑞Q3,: − 𝑞?,: − ∑ 𝑞:`:Z
^y
`ab + ∑ (1 − 𝜒:`)𝑞:`%&'

^y
`ab = 0       (14) 

Where qgw,i is the gas injection at node i, qd,i denotes the gas load demand, 𝑞:`:Z and 𝑞:`%&'  represent the 

gas inflow and outflow between node i and k, Ng is number of nodes connected to node i, and 𝜒:` is a 

coefficient which represents the compressor’s consumption ahead of the gas inflows.  

The average gas flow qik between node i and k can be formulated as in (15)-(16). 

𝑞:` = (𝑞:`:Z + 𝑞:`%&')/2           (15) 

𝑞:`|𝑞:`| = 𝜙:`(𝑝:p − 𝑝`p)         (16) 

Where 𝜙:` is the Weymouth equation coefficient, (16) is the Weymouth equation, pi denotes the gas 

pressure at node i. As seen, (14)-(15) yields a linear formulation, and only (16) is a non-convex equation. 

However, in this paper optimal scheduling the of energy hub operation is computed for one hour, and 

it is reasonable to assume that the gas flow directions do not change within a day [27]. Hence (16) can 

be re-written as (17). 

(𝑞:`)p = 𝜙:`R𝑝:p − 𝑝`pT, 		𝑠. 𝑡. 𝑝: ≥ 𝑝`         (17) 

Similar to the relaxation of power flow, (17) can be relaxed to (18), which is a convex SOCP 

formulation [32].  

(𝑞:`)p ≤ 𝜙:`R𝑝:p − 𝑝`pT, 		𝑠. 𝑡. 𝑝: ≥ 𝑝`         (18) 

3. Modelling of Correlated Uncertain Variables 
Uncertain variables are often not independent of one another, and failure to account for this correlation 

can result in underestimation of the impact of the uncertainty on the system. In this paper, the 

uncertainty studied is wind generator output, but the method described would be valid for any soucre 

of uncertainty. Wind generation is the key technology to decaronize energy system, and facilitate micro-

grid to meet consumers demand [33, 34]. Wind generators in energy hub systems can be geographically 

close to the one another, which yields strong correlations between wind speed at each site considering 

the forecast error – this correlation has a significant impact on the operation of the system and is 

therefore explicitly modelled in this paper. By adding up the forecasted wind speed and the data of 

forecast error, wind speed data from two geographically close sites are plotted in Fig. 2, which shows 
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that the wind speeds at the two sites are highly correlated. Additionally, their probability distributions 

could be different. As suggested in previous literature [20], wind speeds can follow Gaussian, Weibull, 

Beta, or lognormal distributions, which complicates the formulation of joint distributions, particularly 

if the wind speeds at each site follows a different distribution. Nevertheless, copula are capable of 

tackling this problem to fit joint distributions with high dimensions and non-linear correlations among 

uncertain variables [28]. Therefore, Gaussian copula are applied in this paper to simulate the correlation 

of wind speeds at different wind generator locations and generate correlated copula samples for solving 

the CCP. Sobol sequence based Quasi-Monte Carlo Simulation (QMCS) is applied to improve the 

computational efficiency in generating correlated copula samples in this paper [28].  

3.1 Definition and Application of Copula 

 By applying the probability integral transform to multiple random variables(𝑋b,𝑋p, … , 𝑋Z), the 

uniform marginal distributions can be derived as (𝑈b, 𝑈p, … , 𝑈Z) = (𝐹b(𝑋b), 𝐹p(𝑋p), … , 𝐹Z(𝑋Z)) . 

Copula C is defined as the joint cumulative distribution function of (𝑈b, 𝑈p, … , 𝑈Z) in (19).  

𝐶(𝑢b, 𝑢p, … , 𝑢Z) = [Pr	(𝑈b ≤ 𝑢b, 𝑈p ≤ 𝑢p,… , 𝑈Z ≤ 𝑢Z)]       (19) 

According to Sklar’s theorem, the cumulative distribution function of random variables 

(𝑋b, 𝑋p, … , 𝑋Z)  can be formulated in terms of the copula function with the marginals of random 

variables	𝐹:(𝑋:) = Pr	[𝑋: ≤ 𝑥:]. The expression is in (20). 

Pr[𝑋b ≤ 𝑥b,… , 𝑋Z ≤ 𝑥Z] = 𝐶(𝐹b(𝑋b),… , 𝐹Z(𝑋Z))       (20) 

Gaussian copula is applied in this paper to model the correlations between uncertain wind speeds 

with Sklar’s theorem as the basis. The procedure of generating copula samples for uncertain variables 

with arbitrary distributions is introduced as follows: 

Step 1) Determine the marginal distributions of the uncertain variables and estimate the distribution 

parameters based on historical data.  

Step 2) Employ kernel density estimation method to estimate the cumulative distribution function 

(CDF) of the uncertain variables, and the correlation coefficient between them. Then compute the 

 
Fig. 2.  Wind speeds observed at site 1 and 2  
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copula structure to capture the joint distribution of the uncertain variables, which is achieved by Sobol 

sequence-based QMCS to generate correlated samples on the unit scale.  

Step 3) Transfer the correlated samples from unit scale to the original scale of the data, which is 

achieved by applying the corresponding inverse cumulative distribution function on the unit-scale 

correlated samples based on the distribution parameters estimated in step 1.  

In terms of generating copula samples for wind speeds in this paper, 100 correlated samples of wind 

speed forecast errors in unit scale are generated as examples shown in Fig. 3 (a), which are derived by 

implementing steps 1) and 2) based on historical data of wind speeds. Fig. 3 (b) can then be accordingly 

obtained by using the inverse transform method on the samples in Fig. 3 (a) added to the forecasted 

wind speed. 

After implementing the procedures described above, the samples of correlated wind speeds can be 

derived, the samples of wind power generators are then obtained as in Fig. 3 (c) by inputting the samples 

of wind speeds to (3).  

4. Problem Formulation and Methodology 
4.1 Chance Constraints on Power Flow Restrictions 

In this paper, chance constraints are applied to the power flow limits to allow a small but acceptable 

probability of the current exceeding the conductor rating. This reduces the need to schedule the 

operation of the system to cater for the most extreme uncertainty values, delivering lower operating 

costs with a predetermined and acceptable increase in risk. Resolving the resulting CCP problem yields 

a minimum system cost while addressing the wind generation uncertainty with an acceptable probability.  

The power flow between bus i and k can be formulated as in (21) based on the ancillary variables 𝑢:, 

𝑅:`, and 𝐼:` in convex-relaxing the power flow equations. 

𝑃:` = −√2𝐺:`𝑢: + 𝐺:`𝑅:` + 𝐵:`𝐼:`        (21) 

Chance constraint is applied to restrict the power flow between bus i and k as: 

PrR𝑃:` ≤ 𝑃:`,���T ≥ 1 − 𝛼          (22) 

Where Pr is the minimum acceptable probability the chance constraints will not be violated; α is the 

probability the power flow is less than the maximum power flow 𝑃:`,���, which indicates that the power 

flow is allowed to exceed its line capacity with known probability α. Nevertheless, allowing a higher 

    
  (a)         (b)            (c) 

Fig. 3.  Computation of correlated wind generation 
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probability of power flow constraint violation increases the power flow and therefore power losses, 

which increases the system cost.  

4.2 CCP Optimization Formulation 

This section presents a generic CCP problem formulation for multiple energy hubs connected by 

electricity and gas distribution networks within the ILES. Wind generators are also connected to the 

electricity distribution network and are assumed to be geographically close to one another. Each energy 

hub contains some combination of converters, such as GSHPs and CHPs. The electrical and thermal 

demand of each hub is satisfied by the cooperation of all elements in the ILES. 

The objective is to minimize the expected cost of the ILES E(CILES), calculated by integrating the costs 

of scenarios, each scenario represents the possible real-time wind generation with a specified 

probability. The formulation of the expected cost is shown in (23). 

𝐸(𝐶����) = ∑ PrX ∙ �R𝑃���,:,X + 𝑃����,XT ∙ Π0L0 + ∑ 𝑞��,:,X ∙ ΠQ>X
^y
:ab �^�

Xab      (23) 

Where CILES is the total cost of the ILES, E(•) indicates the expected value, s denotes the index of 

scenarios, Ns is the total number of scenarios to represent the wind generation, Prs means the probability 

of scenario s, Π0L0 and ΠQ>X represent the electricity and gas prices with the units of £ (pounds)/MWh, 

𝑞Q3,:,X is the gas injection to the network for scenario s, 𝑃����,X represents the network loss of scenario 

s and Nb is the number of buses. The network loss is expressed in (24) in terms of the ancillary variables 

ui, Iik, Rik. 

𝑃���� = ∑ ∑ �𝐺:` ∙ R√2𝑢: + √2𝑢` − 2𝑅:`T�
^�
`ab

^�
:ab        (24) 

The decision variables of the CCP problem include: average gas flow, gas inflow and outflow of each 

branch, gas pressure at each node, ancillary variables ui, Iik, Rik, power and gas injected to each energy 

hub, gas input to each CHP, power input to each GSHP, electricity injection into the distribution 

network, gas output from each gas source, wind generation curtailment Pwc. The above decision 

variables for each scenario s are included in the vector xs as in (25). 

𝑥X = �𝑞:`,X, 𝑞:`,X:Z , 𝑞:`,X%&', 𝑝:,X, 𝑢:,X, 𝑅:`,X, 𝐼:`,X, 𝑃0L0,:,X, 𝑃Q>X,:,X, 𝑃,"#,:,X, 𝑃"#,:,X, 𝑞Q3,:,X, 𝑃39,X�∀𝑖, ∀𝑘, ∀𝑠	 (25) 

In (25), the subscripts i and k denote the indices of energy hubs/converters/BES/nodes/buses. The 

subscript s indicates the related decision variable of scenario s. The definitions of other variables are in 

the previous section. 

In summary, the energy hub CCP problem is formulated as follows: 

Objective: 

Minimize	 (23)   

Subject to: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
Electricity	network: (7) − (11), (13), (21), (24)				∀𝑖, ∀𝑘, ∀𝑠	
É,µE¶
·

√p
≤ 𝑢:,X(𝑡) ≤ É,µ¸¹

·

√p
																																		∀𝑖, ∀𝑠												(26𝑏)

0 ≤ 𝑃¼,X ≤ 𝑃¼,½>¾																																															∀𝑖, ∀𝑠									(26𝑐)
Gas	network: (14) − (15), (18)																						∀𝑖, ∀𝑘, ∀𝑠													
𝑝:,½:Z ≤ 𝑝:,X ≤ 𝑝:,½>¾																																							∀𝑖, ∀𝑠										(26𝑑)
𝑝:,X ≤ 𝛾9 × 𝑝`,X					for	active	pipeline												∀𝑖, ∀𝑘, ∀𝑠			(26𝑒)
0 ≤ 𝑞:`,X ≤ 𝑞:`,9½>¾						for	active	pipeline					∀𝑖, ∀𝑘, ∀𝑠				(26𝑓)
Energy	hubs: (1) − (4)																																				∀𝑖, ∀𝑠																						
0 ≤ 𝑃,"#,:,X ≤ 𝑃,"#,:,½>¾																																	∀𝑖, ∀𝑠											(26𝑔)
0 ≤ 𝑃¼Ð"#,:,X ≤ 𝑃¼Ð"#,:,½>¾																													∀𝑖, ∀𝑠											(26ℎ)
Chance	constraints: (22)																																	∀𝑖, ∀𝑘, ∀𝑠																

  

The constraints of the optimisation problem are explained as follows: The electricity network is 

constrained by the SOCP formulation of the convex relaxed AC power flow; (26b) sets the lower and 

upper boundary of the voltage magnitude at each bus in terms of the ancillary variable ui, (26c) restricts 

the maximum power can be injected into the distribution network. The gas network is constrained by 

the convex relaxed gas flow equations; in addition, (26d) specifies the maximum and minimum pressure 

of each gas nodes, (26e) and (26f) restrict the compression ratio and gas flow of the active pipeline, 

where the compressor is included, 𝛾9  is the compressor’s compression factor. The energy hubs are 

restricted by the energy transformation equation (4); (26g) and (26h) indicate the maximum outputs for 

CHP and GSHP.  

Resolving the CCP problem means to the find the optimal decision variables (25) to minimize (23) 

for all scenarios, while the uncertain wind generator outputs are randomly distributed according to their 

joint distribution. 

4.3 Transforming Chance Constraints into Deterministic Constraints 

The optimization problem is a stochastic problem with chance constraints (22). In this paper, the 

chance constraints are transformed into deterministic constraints based on the generated copula 

samples. The transformation is carried out using the following procedure: 

First, the power flow 𝑃:`  between bus i and k can be re-arranged and written in terms of the 

polynomial function of decision variables D(x) and uncertain wind generation 𝜉3  as shown in (27), 

where b is the coefficient related to the uncertain variable 𝜉3  in expressing the power flow 𝑃:`. For 

example, within this context, the power flow between bus 5 and 4 in Fig. 6 can be expressed as in (28), 

in this example b is derived as 1. 

𝑃:` = 𝐷(𝑥) + 𝛽 ∙ 𝜉3           (27) 

𝑃Ö× = 𝜉3 − 𝑃�Ø + 𝑃ÙÚÛ,Ö ∙ 𝜂0 − 𝐿���,Ö − 𝑃ÚÛ,Ö       (28) 

The chance constraints (22) can be re-arranged as in (29) based on (27). 

Ü
𝑃𝑟Þ𝜉3 ≤ �𝑃:`,½>¾ − 𝐷(𝑥)�/𝛽ß ≥ 1 − 𝛼								if	𝛽 > 0																																																																													(29a)	
𝑃𝑟Þ𝜉3 ≥ �𝑃:`,½>¾ − 𝐷(𝑥)�/𝛽ß ≥ 1 − 𝛼								if	𝛽 < 0																																																																													(29b)
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(29) can be further transformed to (30) since uncertain variable’s quantile follows a monotonic 

relation with its inverse CDF [35]. 

Ü
𝑞áB(1 − 𝛼) ≥ �𝑃:`,½>¾ − 𝐷(𝑥)�/𝛽							if	𝛽 > 0																																																																													(30a)
𝑞áB(𝛼) ≤ �𝑃:`,½>¾ − 𝐷(𝑥)�/𝛽															if	𝛽 < 0																																																																													(30b)

 

𝑞áB(')  in (30) denotes the quantile of uncertain outputs of the wind generators, which can be 

expressed as the inverse function of the wind generation’s CDF with a certain probability level. The 

quantile function can be converted into a deterministic form if the distributions of uncertain variables 

are known.  

As demonstrated in section 3, samples of the outputs of the wind generators are obtained by copula, 

hence their CDF can also be obtained. The quantiles in (30) can be derived from the CDF with the 

probability levels of α. For example, the CDF curve of the aggregated outputs of two wind generators, 

each with 10 MW rated power, can be derived as shown in Fig. 4, the quantiles of 𝑞áB(1 − 𝛼) and 

𝑞áB(𝛼) can be accordingly obtained as 12.72 MW and 7 MW respectively if α is 10%. (30) is thus 

converted to a linear constraint, transforming the stochastic problem to a deterministic problem.  

4.4 Overall Flowchart of the Methodology 

The complete optimization procedure is illustrated in Fig. 5. To formulate the optimization problem, 

the CDF of the wind generators’ forecasting errors must first be obtained using Gaussian copula to 

calculate the quantile for the chance constraints. Additionally, both the power and gas networks are 

convex relaxed, load and energy price data are input to establish the optimization problem. The original 

non-convex stochastic problem is transformed to a convex deterministic problem according to Fig. 5; 

commercially available solvers can be applied to solve the problem with global optimality.  

 
Fig. 4.  CDF curve of wind generation 
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Fig. 5. Overall flowchart 

5. Case Studies 
5.1 Overview of the ILES 

The proposed optimization scheme has been demonstrated using an ILES of a multi-vector 

distribution network with 7 electrical buses and 7 gas nodes, based on the model in [27]. Schematic 

diagrams of the electricity and gas distribution networks are depicted in Fig. 6. in blue and green, 

respectively. The electrical network comprises two radial feeders, with three geographically close wind 

generation sites at buses 4 and 5. The wind speed forecast error of the wind generations sites at buses 4 

and 5 are assumed to respectively follow Normal and Beta distributions. Buses 2-7 in the electrical 

network correspond to nodes 2-7 in the gas network. Each coupling point between the electrical and gas 

systems is considered as an energy hub. Each energy hub is equipped with a CHP and GSHP. Two gas 

sources – which could represent conventional gas wells or green gas sources such as anaerobic digestors 

– support the gas network at nodes N5 and N7. The pipelines linking N1 to N6 and N1 to N3 are active 
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correlated samples of wind speeds by QMCS 
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relaxation of 
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Integrate the results from 
all scenarios 
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Another s? 
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pipelines with compressors.  

Fig. 6. Electricity and gas distribution networks. 

The optimization was implemented on the ILES using a time step of one hour. The transformation 

between the gas load (m3) and energy (MWh) was achieved by using calorific value, which is taken as 

40 MJ/m3 in this paper. Additional input parameters, taken from [13, 27, 28], are shown in Table 1. The 

scenarios representing the uncertain wind generator outputs were generated by Sobol sequence based 

QMCS which was been applied to generate the copula samples in section 3.1. 100 scenarios were 

generated, which are able to represent the uncertainty with high accuracy [28]; each scenario has a 

probability of occurrence of 1%. The CCP problem was solved using Gurobi [36].  

5.2 Optimization Results from CCP 

5.2.1 Impact of Chance Constraint Probability Levels 

Feeder 

1 2 3 4 5 

7 6 

EH2 EH4 EH5 EH3 

N1 

N2 
N3 N4 N5 

GW2 

GW1 
N6 N7 

EH6 EH7 Electricity 
Gas 

TABLE 1 
ENERGY HUB SYSTEM PARAMETERS AND CONSTRAINTS 

System parameters 
CHP ηe=0.33, ηgh=0.57 
Wind turbine vci=2m/s,  vco=18m/s,  vrs=12m/s,  Prated=6 MW 
Distribution networks 
Electricity network 0.93	p. u.≤ 𝑉: ≤ 1.07	p. u., Pik,max =12 MW 
Electricity price £37.8/MWh 
Gas network 𝜒:` = 0.05, 𝛾9 = 2, 𝜙:` = 4.965 × 10C×[MSmã/(h ∙ bar)]p 
Gas price £30/MWh 
Gas node pressure from 1 to 
7 (bar) 

[20,150],[20,170],[50,195],[0,100],[50,200],[60,240],[50,140] 

Demand (from hub 2 to 7)  
Electricity (MWh) 0.84, 0.76, 0.47, 0.42, 0.94, 0.78 
Heat (MWh) 3.17, 2.35, 0.67, 0.51, 1.55, 2.35 
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The optimization was carried out with the chance constraints restricted to different probability levels 

to investigate how the CCP affects the optimization and energy hub system operations, and examine 

the sensitivity of the optimization to the chance constraints’ probability. 11 probability levels between 

0.1% and 10% were adopted to restrict the probabilities of constraint violation (PoCV) (α in (22)), 

indicating that the probability of the power flow remaining below the line capacity varies from 99.9% 

to 90%. When the PoCV is 10%, the computation time of implementing the CCP with 100 scenarios is 

125 s on average, which is derived based on a MacBook with i5 processer and 8 GB memory. 

The change in ILES operations against different POCV are shown in Fig. 7, Fig. 7(a) shows the 

expected total network cost, Fig. 7(b) depicts the expected electricity and gas inputs to the network, and 

the total wind generation curtailment, respectively in blue, green, and red, Fig. 7(c) shows the network 

power loss. The expected values are calculated as in (31) by multiplying the optimization output for 

each scenario by its probability of occurrence and summing the results, the definitions of the variables 

in (31) can be found in section 4.2.  

𝐸(𝑥X) = ∑ PrX ∙ 𝑥X
^�
Xab          (31) 

Fig. 7 indicates that the operations of the multi-carrier network are slightly affected when the PoCV 

is higher than 5%. When the PoCV reduces from 5% to 0.1%, reducing the acceptability of exceeding 

the power flow constraints, significant changes in system operations can be observed from Fig. 7. When 

the PoCV reaches 0.1%, the capacity of transmitting the available wind generation at bus 4 and 5 to 

other load buses is reduced, as a result, the expected total curtailment of the wind generators at bus 5 

and 4 increase from 0.61 MWh to 2.17 MWh as seen in Fig. 7(b); the expected gas injection to the 

network increases from 0.39 MWh to 1.42 MWh to fill up the demand by CHP since the outputs from 

the wind generators are reduced; similarly, the expected power injection to the network increases from 

0.05 MWh to 0.38 MWh. Conclusively, the reduction of PoCV leads to the increase of wind generation 

curtailment, gas and electricity inputs, hence significantly increases the system cost from £9.73 to 

£42.82 as seen in Fig. 7(a) when the PoCV decrease from 5% to 0.1%. Additionally, due to the high 

efficiency of the CHP, and lower gas price compared with the electricity price, the ILES inputs more 

gas than electricity to meet the demand when the PoCV is reduced, to minimize the system cost.  

 
Fig. 7. Expected optimal results with different PoCV 
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Although the cost and energy inputs increase, the system power loss decreases from 1.68 MW to 0.99 

MW with the reduction of PoCV as seen in Fig. 7(c), because a high probability of power flow 

exceeding the line capacity leads to higher utilisation of assets and therefore higher losses. It is notable 

that the cost is lower when the PoCV is higher, in spite, rather than because, of the higher losses.  

The variation in expected power flows between buses, gas input to each CHP, and power input to 

each GSHP against the changing of PoCV are depicted in Fig. 8. All expected power flows decline with 

the decrease of PoCV, which is in accordance with the definition of using chance constraints to restrict 

power flows. The larger variations in power flow indicate the larger influence of the chance constraints, 

as seen in Fig. 8 (a). The sequence of most affected to the least affected power flows is: P43, P32, P54, 

P21, P16, P67. The changes on P43 and P32 are 1.74 MW and 1.62 MW with the PoCV reduces from 10% 

to 0.1%, they are most affected because their line capacity limit of 12 MW are most likely to be reached 

when the wind generators at buses 5 and 4 (each with 10 MW of rated power) transmit the generated 

power to other buses. P54 yields a change of 1.26 MW with the changing of PoCV, though the output 

of the wind generator at bus 5 is always less than the line capacity limt between buses 5 and 4 regardless 

the value of PoCV, however, more wind generation curtailment is requried for the wind generator at 

bus 5 because less power flow is permitted between buses 4 and 3 when the PoCV reduces, hence P54 

also decrease when the PoCV decreases. P16, and P67 are less affected because the majority of uncertain 

wind generation is consumed by the energy hubs at bus/node 2-5, the remaining uncertainty is less 

likely to cause these power flows to reach the line limit.  

Fig. 8 (b) and (c) show the expected gas and power inputs to each CHP and GSHP respectively. 

Overall, when the PoCV reaches 0.1%, less uncertain wind generation can be transmitted from buses 5 

and 4 to other buses, the power inputs to the GSHP at the other hubs decrease due to the reduced 

availability of wind energy to support them. Correspondly, in order to collaboratively meet the demand 

with the GSHP, the gas inputs to the CHP increase as indicated in Fig. 8(b). The expected gas input to 

hub 7 is most affected, increasing from 0.34 MWh to 1.29 MWh when the PoCV is reduced to 0.1%. 

This is because more generated wind power is curtailed with the decrease of PoCV, the farthest hub is 

most affected since less wind power could be transmitted there to support the load, and consequently 

 
Fig. 8 Expected power flows, CHP and GSHP inputs against PoCV 

 



16 
 

more gas is imported.  

The above analysis demonstrates the high dependency between the electricity and gas networks: 

thanks to the energy hubs, more gas can be input to the CHP to support the electricity and thermal 

demands when the power flow restrictions are stricter. 

5.2.2 Effect of Energy hubs 

Energy hubs increases the system flexibility because the energy demands no longer rely on a single 

energy vector. When the electrical power flow is restricted or electricity prices are high, the electrical 

loads can be met through the use of CHPs and increased flows in the gas network. However, the capital 

cost of the energy hubs including the CHP and GSHP is generally expensive, and the operation of some 

energy hubs provide less value to the system. This section investigates how the existence of energy 

hubs affects the operational costs and carbon emissions of the ILES. 7 comparative cases are considered 

by employing different number of energy hubs in the ILES in Fig. 6. Where there is no coupling between 

the and gas and electricity networks, the electrical load is met through electricity import and/or wind 

generation and the thermal load is met by gas furnaces with an efficiency of 95%. The carbon emissions 

of using per unit grid electricity and gas are taken as 0.10 kg/MWh and 0.18 kg/MWh based on the 

average emission data in Scotland [37], the utilization of wind generation present zero carbon emission. 

The 7 cases consider the number of energy hubs from 0 to 6, the sequence of deploying a new energy 

hub in each case is from the coupling point that is the nearest to the wind generation sites, namely hub 

4, 5, 3, 2, 6, and 7. The optimal expected system total costs and expected carbon emission are shown in 

Fig. 9 (a) and (b) respectively.  

Fig. 9(a) suggests that the system cost decreases when the number of energy hubs rises in the multi-

carrier network. A relatively large cost decrease can be observed when the number of energy hubs 

increases from 3 to 4, corresponding to the installation of the energy hub at bus 2. The electricity and 

thermal demands at bus 2 are higher than the other buses, so adding the energy hub at this bus leads to 

a higher cost reduction. Similarly, Fig. 9(b) indicates that the carbon emission of the multi-carrier 

network decreases with the installation of energy hubs. This is because a higher proportion of thermal 

demand can be met by using the carbon-free wind generation through GSHP when there are more 

energy hubs deployed in the network. Both the wind generation curtailment and the import of electricity 

 
Fig. 9. Expected optimal cost with different number of energy hubs 
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and gas are reduced, leading to the reduction of carbon emission. The greatest reduction in carbon 

emissions is observed with the installation of the energy hub at bus 2 due to its high thermal energy 

demand. 

5.3 Effect of Correlation 

The value of using copula to model the correlations between wind speeds is analysed in this section 

by considering a comparative case is in which the wind speeds are assumed to be independent. Similar 

to Fig. 3 (b), the distribution of independent wind speeds can be derived as shown in Fig. 10 by fitting 

the same data. The wind speeds observed at the two sites are independent, and randomly distributed 

according to their own distributions.  

The impact of ignoring the correlation was investigated using the following process: 

1. Carry out optimal scheduling for cases with independent wind speeds and PoCV varying from 

0.1% to 10% 

2. Carry out a Monte Carlo simulation to evaluate the performance of the optimal schedule 

which neglected the correlation but with the correlation present (i.e. the correlation exists but 

the scheduler does not consider it) 

3. Carry out the same Monte Carlo simulation to evaluate the performance of the optimal 

scheduler when the correlation is included  

4. Compare the specified PoCV to the frequency with which the constraints were violated during 

the Monte Carlo simulation; the results of this are shown in Fig. 11. 

  
Fig. 10.  Samples of independent wind speeds 
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As shown in Fig. 11, by modelling the wind speeds correlations with Gaussian copula, the optimal 

operations satisfy the chance constraints on power flow limitation for majority of cases. However, if 

the wind speeds are considered to be independent, the optimal operations could further violate the pre-

defined PoCV of the optimization for 1.5% to 8%, posing a risk for the system.  
5.4 Exactness of Flow Relaxation 

The exactness of power and gas flow relaxations is examined in this section. According to [38], the 

Second-Order Conic Relaxation (SOCR) is exact if every solution of SOCR also solves the optimal 

power flow problem. Consequently, the results derived from SOCR should meet the original unrelaxed 

constraints to ensure its exactness. In this paper, the optimal solution from the relaxed forms of 2𝑢:𝑢` ≥

𝑅:`p + 𝐼:`p  (13) and (𝑞:`)p ≤ 𝜙:`R𝑝:p − 𝑝`pT, 		𝑠. 𝑡. 𝑝: ≥ 𝑝`  (18) should satisfy constraints 2𝑢:𝑢` =

𝑅:`p + 𝐼:`p  (12) and (𝑞:`)p = 𝜙:`R𝑝:p − 𝑝`pT, 		𝑠. 𝑡. 𝑝: ≥ 𝑝` (17). The exactness of relaxations is inspected 

by examining the 1100 optimal results (100 scenarios for each POCV and 11 POCVs in total) in the 

paper. 

For power flow relaxation, the values of 2𝑢:𝑢` − (𝑅:`p + 𝐼:`p ) obtained from SOCR were between 10-

10 p.u. and 10-3 p.u., indicating an acceptable relaxation exactness. 

However, regarding gas flow relaxation, the values of 𝜙:`R𝑝:p − 𝑝`pT − (𝑞:`)p obtained from SOCR 

are all around 1 MSm3/h2, indicating inexact relaxation. For a given set of optimal gas inflow and 

outflow values there is a wide range of feasible gas flow solutions. By adding the sum of all pressures 

multiplied by a small fraction (e.g. 10-3) and including it in the objective function, the values of 

𝜙:`R𝑝:p − 𝑝`pT − (𝑞:`)p from SOCR can be reduced to between 10-10 MSm3/h2 and 100 MSm3/h2, in 

which approximately 50% of the values are between 10-10 MSm3/h2 and 10-3 MSm3/h2, and the rest are 

between 10-1 MSm3/h2 and 100 MSm3/h2; the relaxation may still be inexact in some cases. Nevertheless, 

the accuracy of computing gas inflow, outflow, gas sources outputs, and inputs to CHPs are unaffected, 

because they follow linear relationships, which are met by the optimization of SOCR; only the accuracy 

of calculating gas node pressures, namely pi and pk, is affected, because they follow non-linear relation 

with gas inflow and outflow, and the relaxation is not exact.   

To ensure the feasibility of the optimal solution, we propose to take the gas inflows and outflows 

 
Fig. 11. Comparisons between optimal results 
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derived from SOCR as inputs, the gas node pressures from SOCR as the initial searching point, the 

same pressure limitation as constraints, and employ non-linear solver to optimize gas node pressures in 

order to satisfy (17). This ensures the accuracy of solution and adds only 0.32s of extra computation 

time for optimizing a scenario. This procedure does not change the overall optimal solution but updates 

the nodal pressures to follow (17). An example result is shown in Fig. 12. The SOCR results are all at 

or close to the lower bound, due to the pressure minimization term included in the objective function; 

the true, non-linear gas flows results indicate higher pressures at some nodes, which result in all 

solutions being within the acceptable pressure range. Feasible solutions for the gas flow with gas 

pressures that satisfy (17) could always be reached by employing the non-linear solver to all 1100 

optimal results from SOCR. 

6. Conclusion 

This paper proposes a chance-constrained optimization scheme for Integrated Local Energy Systems 

which: 1) convex-relaxes both the electricity and gas network models, enabling efficient optimization 

which reaches global optimality with commercially available solvers; 2) Accounts for uncertainty and 

enables a compromise between risk and cost by allowing line ratings to be exceeded with a specified 

probability, and 3) captures the correlations between geographically close wind generation sites via 

copula. The main findings are as follows: 

• The operating cost of the ILES is significantly reduced by allowing even a low probability of chance 

constraint violation. However, this delivers diminishing returns as the probability increases, with 

little improvement between a 5% and 10% PoCV.  

• The number and location of energy hubs in the system has a significant impact on the system 

operating cost and carbon emission. Specific energy hubs – particularly those connected to larger 

demands – led to a much greater reduction in operating cost and carbon emission than other hubs, 

some of which had almost no effect. 

 
Fig. 12: An example of the updating of the gas flow results. 
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• Copula effectively and efficiently represents the correlations between wind speeds. Ignoring the 

correlations yields an underestimation of uncertainty, which may put the safe operation of the 

system at risk. 

By explicitly modelling the uncertainty from renewable generation, the proposed optimization 

benefits the system operator with optimal determination on system operations to reach the minimal cost 

depending on the acceptable tolerance for chance constraints. It is particularly beneficial for the optimal 

operation of large-scale, multi-carrier systems due to the convex SOCP formulations. Furthermore, the 

proposed optimization could be extended to solve optimal planning problems from an investor’s 

perspective. The rated power of the wind generations can be re-evaluated to maximize the profits while 

avoiding curtailment considering wind speed uncertainty, position and capacity of energy hubs. To 

further improve the system flexibility in coping with uncertain renewable generation, future work could 

model power-to-gas technology to establish the conversion between abundant renewable generation and 

gas network, thereby avoiding the curtailment of renewable generation.  
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