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Abstract—This paper investigates the use of phasor measure-
Q2

6
ment unit (PMU) data with deep learning techniques to construct7
real-time event identification models for transmission networks.8
Increasing penetration of distributed energy resources represents a9
great opportunity to achieve decarbonization, as well as challenges10
in systematic situational awareness. When high-resolution PMU11
data and sufficient manually recorded event labels are available, the12
power event identification problem is defined as a statistical classi-13
fication problem that can be solved by numerous cutting-edge clas-14
sifiers. However, in real grids, collecting tremendous high-quality15
event labels is quite expensive. Utilities frequently have a large16
number of event records without in-depth details (i.e., unlabeled17
events). To bridge this gap, we propose a novel semi-supervised18
learning-based method to improve the performance of event classi-19
fiers trained with a limited number of labeled events by exploiting20
the information from massive unlabeled events. In other words,21
compared to existing data-driven methods, our method requires22
only a small portion of labeled data to achieve a similar level23
of accuracy. Meanwhile, this work discusses and addresses the24
performance degradation caused by class distribution mismatch25
between the training set and the real applications. Specifically, this26
method utilizes pseudo-labeling technique to investigate the value27
of unlabeled events and incrementally expands the training dataset.28
Moreover, a safe learning mechanism is developed to mitigate the29
impacts of class distribution mismatch and prevent performance30
degradation. Based on the proposed safe learning mechanism, our31
model does not directly use all unlabeled events during model train-32
ing, but selectively uses them through a comprehensive evaluation33
procedure. Numerical studies on a sizable PMU dataset have been34
used to validate the performance of the proposed method.35

Index Terms—Event identification, phasor measurement unit,36
safe learning, semi-supervised model, unlabeled event.37

NOMENCLATURE38

CNN Convolutional neural network.39

FP False positive.40
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FN False negative. 41

MCC Matthews correlation coefficient. 42

PMU Phasor measurement unit. 43

TP True positive. 44

TN True negative. 45

d Length of analysis window. 46

Dl New labeled data in each iteration. 47

f(·) Rectified linear function. 48

h(·) Encoder network. 49

Km
l Kernel filter of the m-th feature map of the l-th 50

layer. 51

k Number of unlabeled events. 52

L(·) Softmax cross-entropy loss. 53

m Number of labeled events. 54

n Size of events. 55

Nl Labeled event set. 56

Nu Unlabeled event set. 57

N t Number of events marked in the t iteration. 58

Pl Size of feature maps in the l-th layer. 59

Sf Shared feature extractor. 60

S1, S2, S3 Three event classifiers. 61

u Classification noise rate. 62

U t Upper bound of the classification error rate. 63

W Number of repeated estimations in each iteration. 64

w(·) Weight function. 65

xi PMU measurement for event i 66

yi Label for event i 67

zi Samples from the standard normal distribution. 68

ω Frequency with which a classifier differs from other 69

classifiers. 70

γ Parameter of weight function. 71

Ω(·) Regularization term. 72

εG Gaussian noise. 73

θ Parameter of classifier. 74

ηθ Learning rate for θ 75

ηγ Learning rate for γ 76

τ Search space in convolution layer. 77

ε Hypothesis worst-case classification error rate. 78

I. INTRODUCTION 79

W ITH the modernization of power systems, system oper- 80

ators are expected to meet the growing demands of their 81
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customers while maintaining the reliability of the power supply.82

Recently, the increasing penetration of phasor measurement83

units (PMUs) 1 provides a unique opportunity to improve situa-84

tional awareness of the system [1]. Typically, PMUs are installed85

into selected substations and interfaced to the grid via instrument86

transformers to measure frequency, rate of frequency change,87

voltage, and current phasors based on the united Coordinated88

Universal Time reference. PMUs are more accurate and faster89

(i.e., 30-60 samples per cycle) than supervisory control and data90

acquisition systems with low sampling rates (i.e., 2-4 samples91

per cycle) [2]. Inspired by these benefits of PMUs, researchers92

have dedicated great efforts on data-driven methods for real-time93

system monitoring and protection using PMU data [3]. Com-94

pared to conventional model-based event identification methods,95

data-based approach has the unique advantage of operating96

independently of the system.97

Depending on whether the model requires a large number98

of recorded event labels, two categories of existing data-driven99

event classification methods are summarized. Studies in the100

first category follow a supervised learning fashion to associate101

PMU measurements with recorded event labels [4], [5], [6], [7],102

[8], [9], [10], [11], [12], [13], [14]. In [4], a discrete wavelet103

transform-based deep neural network model was proposed to re-104

duce false disturbance detection and validate true events. In [5],105

a three-stage framework was proposed for training robust event106

classifiers to address the data quality issues of PMU measure-107

ments. In [6], two well-established supervised learning methods108

(i.e., k-nearest neighbor and support vector machine (SVM))109

were trained and tested on the basis of thousands of simulated110

events created by GE’s PSLF software. In [7], a three-layer deep111

neural network-based method was designed to identify power112

system events using data from 187 PMUs and 1,000 real-world113

events. In [8], an empirical wavelet transform-based random114

forest method was proposed to assess power system events.115

The model was trained and tested based on PSS/E simulation.116

In [9], a one-versus-many extreme learning machine model117

was developed to perform event diagnosis by combining 3,495118

simulated events and 81 real-world events collected from four119

PMUs located in Western Electricity Coordination Council. [10]120

introduced a dictionary of row subspaces of different event121

types and identified an event by comparing the subspace of122

the obtained PMU data with the dictionary. In [11], an event123

characterization algorithm was proposed to calculate spectral124

kurtosis and used it as the input to SVM for event identification.125

In [12], a threshold-based OR rule was presented to identify126

events using rank signatures of PMU measurements. In [13], a127

deep learning-based event classification model was designed to128

introduce robustness against bad data issues in online applica-129

tions. In [14], a symbolic aggregation approximation technique130

was used to compress and convert PMU data features. Ensemble131

learning and SVM algorithms were utilized to perform event132

classification. These efforts have generally shown good results.133

However, the main concern with category I models is that134

1According to statistical data provided by the North American SynchroPhasor
Initiative, over 1,900 PMUs have been installed in the U.S., which is a nine-fold
growth from 2009.

good performance depends on the availability of sizable labeled 135

events (e.g., thousands of simulated events). As demonstrated 136

concretely in [15], limited training samples usually reduce the 137

accuracy and generalization of supervised event classification 138

models. In reality, even for stable grids with long-term opera- 139

tions and few events, the number of event labels is limited. 140

Utilities often have records of events without in-depth de- 141

tails. Of the 2,226 recorded events observed by Public Service 142

Company of New Mexico over four years, only 97 events were 143

registered in the event logs [16]. Considering that category I 144

methods typically struggle to perform adequately with few la- 145

beled events, researchers are exploring a variety of unsupervised 146

and transfer learning strategies to perform event detection and 147

identification [17], [18], [19], [20], [21], [22], [23]. In [17], a 148

heterogeneous joint domain adaptation method with a transfer 149

learning strategy was proposed to transfer knowledge from a 150

data-rich source grid to the data-limited target grid to boost 151

the machine learning performance in the target grid. In [18], a 152

statistics-based framework was proposed to detect events using 153

PMU data. In [19], a two-stage framework was proposed to 154

achieve real-time event detection, physically meaningful event 155

type distinction, and localization using principal component 156

analysis and hierarchical clustering technique. In [20], a transfer 157

learning-based mechanism was proposed to address the issue 158

of event detection from a remarkably small number of labeled 159

events. In [21], three existing clustering algorithms (i.e., par- 160

titioning, hierarchical, and density-based methods) were eval- 161

uated to group disturbance files. In [22], a novel characteristic 162

ellipsoid method was proposed to identify types and locations of 163

transient events. In [23], a kernelized tensor decomposition and 164

classification framework was proposed to incorporate rich unla- 165

beled data. While existing unsupervised and transfer learning- 166

based event identification works provide valuable results, several 167

questions remain open. For example, unsupervised learning- 168

based methods cannot provide the physical meaning of event 169

types. The results of these methods are usually broadly defined 170

categories and thus can only provide limited help for real-time 171

system monitoring. A natural way to deal with this question is 172

to associate and define each category using data from labeled 173

events and domain knowledge. However, this solution relies 174

on an important assumption that labeled events and unlabeled 175

event types are identical. In other words, the utilities need to 176

observe and register all possible event types. In practice, it is 177

difficult to maintain such an assumption. Unlabeled events often 178

hide a variety of new event types, which is also mentioned by 179

previous work [6]. In this paper, this situation is referred to as the 180

class distribution mismatch problem (as shown in Fig. 1), which 181

greatly increases the difficulty of data-driven event classification 182

tasks. Last but not least, the results of unsupervised techniques 183

tend to have low accuracy due to the lack of labeling information. 184

To address these problems, this paper proposes a novel data- 185

driven model to identify power event types in a semi-supervised 186

learning manner. Compared to supervised learning-based mod- 187

els, the proposed model is better suited for real-world tasks 188

because collecting tremendous high-quality event labels is quite 189

expensive. To achieve this, our method leverages an output 190

smearing strategy to build three different classifiers and initially 191
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Fig. 1. Description of the event identification problem under the class mis-
match problem.

trains them using labeled events in parallel. Considering the192

high model complexity due to the high dimensionality of PMU193

measurements, convolutional neural networks (CNNs) are used194

as the underlying classifier in this work. The unique benefit of195

utilizing three event identifiers is that it provides a workaround196

for marking unlabeled events. Specifically, if any two of classi-197

fiers have a consistent estimate for an unlabeled event, then this198

estimate is confident and can be added to the training set. The199

three event identifiers are retrained using the updated training set200

in order to consistently benefit from the abundance of unlabeled201

events. Considering that unseen event types do not exist in the202

initial training set, it is impossible for three classifiers to give203

meaningful estimates for these types. Therefore, the training204

process of each model is projected as a bi-level optimization205

problem to avoid pseudo-labeling of events under unseen types206

as much as possible, which is defined as a safe learning mech-207

anism. A weighted empirical risk minimization model is to be208

obtained in the inner-layer optimization. Additionally, the goal209

of the outer-layer optimization is to minimize classification loss210

on a given training set. An online approximation method is211

applied to solve this bi-level optimization. By combining these212

novel modules, a better generalization ability can be achieved.213

The main contributions of this paper can be summarized as214

follows:215
� The proposed framework can improve the performance of216

event classifiers trained with a limited number of labeled217

events. The proposed method is able to achieve similar218

accuracy as supervised learning methods using all labeled219

data, but using only 25% of the labeled data.220
� The proposed framework not only exploits the value of221

unlabeled events, but also provides a basis for significantly222

reducing the impact of the class distribution mismatch223

problem to enhance event classifier performance.224
� The proposed safe learning strategy prevents features of225

unseen events from becoming entangled with features of226

observed events, thus avoiding performance degradation227

of the model on known event types. Such a mechanism228

Fig. 2. As the class distribution mismatch ratio between the labeled and
unlabeled data rises, the performance of traditional semi-supervised learning
approaches drastically declines. When the mismatch exceeds a certain range,
the performance of the traditional semi-supervised learning method is even
worse than that of the supervised learning method (top). Such a performance
degradation hinders the motivation to use semi-supervised learning techniques
in the vast majority of real applications. In contrast, the performance of the
proposed method similarly declines as the class distribution mismatch between
labeled and unlabeled data increases, but it never performs worse than the
performance of the supervised learning method (bottom).

can help the proposed model to perform no worse than its 229

supervised counterpart in extreme cases. 230
� The proposed model was developed and tested based on 231

two years of data from hundreds of PMUs and approxi- 232

mately 4,800 event records from Western Interconnection. 233

In our experiments, we constantly assume that a portion 234

of the event records are unknown to simulate different real 235

situations. All results are derived by comparing predictions 236

and ground truths. 237

The rest of this paper is structured as follows. The preliminar- 238

ies of the proposed framework are shown in Section II, including 239

the data description and problem formulation. Section III intro- 240

duces the semi-supervised learning-based event identification. 241

Section IV presents the safe learning process. Case studies are 242

demonstrated in Section V. Research conclusions are provided 243

in Section VI. 244

II. PRELIMINARIES 245

A. Data Description and Pre-Processing 246

The available 2-year PMU measurements were initially col- 247

lected by regional system operators and utilities in the Texas, 248

Western, and Eastern Interconnections of the U.S. and then 249

formatted by Pacific Northwest National Laboratory. Each PMU 250

monitors the system frequency, voltage, and current phasors, as 251

well as the rate at which the frequency changes. The majority 252

of PMU data segments are archived at 30 frames per second 253

and the rest at 60 frames per second. In addition to 20 TB of 254
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PMU streaming data, this dataset has the particular advantage255

of containing enough real event labels (i.e., 6,767 events from256

utilities), which creates a solid foundation for designing an ef-257

fective event classification model. Note that complete detection258

criteria for all types of events and historical protection records259

are not provided in this work due to the safeguarding of sensitive260

information, making them unavailable for classification model261

development.262

The data pre-processing is done prior to model development263

to assure the quality of the training data, preventing inaccurate264

event detection brought on by data quality issues. This procedure265

is empirical and follows the guidance of our industrial partners.266

Briefly, the first phase in data pre-processing is to use PMU status267

flag information to identify data with data quality issues. Accord-268

ing to IEEE C37.118.2-2011 standard, when the decimal status269

flag value is 0, PMU measurements can be used to accurately270

describe the system status. Instead, PMU is in a malfunction271

state. In addition, based on engineering intuition, we designed272

several threshold-based methods to identify data quality issues273

that are not detected by the PMU itself, such as out-of-range is-274

sues. In the second phase, when consecutive missing or bad data275

happens, the data is removed from our study. The justification276

for this is that it is challenging to offer precise data imputation277

for these consecutive bad data, which is also out-of-scope of278

this work. Linear interpolation is then used to fill in and repair279

the remaining missing or bad data. After data processing, the280

latent data features are extracted using Markov transition field281

techniques. By calculating Markov transition probabilities and282

converting that data into graphs, Markov transition fields can283

preserve all time-domain information. More details can be found284

in our previous works [13], [24]. Note that the system topology,285

PMU locations, and historical event locations are not available.286

Hence, this work cannot be extended to identify the location287

of events. We leave it for future work. Once they are available,288

more comprehensive results will be provided.289

B. Problem Formulation290

In terms of notation, let xi denote its i-th entry in a column291

vector x. Given a matrix X, let X(i,j) denote its entry at i-th row292

and j-th column and [X]i denotes its i-th row. The estimation293

is indicated by the superscript (̂•) and the optimum is shown by294

the superscript (•)�.295

Consider a set of PMU data Nl = {(x1, y1), . . ., (xm, ym)},296

the data-driven event identification problem can be formulated297

as an n type classification problem [7], where xi ∈ Rd×1 is the298

measurement data of PMU with d-length analysis window2,299

yi ∈ {1, . . ., n} is the label recorded in the disturbance files300

after using a label encoding technique, m is the total number301

of recorded events, and n is the number of event types. In302

order to achieve satisfactory event identification accuracy, a303

2In this work, a 2-second analysis window is utilized to intercept PMU
measurements based on event logs. This 2-second analysis window consists
of 0.5 pre-event data and 1.5 post-event data. The value of d is determined based
on previous studies [13], [24]. Note that the selection of d is a trade-off between
event information and the curse of dimensionality. Also, as the input dimension
increases, the computation complexity of the data-driven event identification
model grows significantly, which can impact the real-time application of models.

large amount of labeled events are necessary.3 However, in 304

power systems, such a condition is difficult to meet because 305

obtaining labeled events is costly in terms of human and financial 306

resources. As mentioned in previous work [6], most of the events 307

recorded by PMUs are unknown. Therefore, the event identifica- 308

tion problem needs to be refined to an n+ 1 type classification 309

problem, whereNl = {(x1, y1), . . ., (xm, ym)} and k unlabeled 310

events Nu = {xm+1, . . ., xm+k}. Here, yi ∈ {1, . . ., n+ 1}, 311

where (n+ 1)th represents an unspecified type recorded in event 312

logs. For the (n+ 1)th type, a natural assumption is that the 313

(n+ 1)th type is a mixture of known event types. This is one 314

of the common assumptions used in previous works [17], [19], 315

[20], [22]. Under this assumption, the lack of labeled event data 316

can be overcome by finding associations between known event 317

types and the (n+ 1)th type using state-of-the-art unsupervised 318

techniques. However, this assumption is not practical in many 319

cases. In reality, the number of unlabeled data is much larger 320

than the number of labeled data (i.e., k >> 0). This results 321

in the (n+ 1)th type often consisting of two parts: the events 322

belonging to the known types but not identified by utilities and all 323

other types of events that are not seen in the event logs. Hence, 324

unrecorded events and recorded events do not share the same 325

distribution, which is known as class distribution mismatch, as 326

shown in Fig. 1. Note that our model is built based on this 327

actual situation rather than on the previous assumption. When 328

the different unknown events that are classified in the (n+ 1)th 329

type have markedly different underlying physics, they may have 330

highly distinct characteristics and cannot be categorized in any 331

of the known types. Face with this situation, since conven- 332

tional semi-supervised models have never seen the types of 333

these events, it is impossible for the model to provide correct 334

estimation for unlabeled set and derive any useful information 335

from them. Moreover, the characteristics of the unknown events 336

are entangled with the characteristics of the observed events, 337

which significantly impairs the trained model’s ability to judge 338

events of known types (also known as performance degradation). 339

This is the reason why most semi-supervised learning algorithms 340

no longer work well, and may even be worse than a simple 341

supervised learning model (i.e., support vector machine, logistic 342

regression, and random forest) [25]. It should be noted that 343

supervised models do not suffer from this problem, as they 344

only focus on those labeled events. Such shortcomings limit 345

the application of deep semi-supervised models in power event 346

classification problems. 347

To develop a practical event identification model, we propose 348

a safe tri-net-based method that only requires limited labeled 349

events without any class distribution assumptions. Briefly, our 350

work uses the idea of pseudo labeling to discover the value 351

of unlabeled events4 to improve the performance of the event 352

3The amount of data required for machine learning depends on many factors,
including the complexity of the problem and the complexity of the learning
algorithm. Based on the high sampling rate of PMUs, the amount of data required
to realistically train and test a classifier is enormous.

4Pseudo labeling is a commonly-used method to perform semi-supervised
learning tasks. The basic idea of this method is to seek the generation of pseudo
labels for unlabeled samples to guide the learning process in an alternating
manner. Specifically, the initial model is trained using the limited labeled data.
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Fig. 3. Overall framework of the proposed safe learning-based event identification model.

identifiers when training with limited event logs [26]. However,353

unlike previous models, our method can handle class distri-354

bution mismatch by incorporating a bi-level optimization in355

the backpropagation process. By designing a weight function,356

the proposed method uses unlabeled data selectively. In each357

iteration, the model searches for the optimal model parameters358

based on weighted empirical risk minimization. The weight359

function parameters are then improved to continuously track360

the supervised performance once the obtained model parameters361

are evaluated on labeled events. The trained event identifier will362

therefore not perform worse than a supervised learning-based363

event identification model when utilizing our method, even if364

event logs do not cover all event types. We will demonstrate in365

the following section that the event identifier learned using the366

proposed approach is always better than the model developed367

using simply labeled data.368

C. Proposed Event Identification Framework369

The objective of this work is to design a framework to improve370

the performance of event classifiers in a safe manner. Given371

the prevalence of unlabeled data in all grids, the data resources372

required to train the proposed event classification model consist373

of unlabeled data and a limited amount of labeled data. Different374

stages of the proposed framework are demonstrated in Fig. 3.375
� Stage I - Tri-net Classifier Initialization: A tri-net-based376

framework is developed to perform event identification in377

a semi-supervised learning manner. As shown in Fig. 3, the378

proposed framework consists of a shared feature extractor379

(Sf ) and three safe event identification modules (S1, S2,380

andS3) with different structures. The three event classifiers381

build the mapping relationship between shared features and382

event types. An output smearing strategy is used to con-383

struct three diverse training sets, thus augmenting diversity384

between three classifiers (detailed in Section III).385
� Stage II - Safe Learning-based Parameter Optimization:386

A safe learning mechanism is proposed to update model387

parameters for each classifier. Such a mechanism can pre-388

vent performance degradation due to the class distribution389

Then, the trained model is utilized to generate pseudo labels for the unlabeled
samples. Based on the updated training dataset, the model is retrained.

mismatch problem. The basic idea is to weaken unlabeled 390

data with unseen classes by adding a weight function and 391

tracking supervised loss by designing a bi-level optimiza- 392

tion (detailed in Section IV). 393
� Stage III - Pseudo-Label Dropout: To further deal with the 394

low-confidence pseudo labels, a dropout strategy is applied 395

during the training process. Basically, this strategy exploits 396

the disagreements among the three classifiers. With three 397

classifiers, if any two of them have a consistent estimate 398

for an unlabeled event, then this estimate is confident and 399

can be added to the training set, as shown in Fig. 3. Such 400

an augmented training set is utilized to refine the three 401

classifiers until the end of the training process (detailed in 402

Section IV). 403

III. SEMI-SUPERVISED LEARNING-BASED EVENT 404

IDENTIFICATION 405

This section outlines the proposed safe tri-net-based ap- 406

proach. We quickly review the concepts and characteristics of 407

conventional semi-supervised learning techniques before de- 408

scribing our method in depth to help the reader comprehend 409

the proposed model. 410

Semi-supervised learning is a learning paradigm linked with 411

developing models using all available data, including labeled 412

and unlabeled data, and is conceptually positioned between 413

supervised and unsupervised learning. Compared to supervised 414

learning approaches, Semi-supervised learning techniques are 415

better suited for real-world tasks where unlabeled data are easily 416

accessible whereas labeled cases need more resources and time 417

to collect. The goal of the semi-supervised learning model is to 418

use all available data to generate a predictive function that is 419

more accurate than the one obtained using only labeled data. 420

When dealing with classification problems, leveraging unla- 421

beled data with a semi-supervised method can provide us with 422

additional information about the shape of the decision boundary 423

among different classes. According to previous studies, semi- 424

supervised learning methods can be broadly divided into two 425

categories: transductive learning and inductive learning [27]. 426

Basically, transductive learning aims to apply the trained models 427

to the unlabeled data observed at training time; in this case, it 428
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does not generalize to unobserved data. In contrast, the goal of429

inductive learning is to learn a model capable of generalizing to430

unobserved data at test time. This categorization applies to the431

proposed approach.432

One of the major challenges of the semi-supervised event433

identification method is how to produce additional training434

data by labeling instances of the unlabeled set. Inspired by435

the tri-training methodology [26], the proposed model utilizes436

three different classifiers to handle the challenge of identifying437

unlabeled events. It should be noted that the initial classifiers438

should be diverse. When all classifiers are the same, they will439

all produce the same estimate for each unlabeled event, which440

will impede the model training. In this work, to construct three441

diverse modules, an output smearing strategy is applied [28]. By442

adding random noise to true labels, this strategy can construct443

diverse training sets, which can be formulated as follows:444

ŷi = yi + f(zi × σi) (1)

where, zi is sampled independently from the standard normal445

distribution, σi is the standard deviation, and f(·) is represented446

by the rectified linear function. With the output smearing strat-447

egy, three diverse training sets can be obtained from the initial448

labeled set. Then, the objective function of our method is to449

minimize the sum of the three identifiers’ losses, which is defined450

as follows:451

min
Θ

m∑
i=1

{L(S1(S(xi), ŷ1i ))

+ L(S2(S(xi), ŷ2i )) + L(S3(S(xi), ŷ3i ))} (2)

where, L(·) denotes the standard softmax cross-entropy loss in452

this work (i.e., a softmax activation plus a Cross-Entropy loss).453

The shared module Sf is designed by using one convolutional454

and max-pooling layers. The parameters of the Sf are updated455

by learning all gradients from S1, S2, and S3. The structure456

of classifiers S1, S2, and S3 are derived from state-of-the-art457

convolutional neural network architecture [29]. To get more458

diversity among the three classifiers, different structures (i.e.,459

different network depths and convolution parameters) were used460

for the three classifiers. In order to assist readers unfamiliar with461

deep learning, we outline each typical layer below:462
� Convolutional Layer: Convolutional layers typically run463

an operation (∗) on the input and pass the result to the464

following layer. In this work, after feature reconstruction,465

all event signals are considered as two-dimensional graphs,466

making the convolutional layer mathematically formulated467

as follows:468

(xl−1 ∗Km
l )(i, j)

=

Pl∑
τi=0

Pl∑
τj=0

xs
l−1(i− τi, j − τj)K

m
l (i, j) (3)

where, Km
l is the kernel filter of the m-th feature map of469

the l-th layer,Pl refers to the size of feature maps in the l-th470

layer, and τi and τj are the search paces in the horizontal471

and vertical directions, respectively. As a result, the con- 472

volutional layer performs an element-wise multiplication 473

in a sliding-window manner. It will summarize the results 474

into a single output and transform a feature matrix into a 475

different feature matrix, whose dimensionality of the new 476

matrix is determined by the dimensionality of the original 477

matrix and the dimensionality of the kernel filter. 478
� Activation Layer: To compensate for the limitations of 479

linear modeling in the convolutional layer, the results of 480

the convolutional layer are given to a nonlinear function 481

(e.g., sigmoid, tanh, softmax, ReLU, leaky ReLU, etc.). 482

The activation layer is the name given to this nonlinear 483

function. In this study, all layers but the fully linked layer 484

are activated using Leaky-ReLU, while the fully connected 485

layer is activated using soft-max. 486
� Max-pooling Layer: The feature maps are aggregated using 487

a maximum pooling layer following activation function and 488

batch normalization. Max pooling is essentially a pooling 489

procedure that chooses the largest element from the feature 490

map region that the filter covers. In other words, a feature 491

map comprising the standout features from the prior feature 492

map will be the output following the maximum pooling 493

layer. In this paper, a 2× 2 max-pooling is used. 494

In contrast to conventional semi-supervised models that re- 495

quire explicitly measuring confidence in pseudo-labeling (i.e., 496

self-training), our method provides a natural and efficient mech- 497

anism for evaluating pseudo labels of unlabeled events. As 498

demonstrated in Fig. 3, for any identifier, an unlabeled event can 499

be labeled when two other identifiers agree on the label of this 500

event. For example,xi can be added to the training set forS3 ifS1 501

and S2 concur on the label of the event. Following this strategy, 502

each classifier is retrained using the augmented training set in 503

each iteration. Note that the structure of the classifiers should be 504

different. Otherwise, the unlabeled events identified by the other 505

two classifiers will be the same as those labeled by the other two 506

classifiers for either of the classifiers. Obviously, even if our 507

method uses two classifiers to increase the confidence of pseudo 508

labels, incorrect pseudo-labeling is inevitable. These incorrect 509

pseudo labels would degrade the performance of the classifiers 510

during the training process. Therefore, we will show that the 511

increase in the classification error can be offset if the amount of 512

newly labeled data can adhere to certain requirements: 513

S1 andS2 classified instances with pseudo-labels are added to 514

the training set ofS3 as examples to prove our conclusion above. 515

First, letN t andN t−1 refer to the number of data that are labeled 516

for S3 in the t-th and t− 1-th iteration, respectively. Let uNL
517

and U t
S1,S2

denote the classification noise rate of the original 518

training set Nl and the upper bound of the classification error 519

rate caused by S1 and S2 at the t− 1-th iteration. According to 520

the finding of [30], the inverse of the square of the error at the 521

t-th iteration (i.e., 1
(εt)2 ) can be formulated as: 522

1

(εt)2
= |Nl ∪N t|

(
1− 2

(uNl
|Nl|+ U t

S1,S2
|N t|)

|Nl ∪N t|

)2

(4)

Basically, if εt < εt−1, it implies that S3 can be improved 523

through using newly labeled data (i.e., Dl) from S1 and S2: 524
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Fig. 4. Illustration of safe event identification model.

525

|NL ∪N t|
(
1− 2

(uNl
|Nl|+ U t

S1,S2
|N t|)

|Nl ∪N t|

)2

>

|Nl ∪N t−1|
(
1− 2

(uDl
|Dl|+ U t−1

S1,S2
|N t−1|)

|Dl ∪N t−1|

)2

(5)

When U t
S1,S2

and U t−1
S1,S2

∈ [0, 0.5), (5) always holds if |N t| >526

|N t−1| and U t−1
S1,S2

|N t−1| > U t
S1,S2

|N t|. In sum, S3 can be527

improved when the following constraint is satisfied:528

0 <
U t
S1,S2

U t−1
S1,S2

<
|N t−1|
|N t| < 1 (6)

This constraint cannot hold when |N t| is far bigger than |N t−1|,529

which is possible. When this occurs, a subsampling method is530

applied forN t randomly remove a portion of the data to maintain531

(6). It is combined with the proposed structure to specify the532

conditions under which unlabeled data may be labeled for a533

classifier.534

IV. SAFE EVENT IDENTIFICATION MODEL535

A. Model Formulation536

Considering that class distribution mismatch occurs in actual537

grids, it is not reasonable to estimate pseudo labels to unlabeled538

data under unseen classes because the training model never539

learns the features of this class. Such a problem leads to severe540

performance degradation when applying conventional semi-541

supervised learning techniques in power event identification.542

To solve this question, a safe learning mechanism is proposed543

based on the structure mentioned in the previous section. Specifi-544

cally, the proposed mechanism designs a weight function to use545

unlabeled data selectively and continuously tracks the perfor-546

mance of the supervised learning model to prevent performance547

degradation. To achieve this, each event classifier (i.e., S1, S2,548

and S3) is destined as a bi-level optimization problem, where549

one optimization problem is nested inside another issue. Fig. 4550

describes this process. The basic idea is to use as many beneficial 551

unlabeled events as possible and keep track of supervised loss 552

to prevent performance degradation. To achieve this, first, our 553

method minimizes a weighted empirical risk5 by integrating a 554

weight function with a regularization strategy for the unlabeled 555

events. The objective function can be formulated as follows: 556

θ̂ = min
θ

m∑
i=1

L(S(xi; θ), yi) +

m+k∑
i=m+1

w(xi; γ)Ω(xi; θ) (7)

where, θ̂ is denoted as the model trained with the weight function 557

parameterized by γ, andΩ(·) refers to the regularization term. In 558

this work, we have applied a consistency regularization strategy 559

to formulate Ω(·) [31]: 560

Ω(x; θ) = ||h(x+ εG; θ)− h(x; θ)||22 (8)

where,h(·) is a standard encoder network that maps input data to 561

a lower dimensional space and εG refers to Gaussian noise. The 562

aim of the regularization term is to train a model that is invariant 563

to various data augmentations, which provides the basis for using 564

unlabeled data to augment prediction function [32].6 Using the 565

weight function, unlabeled events can be utilized selectively, 566

thus reducing the impact of the distribution mismatch problem. 567

Then, the proposed model evaluates θ̂ on m labeled events 568

and optimizes the weight function parameter γ to avoid severe 569

performance degradation. This optimization can be formulated 570

as follows: 571

γ̂ = min
θ

m∑
i=1

L(S(xi; θ), yi) (9)

5Empirical risk minimization is a principle in statistical learning theory, which
is commonly used to give theoretical bounds on their performance. The basic
idea is to measure model performance on a known set of training data rather
than an unknown true data distribution.

6Mathematically, using pseudo-labeled data to augment the training set first
requires adherence to the notion: if an actual perturbation is applied to an
unlabeled data, the prediction should not change significantly. The underlying
rationale behind this is that data points with different labels should be low density
separation based on cluster assumption.
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In summary, the first optimization of the proposed safe event572

identification (7) is to seek the optimal model parameters θ̂ using573

the entire dataset. For convenience, let A(θ, γ) denotes as (7).574

Next, the learned model parameter θ̂ is evaluated in the labeled575

dataset and the weight function parameters γ are optimized, as576

shown in (9), to achieve a better reliable performance, which577

is represented by B(θ). Consequently, the following bi-level578

optimization problem can be expressed as the objective of the579

proposed safe event identification model:580

min
γ

m∑
i=1

L(S(xi; θ̂), yi) (10)

s.t. θ̂ = min
θ

m∑
i=1

L(S(xi; θ), yi) +
m+k∑

i=m+1

w(xi; γ)Ω(xi; θ)

(11)

The unique benefit of the proposed safe learning mechanism is581

to introduce safeness in terms of empirical error. In other words,582

by optimizing γ, the proposed method does not perform worse583

than its supervised counterpart.584

B. Model Training585

Since there is no closed-form expression for this bi-level586

optimization problem, it necessitates two nested loops of opti-587

mization to obtain the optimalγ�.7 As a result, the computational588

complexity of the training process increases significantly as589

the size of the training data increases. To address this issue,590

the parameter optimization in the proposed model follows an591

alternating manner. Such a strategy can significantly reduce the592

computation burden. Mathematically, given a weight function593

w with parameters γt, the update of θt+1 can be obtained by the594

following equation:595

θt+1 = θt − ηθ∇θA(θt, γt) (12)

where, ηθ is the learning rate for classifier network. Then,596

following (11), γt+1 can be formulated as:597

γt+1 = γt − ηγ∇γB(θt+1) (13)

Follow the chain rule, the gradient of B(θt+1) can be refor-598

mulated as ∇θB(θt)− ηθ∇γ∇θA(θt, γt). To efficiently calcu-599

late this, an automatic differentiation strategy is applied [33].600

Basically, for each iteration, the local descent directions of the601

training data are first examined on the training loss surface. Then,602

they are recalculated based on their similarity to the descent603

directions of the supervised loss surface. This strategy requires604

two full forward and backward passes of the network on training605

loss and supervised loss for parameter update, respectively. The606

first forward and backward pass is used to calculate the loss using607

A(θt, γt) and obtain ∇θA(θt, γt). Then, model parameter θt+1608

can be updated using (12). The weight function is then subjected609

to the second forward and backward pass in order to calculate610

the loss using B(θt+1) and ∇γB(θt+1). After that, γt+1 can be611

updated using (13). Finally, the last forward and backward pass612

7For eachγ, we need to compute the optimal θ̂. The computational complexity
is O(n2). Thus, each single loop can be very expensive.

Algorithm 1: Safe Event Classifier Training using Auto-
matic Differentiation.

Require: Labeled data Nl = {(x1, y1), . . ., (xm, ym)};
unlabeled data Nu = {xm+1, . . ., xm+k}; initial model
parameter θ0; initial weight function parameter γ0;
learning rate for model parameter ηθ; learning rate for
weight function parameter ηγ ; iteration number T .

1: for t = 0, . . ., T − 1 do
2: Select sample batch from Nl → {xl, yl}.
3: Select sample batch from Nu → {xu}.
4: Compute generalization loss and weighted

empirical loss using (7) → A(θt, γt).
5: Calculate the gradient of model parameter

→ ∇θA(θt, γt).
6: Update model parameter using ηθ and (12)

→ θt+1.
7: Recompute generalization loss using (9).
8: Calculate the gradient of weight function

parameter → ∇γB(θt+1).
9: Update weight function parameter using ηγ and

automatic differentiation strategy → γt+1.
10: end for

is performed to minimize the reweighted objective to finish one 613

iteration. Note that this process can be easily implemented using 614

popular deep learning frameworks such as TensorFlow [34]. See 615

Algorithm 1 and [33] for more details. 616

C. Pseudo Label Dropout 617

During the training process, based on the estimated results 618

of three safe event identifiers, a part of unlabeled events will 619

be labeled and added into the training dataset. In this work, a 620

dropout strategy is applied in pseudo labeling to exclude those 621

pseudo-labels with low confidence and ensure the stability of the 622

training set during the training process. Specifically, each clas- 623

sifier is used to estimate the label of xi for W times throughout 624

each iteration and record the frequency ω at which the outcome 625

differs from the rest of the classifiers. Whenω < W
3 , this pseudo 626

label is recognized as a stable label and can be utilized for 627

model retraining. As the value of W gets larger, it takes longer 628

to estimate the pseudo labels in each iteration, thus greatly 629

increasing computational burden. In other words, the selection 630

of W is a trade-off between the stability of the pseudo labels 631

and computational burden. In this work, different values of W 632

are tested based on the performance of the validation set. The 633

appropriate value of W is obtained when the accuracy of the 634

validation set no longer increases significantly. Here, the value 635

of W is assigned as 12. 636

V. NUMERICAL RESULT 637

This section investigates the performance of our framework 638

utilizing PMU data and related event logs from Western In- 639

terconnection. The full dataset consists of 4,800 data points 640

taken under normal behaviors as well as 4,800 recorded events, 641



IE
EE P

ro
of

YUAN et al.: DATA-DRIVEN FRAMEWORK FOR POWER SYSTEM EVENT TYPE IDENTIFICATION VIA SAFE SEMI-SUPERVISED TECHNIQUES 9

Fig. 5. Results of the proposed model’s testing using 20% labeled events.

such as line outages, frequency events, and transformer outages.642

To simulate a situation when the utility only captured a few643

occurrences, the event labels are kept for 25% of the records644

after data pre-processing. The remaining 75% of the event labels645

were regarded as being unidentified. This process is completely646

random. Considering that this dataset is an imbalanced dataset647

(i.e., more than 75% of the events are line outages), we randomly648

select 25% of the data samples for each type of event as labeled649

data for the purpose of model training and testing, instead of650

randomly selecting 25% of the data points in the entire dataset.651

Note that a similar data partitioning strategy is also applied to652

control the size of the labeled dataset in sensitivity experiments.653

The available dataset is then evenly divided into k equal folds,654

taking into account the PMU measurements and associated event655

labels. In this work, the value of k is selected as 5. Based on these656

partitioned folds, the proposed model is trained and tested in k657

iterations. In each iteration, one fold is left for testing and the658

model is trained on the remaining k − 1 folds. With this strategy,659

it is possible to evaluate the performance of the suggested model660

using all of the available data as unseen data.661

A. Effectiveness of the Proposed Method662

The accuracy achieved from each iteration is averaged to663

assess the model performance using the k-fold cross validation664

strategy. The accuracy is calculated as follows:665

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(14)

Where, FP stands for the false positive (e.g., event type is inferred666

as frequency event while its true state is normal). TN is the true667

negative (e.g., system state is inferred to be normal while its true668

state is normal). FN for the false negative (i.e., system state is669

inferred to be normal while its actual type is frequency event).670

TP refers to the true positive (e.g., event type is inferred to be671

a frequency event while its actual type is also frequency event).672

In Fig. 5, testing results for the three safe event classifiers and673

the suggested tri-network technique are shown. It can be seen674

that the single safe classifier has an accuracy range of 84 to 85%675

and the final testing accuracy of the tri-net method converges676

to about 85%. This result indicates that the proposed triple677

net framework is reliable and all classifiers converge to similar678

accuracy regions. Additionally, Fig. 6 displays the actual and679

Fig. 6. Comparison of estimated event type and actual event type using the
proposed method.

Fig. 7. Results of the sensitivity analysis using the proposed method.

estimated labels for 15 example events. As can be observed, 680

the proposed method successfully categorizes the various event 681

categories. It is noteworthy that these results are obtained with 682

only 25% of the labeled events. 683

B. Sensitivity Analysis 684

To demonstrate how sensitive the proposed framework is to 685

the number of labeled events, the average accuracy with varied 686

quantities of labeled events is assessed and determined. As a 687

result of the loss of event information, the event classifier’s 688

performance is expected to degrade as the volume of labeled data 689

diminishes. In this case study, we gradually increase the number 690

of labeled events from 5% to 30% (i.e., a total of 6 cases). The 691

results are presented in Fig. 7. For each case, testing accuracy 692

is calculated for S1, S2, S3 and tri-network, respectively. As 693

can be seen in the figure, as the percentage of labeled data rises 694

from 5% to 30%, the model’s accuracy is gradually improved. 695

When the 30% of labeled events are available, the accuracy of 696

the proposed method is close to 90%. Meanwhile, it is clear 697

that the accuracy of the three modules is different, which proves 698

the effectiveness of our model diversity strategy. By combin- 699

ing these three modules, a better generalization capability can 700

be achieved. Compared to the previous study using the same 701

dataset [13], the proposed method requires only a much smaller 702

labeled dataset to achieve similar accuracy. Thus, the high-value 703

use case of our algorithm is when the utility has only a very small 704
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TABLE I
STATISTICAL ANALYSIS OF EVENT IDENTIFICATION

number of labeled events (e.g., 5% of the total recorded events),705

the proposed method can still achieve 75% accuracy and provide706

meaningful help.707

As an imbalanced classification task, it is crucial to show708

that the proposed method can correctly categorize each event709

type. Therefore, for each event type, several statistical metrics,710

including recall, precision, F1 score, and Matthews correlation711

coefficient (MCC) are utilized to further evaluate the perfor-712

mance of our method with different amounts of labeled data [35].713

Specifically, recall is thought of as the percentage of relevant714

events that are correctly identified. Its dual metric, precision, is715

defined as the fraction of identified events that are relevant. F1716

score can be considered as the harmonic average of the precision717

and recall:718

F1 =
(β2 + 1) ∗ Prec ∗Recall

(β2 ∗ Prec+Recall)
(15)

where, β is the precision weight which is set at 1 in this paper.719

F1 score ranges in [0,1], where the maximum is reached when720

FN = FP = 0. F1 score is not defined based on confusion721

matrix since it is independent from TN . Meanwhile, it is not722

symmetric for type swapping. In comparison, MCC is a contin-723

gency matrix method of calculating the Pearson productmoment724

correlation coefficient in terms of the entries of confusion matrix:725

MCC = TP ∗TN−FP ∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(16)

MCC ranges in [−1, 1], where 1 shows a perfect event iden-726

tification, 0 corresponds to the random identification, and −1727

indicates total disagreement between estimated labels and actual728

labels. The average values of these indexes are presented in729

Table I. It is clear that the values of all metrics are at the same730

level. This result shows that the proposed method is able to731

handle the imbalance of the dataset and obtain stable estimation732

results for different kinds of events.733

C. Performance of the Proposed Method With Class Mismatch734

Problem735

To demonstrate the performance of the proposed method with736

the class mismatch problem, we assume a special case where737

the utility never records a certain event type, but this event738

type appears in large numbers in unlabeled events. Specifically,739

all events belonging to the line outage are first excluded from740

the labeled dataset and then added to the unlabeled events741

proportionally. Only the remaining types of events (i.e., normal742

Fig. 8. Event identification accuracy of the proposed method with varying
class mismatch degrees.

operation data, XFMR outages, and frequency events) are used 743

for initial model training. As training proceeds, our model is 744

expected to avoid pseudo-labeling hidden line outage events and 745

adding them to the training set, thus preventing performance 746

degradation. Here, we gradually increase the degree of labeled 747

and unlabeled class mismatch degree from 0% to 60% to test 748

the effectiveness of our algorithm, respectively. Note that the 749

degree of labeled/unlabeled class mismatch is obtained by the 750

ratio of the number of line outage events (i.e., unknown events) to 751

the number of other kinds of events (i.e., known events) among 752

the unlabeled events. This degree can be equivalently viewed 753

as the exploration value of unlabeled events. In the extreme 754

case, when this degree is 100%, it means that no unlabeled 755

events should be exploited in model training. The results are 756

presented in Fig. 8. As shown in the figure, it can be found 757

that the accuracy of the algorithm slightly decreases as the 758

degree of class mismatch increases. When unknown events 759

accounted for half of the unlabeled events, the accuracy of our 760

algorithm dropped by roughly 3% (from 89% to 86%). However, 761

in this extreme case, our algorithm still performs better than 762

the supervised learning-based event identification method (i.e., 763

82%) [13]. These findings corroborate the premise of this study, 764

according to which the performance of the proposed framework 765

diminishes with increasing class distribution mismatch between 766

labeled and unlabeled data but never performs worse than that 767

of the supervised learning method. 768

D. Method Comparison 769

Considering that most existing works on event identification 770

rely on unsupervised techniques (i.e., clustering algorithms) to 771

connect unlabeled data and labeled data, We have conducted 772

numerical comparisons with two clustering algorithms (i.e., hi- 773

erarchical clustering and spectral clustering) previously used for 774

event identification tasks [21], [36], [37]. Moreover, two state- 775

of-the-art semi-supervised classification algorithms, PI model 776

and mean teacher, are included in our comparison experiments 777

to observe whether our models can perform better than previ- 778

ous semi-supervised learning models in the presence of high 779

class mismatch degree [31], [38]. To ensure a fair comparison 780

with unsupervised learning methods, the total number of event 781

types in the set of unlabeled events is unknowable. In other 782
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Fig. 9. Comparison results of five event identification methods.

words, the number of clusters is not available. Hence, in the783

experiments, the Davies-Bouldin validation index is applied to784

calibrate the unsupervised learning method to find the number of785

clusters [39]. The identification accuracy is calculated based on786

the misclassification between the true labels and the clustered787

labels. Like the last case, all methods are tested with varying788

class mismatch degrees. The comparison results are demon-789

strated in Fig. 9. It can be observed that the three semi-supervised790

learning methods generally outperform unsupervised learning791

methods, especially in the cases of low mismatch degree. The792

reason behind this is that the unsupervised learning methods do793

not use any labeling information, but only the data itself. This794

makes their results generally poor under the event classification795

task. Meanwhile, in some tests, we cannot obtain the correct796

number of clusters in a calibrated manner, which further reduces797

the accuracy. Among the semi-supervised learning methods, the798

proposed method performs better than the two state-of-the-art799

methods, especially when the mismatch degree is high. In some800

extreme cases (e.g., mismatch degree is 60%), the proposed801

algorithm still performs better than supervised learning-based802

methods, but other semi-supervised methods show performance803

degradation. Note that unsupervised learning models do not804

suffer from the class mismatch problem, as they do not care805

about label information.806

E. Computational Complexity Analysis807

To demonstrate the practical complexity of the proposed808

algorithm, we conducted the case study on a typical personal809

computer. Based on our multiple experiments, when the event la-810

bels are retained for 25% of the records, the training computation811

of the proposed model time ranges from 1.7 hours to 1.9 hours. It812

should be noted that the training time also changes slightly with813

the volume of labeled data due to the pseudo-labeling process.814

The proposed method’s average test time, based on 1,440 test815

samples, is roughly 0.8 ms. As a result, in a real grid, our816

method may deliver estimates in around 0.1 seconds after the817

PMU measurements arrive at the phase data concentrator after818

accounting for the communication delay. This is still much faster819

than the vast majority of heuristic-based methods.820

VI. CONCLUSION 821

In this paper, we design a novel data-driven method to accu- 822

rately identify events using a limited number of labeled events 823

and a rich set of unlabeled events. Our approach is built on a 824

semi-supervised learning framework with three event identifiers. 825

By designing a weight function, each classifier can selectively 826

explore unlabeled events to provide additional information about 827

the shape of the decision boundary among different event types. 828

The proposed method can address two main challenges in 829

power system event identification: 1) poor generalization of 830

deep learning models caused by the limited number of labeled 831

events. 2) class distribution mismatch problem between labeled 832

events and unlabeled events caused by event data scarcity. The 833

proposed solution has been successfully tested on an actual 834

Western Interconnection dataset. 835
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