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Abstract—Recent years have seen the increasing proliferation1

of distributed energy resources with intermittent power outputs,2

posing new challenges to the voltage management in distribu-3

tion networks. To this end, this paper proposes a data-driven4

affinely adjustable robust Volt/VAr control (AARVVC) scheme,5

which modulates the smart inverter’s reactive power in an affine6

function of its active power, based on the voltage sensitivities with7

respect to real/reactive power injections. To achieve a fast and8

accurate estimation of voltage sensitivities, we propose a data-9

driven method based on deep neural network (DNN), together10

with a rule-based bus-selection process using the bidirectional11

search method. Our method only uses the operating statuses of12

selected buses as inputs to DNN, thus significantly improving the13

training efficiency and reducing information redundancy. Finally,14

a distributed consensus-based solution, based on the alternat-15

ing direction method of multipliers (ADMM), for the AARVVC16

is applied to decide the inverter’s reactive power adjustment17

rule with respect to its active power. Only limited information18

exchange is required between each local agent and the cen-19

tral agent to obtain the slope of the reactive power adjustment20

rule, and there is no need for the central agent to solve any21

(sub)optimization problems. Numerical results on the modified22

IEEE-123 bus system validate the effectiveness and superiority23

of the proposed data-driven AARVVC method.24

Index Terms—Volt/VAr control, voltage sensitivities, bidirec-25

tional search method, data-driven method.26

I. INTRODUCTION27

VOLT/VAr control (VVC) has always been a critical issue28

for power system operations. According to the stan-29

dard by American National Standards Institute [1], the voltage30

level should be maintained within a secure range, otherwise31

the performance of electrical equipment might be affected.32
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Along with the growing trend of distributed energy resources 33

(DERs), the ability of voltage support for distribution networks 34

also needs further improvements. According to the IEEE stan- 35

dard 1547-2018, proactive voltage regulations are mandatory 36

rather than optional for power systems [2]. But considering 37

the long reaction time and high operation cost, the legacy 38

voltage regulation devices cannot provide dynamic voltage 39

support in shorter time periods against the fluctuating voltage 40

issues. Compared with switch-based legacy voltage regulation 41

devices, power electronics-based smart inverters have a much 42

shorter response time and better controllability [3]. They can 43

both absorb or inject reactive power to eliminate the rapid volt- 44

age fluctuations across power systems. Authors in [4] declaim 45

that the high penetration of DERs may bring more difficulties 46

in coordinating different voltage regulation devices. 47

In order to coordinate both the switch-based discrete devices 48

and responsive smart inverters for voltage regulation, VVC 49

problems in distribution networks are often formulated as 50

optimal power flow (OPF) problems to maintain the system 51

voltage level within a pre-defined range while accomplishing 52

different objectives, e.g., minimizing system loss [5], reducing 53

system cost [6] or minimizing system voltage deviations [7]. 54

Taking full advantage of measurements, communications and 55

control capabilities, different VVC strategies are proposed. 56

In [8], a centralized VVC framework is proposed for day- 57

ahead scheduling of different voltage regulation devices. To 58

address voltage issues in different timescales caused by the 59

stochastic and intermittent nature of DER, a robust two-stage 60

VVC strategy is proposed in [5] to coordinate the discrete 61

and continuous voltage regulation devices and find a robust 62

optimal solution, which can cope with any possible realization 63

within the uncertain DER output. However, the VVC problems 64

in [5], [8] are solved in a centralized manner, leading to high 65

communication costs and computational burdens. As discussed 66

in [9], the advantages of distributed algorithms over centralized 67

approaches in power systems include: (1) Limited information 68

sharing, which can improve cybersecurity and protect data pri- 69

vacy; (2) Robustness with respect to the failure of individual 70

agents; (3) The ability to perform parallel computations and 71

better scalability. Distributed VVC strategies, based on the 72

Alternating Direction Method of Multipliers (ADMM) [10] 73

or projected Newton method, are applied to coordinate photo- 74

voltaic inverters [11], [12], and wind turbines [13], relying on 75

the communication between neighboring buses/zones or the 76

communication between the central agent and local agents. 77
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In the centralized and distributed VVC strategies, the reac-78

tive power outputs of DERs highly rely on communication79

and coordination across distribution systems, lacking the self-80

regulation ability of local DERs to some extent. In order to81

enhance the self-regulation ability of local DERs, some local82

voltage control strategies are proposed to combine with the83

centralized and distributed VVC strategies. For instance, local84

voltage controls are combined with centralized/distributed85

VVC strategies in [14], [15], [16]. The local voltage control86

always adjusts the reactive power outputs of DERs as a func-87

tion of voltage magnitude following a given ‘Volt-Q’ piecewise88

linear characteristic. The characteristics and performance of89

droop control are tested in [17], [18]. However, according90

to [19], [20], the droop control may lead to some stabil-91

ity or feasibility issues under certain circumstances. Adaptive92

droop control methods are introduced in [21], [22], where93

the slopes and intercepts are varying in real-time to improve94

the stability and feasibility performance. According to IEEE95

1547-2018 standard [2], it calls for supplemental capabilities96

– the ‘P-Q’ rule, other than the ‘Volt-Q’ rule, needed to ade-97

quately integrate DERs when the aggregated DER penetration98

is higher or the overall DER power output is subject to fre-99

quent large variations. For the ‘P-Q’ rule, the smart inverter’s100

reactive power adjustment is based on its local real-time active101

power rather than its voltage magnitude. More specifically, the102

smart inverter’s reactive power is adjusted as a function of its103

active power following a given/pre-defined ‘P-Q’ characteris-104

tic. In [23], the reactive power outputs of DERs are adjusted105

based on a quadratic relationship with the active power out-106

puts. Researchers in [24] introduce a dynamic VVC strategy107

with several states, where the ‘Volt-Q’ rule and the ‘P-Q’ rule108

are applied to different operating statuses, respectively.109

How to determine a ‘P-Q’ rule is the key to achieving110

good voltage regulation performances. By projecting the com-111

plex power flow relationship into linear space, the voltage112

deviations caused by the power injection fluctuations can be113

approximated rapidly [25] using voltage sensitivities. Taking114

advantage of voltage sensitivity analysis, different ‘P-Q’ con-115

trol rules for voltage regulation are investigated. For example,116

in [26], an affine ‘P-Q’ rule is introduced against the volt-117

age deviations caused by PV uncertainties, where the reactive118

power adjustment ratio is obtained by solving an optimization119

problem with voltage sensitivities as parameters. Besides, the120

affine ‘P-Q’ rule is further refined by incorporating voltage121

and inverter limit constraints in [27], resulting in fewer volt-122

age violations and reactive power usages. But the ‘P-Q’ rules123

in [26], [27] are determined in a system-wise centralized man-124

ner. In [28], a network partition method is applied to divide125

the system into several zones, where the ‘P-Q’ rule for each126

zone is separately determined. That is, the ‘P-Q’ rule is deter-127

mined in a zone-wise centralized manner without considering128

the interactions among zones. Both the system-wise and zone-129

wise centralized manner require a large amount of information130

exchanging and computational burdens. Moreover, as men-131

tioned before, voltage sensitivities are the key parameters132

for performing ‘P-Q’ rules. In [26], the voltage sensitivities133

are calculated by inverting the Jacobian matrix, requiring a134

large amount of computation and system topology information.135

Authors in [27] utilize the surface fitting technique [29], a 136

non-linear regression method, to estimate voltage sensitivities, 137

where each bus voltage sensitivity is approximately calculated 138

based on the mapping from its local power injections to its 139

local voltage. However, this technique does not consider the 140

influences from other buses on the local bus voltage sensi- 141

tivity. The sensitivity analysis in [28] relies on the perturb 142

and observe method, which means to repeatedly inject a small 143

amount of power at one node and calculate the impact on bus 144

voltages. The perturb and observe method requires repeatedly 145

solving the power flow. 146

To this end, a data-driven method is proposed for fast 147

estimation of voltage sensitivities without requiring system 148

topology information. Compared with conventional methods, 149

e.g., inverting Jacobian matrices or the perturb and observe 150

method, the proposed method is much faster. Based on the 151

estimated voltage sensitivities, an affinely adjustable robust 152

Volt/VAr control (AARVVC) scheme is further proposed to 153

mitigate voltage issues against the PV uncertainty. In the first 154

stage, the switch-based discrete devices and the base reac- 155

tive power set points for PV inverters are determined with 156

the goal of minimizing the total system power losses. In the 157

second stage, the reactive power outputs of PV inverters are 158

further adjusted, following a data-driven affine ‘P-Q’ control 159

rule, to reduce possible voltage fluctuations, which is decided 160

in a hierarchical distributed manner. The main contributions 161

of this work are listed as follows: 162

• A data-driven method, based on the deep neural network 163

(DNN), is proposed to predict voltage sensitivities. Given 164

the voltage magnitudes and power injections of pre- 165

selected buses as inputs, the well-trained DNNs output 166

the corresponding voltage sensitivity parameters, which 167

are of great importance for determining the affine ‘P-Q’ 168

rule. It greatly improves the speed of calculating voltage 169

sensitivities while maintaining high prediction accuracy. 170

• To improve the training efficiency and reduce redun- 171

dant information, a feature-selection process, based on 172

the rule-based bus selection with a Bidirectional Search 173

(BDS) process [30], is proposed. The operating statuses 174

of each bus, including the bus active and reactive power 175

injections and voltages, are regarded as one feature. 176

Then the bus-selection problem can be converted into a 177

feature-selection problem. By applying the rule-based bus 178

selection process, the operating statuses of a selected sub- 179

set of buses, instead of the whole system, are sufficient 180

for the fast and accurate voltage sensitivity estimation. 181

• The slope of the affine ‘P-Q’ rule is obtained using 182

the consensus-based ADMM algorithm. Taking advan- 183

tage of the hierarchical distributed solution structure, 184

the optimization problem is divided into subproblems 185

and solved by each local agent while only simple aver- 186

aging calculation is processed at the center agent. It 187

leads to lower computational burdens for the center. 188

Additionally, relying on the communication between the 189

central agent and local buses, the distributed consensus- 190

based AARVVC requires less information than the 191

system-wise and zone-wise centralized manners, which 192

protects local information privacy. 193
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Fig. 1. The reactive power adjustment following an affine ‘P-Q’ rule.

The rest of the paper is organized as follows. Section II194

provides an overview of the proposed two-stage VVC strat-195

egy. The first-stage VVC strategy is formulated in Section III.196

Section IV presents the second-stage VVC strategy, including197

the data-driven voltage sensitivity estimation and the dis-198

tributed consensus-based AARVVC. Numerical results on the199

modified IEEE-123 bus system are given in Section V and the200

paper is concluded in Section VI.201

II. TWO-STAGE VVC FRAMEWORK: OVERVIEW202

The paper proposes a two-stage VVC framework. Based203

on the predicted information, the first stage aims to minimize204

the system power losses by dispatching the optimal settings205

of switch-based discrete devices and determining the optimal206

base reactive power set points for PV inverters. Considering207

the long reaction time of the discrete voltage control devices,208

the first-stage VVC has a slow timescale. However, only rely-209

ing on the forecast values, the intermittent nature of PV may210

cause unexpected voltage deviations.211

In the second stage, the PV deviation from its forecast value212

is considered. On the basis of its reactive power set point deter-213

mined in the first stage, each PV inverter further adjusts its214

reactive power along with its real-time active power output to215

avoid potential voltage violations. The reactive power adjust-216

ment of PV inverter follows an optimal affine ‘P-Q’ rule. As217

shown in Fig. 1, qg,b
i is the PV inverter’s base reactive power218

set point determined in the first stage, and �pg∗
i is the PV devi-219

ation from its forecast value. Upon the optimal affine ‘P-Q’220

rule, the PV inverters’ real-time reactive power can be adjusted221

as follows:222

qg∗
i = qg,b

i + �qg
i (1)223

with224

�qg
i = αi�pg∗

i (2)225

where αi is the slope of the affine ‘P-Q’ rule.226

The value of αi is determined by solving an affinely227

adjustable robust problem with the goal of minimizing voltage228

deviations caused by the PV fluctuations. Note that voltage229

sensitivities with respect to active/reactive power injections230

Fig. 2. The data-driven AARVVC for the second-stage VVC.

are the key parameters to determine the optimal affine ‘P-Q’ 231

rule. Conventionally, the voltage sensitivities can be estimated 232

by inverting the Jacobian matrix or using the perturb and 233

observe method, which could be time-consuming. To this end, 234

we propose a data-driven AARVVC to determine the optimal 235

affine ‘P-Q’ rule in the second stage. As shown in Fig. 2, 236

the data-driven AARVVC for the second-stage VVC consists 237

of two steps: (1) Data-driven voltage sensitivity estimation; 238

(2) Distributed consensus-based AARVVC. 239

With respect to the data-driven voltage sensitivity estima- 240

tion, the DNN is utilized to predict voltage sensitivities by 241

using the operating statuses, including the bus active and reac- 242

tive power injections and voltages, as the input. The operating 243

statuses of each bus can be regarded as one input feature 244

for the DNN. To improve the training efficiency and reduce 245

redundant information behind features, a rule-based bus selec- 246

tion with a BDS process is first utilized to select a subset of 247

buses whose operating statuses have a more important and 248

greater impact on the voltage sensitivity estimation. More 249

details about the rule-based bus selection process are pro- 250

vided in Section IV. Then, the DNN-based voltage sensitivity 251

estimation is performed to predict voltage sensitives. 252

Finally, a distributed consensus-based AARVVC is 253

proposed to determine the optimal ‘P-Q’ rule of each PV 254

inverter in a hierarchical manner after receiving the esti- 255

mated voltage sensitivities from the DNN. The communication 256

between the local bus agents and the central agent is required 257

for information exchange. As every local bus agent reaches a 258

consensus with the central agent on the optimal ‘P-Q’ rule, 259

the communication process halts. 260

III. FIRST-STAGE VVC STRATEGY 261

The first-stage VVC strategy is a deterministic OPF problem 262

to determine the step positions of discrete devices and the 263
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optimal base reactive power set points for PV inverters based264

on the forecast values of DERs. The objective of this first265

stage is to minimize the total power losses while maintaining266

system voltages within the range of [0.95, 1.05].267

A. The Distribution Network268

Consider a radial distribution network containing n+1 buses269

represented as set {0}⋃N , where {0} denotes the slack bus270

at which the distribution network is connected to the trans-271

mission network and set N := {1, . . . , n} denotes all other272

buses. Hence the radial network contains n line segments con-273

necting the adjacent buses. For any bus j ∈ N , Nj is the274

set of all children buses of bus j. The set consisting all line275

segments in the distribution network can be expressed as:276

L = {�j = (i, j)|i = bp(j), j ∈ N }, where bp(j) denotes the277

parent bus of bus j. For each line segment (i, j) ∈ L, let278

Pij and Qij represent the active/reactive power flow through279

the line respectively, rij and xij denote the line resistance and280

reactance. Let pi and qi represent the active and reactive power281

injections of bus i, Vi and vi denote the voltage magnitude and282

the squared voltage magnitude of bus i. Then the linearized283

distribution power flow [31], [32] can be expressed as:284

Pij =
∑

k∈Nj

Pjk − pj (3a)285

Qij =
∑

k∈Nj

Qjk − qj (3b)286

vi − vj = 2
(
rijPij + xijQij

)
(3c)287

B. First-Stage VVC Problem Formulation288

On the basis of the linearized distribution power flow, the289

first-stage VVC problem is formulated as1:290

min F =
∑

(i,j)∈L
rij · P2

ij + Q2
ij

vnom
(4)291

subject to:292

Pij =
∑

k∈Nj

Pjk + pl
j − pg

j ,∀j ∈ N (5a)293

Qij =
∑

k∈Nj

Qjk + ql
j − qg

j − qc
j ,∀j ∈ N (5b)294

vi − vj = 2
(
rijPij + xijQij

)
,∀(i, j) ∈ L (5c)295

v0 = 1 + 2ntap�tap + (
ntap�tap

)2
296

≈ 1 + 2ntap�tap (5d)297

ntap ≤ ntap ≤ ntap, ntap ∈ Z (5e)298

⏐
⏐
⏐ntap − np

tap

⏐
⏐
⏐ ≤ �ntap (5f)299

qc
i = nc

i · �qc
i , nc

i ∈ Z,∀i ∈ N (5g)300

0 ≤ nc
i ≤ nc

i ,∀i ∈ N (5h)301
⏐
⏐
⏐nc

i − np,c
i

⏐
⏐
⏐ ≤ �nc

i ,∀i ∈ N (5i)302

1For this first-stage VVC problem, the power losses can be approximated

by
∑

(i,j)∈L rij · P2
ij(t)+Q2

ij(t)
vnom

to convexify the optimization problem, like
[33], [34].

−qg
i ≤ qg

i ≤ qg
i ,∀i ∈ N (5j) 303

qg
i =

√

S2
i − (

pg
i

)2
,∀i ∈ N (5k) 304

v ≤ vi ≤ v,∀i ∈ N (5l) 305

where (4) represents the first-stage VVC goal is to minimize 306

the total power losses. Constraints (5a)-(5c) are the linearized 307

power flow constraints. Equation (5d) represents the volt- 308

age of the swing bus considering the on-load tap changing 309

transformer (OLTC) where ntap denotes the tap position and 310

�tap denotes the tap step size. A linear approximation is 311

applied to (5d). Equations (5e) and (5f) are the operational 312

constraints of OLTC, where np
tap is the previous tap posi- 313

tion. The operational constraints of capacitor banks and PV 314

inverters are presented in (5g)-(5i) and (5j)-(5k), where np,c
i 315

denote the previous number of capacitor banks. Equation (5l) 316

is the voltage constraint. Including the settings of the switch- 317

based discrete devices as controllable variables, the first-stage 318

VVC is a mixed-integer optimization problem. By running 319

the first-stage VVC optimization, the optimal step positions 320

of switch-based discrete devices and the base reactive power 321

set points for PV inverters can be obtained. With respect to 322

the first-stage VVC, the optimization variables include: 323

(1) Exogenous variables: 324

qg
i , qc

i , nc
i ,∀i ∈ N , and ntap 325

(2) Endogenous variables: 326

Pij, Qij,∀(i, j) ∈ L 327

v0, vi,∀i ∈ N 328

However, the fluctuating nature of PV is not considered 329

in the first-stage VVC, and the real-time PV generation may 330

vary rapidly and deviate from its forecast value, potentially 331

leading to voltage violations. Due to the slow response time 332

of the legacy voltage control devices like OLTCs and capacitor 333

banks, the first-stage VVC may not be capable of dealing with 334

such fast voltage deviations. To this end, a second-stage VVC 335

strategy is proposed to resolve voltage issues by adjusting PV 336

inverters’ reactive power in real-time. 337

IV. SECOND-STAGE VVC STRATEGY: REAL-TIME 338

ADJUSTMENT OF REACTIVE POWER 339

The second-stage VVC strategy focuses on the real-time 340

adjustment for the reactive power outputs of inverters. In the 341

first stage, the base reactive power set points for inverters are 342

determined based on the forecast values of PV outputs without 343

considering the uncertain characteristic of renewable energy. 344

To avoid potential voltage issues caused by the PV fluctua- 345

tions, the second-stage VVC is proposed for reactive power 346

adjustment. A ‘P-Q’ affine rule is applied as the adjustment 347

rule. The reactive power of PV inverter at bus i after the 348

adjustment can be expressed as (6): 349

qg∗
i = qg,b

i + αi · �pg
i (6) 350

Here the PV inverter reactive power qg∗
i can be split into 351

two parts: the non-adjustable (or deterministic) part qg,b
i , and 352

the adjustable part which is expressed as an affine function 353
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of the PV deviation �pg
i with the slope αi. Note that qg,b

i354

is the optimization solution of qg
i in the first-stage VVC. Given355

the slope αi, the reactive power adjustment can be calcu-356

lated immediately with the real-time PV output. Therefore, the357

second-stage VVC strategy allows the real-time adjustment of358

PV inverter’s reactive power in accordance with its real-time359

active power output to mitigate the voltage fluctuation.360

A. Second-Stage Problem Formulation: Robust Optimization361

Solution362

The aim of the second-stage VVC strategy is to minimize363

the system voltage deviations due to the rapid PV fluctuations364

by adjusting inverters’ reactive power following the optimal365

affine ‘P-Q’ rule.366

Let NG denote the set of all buses with PVs installed. For367

any bus i ∈ N , its voltage deviation can be estimated based368

on voltage sensitivity:369

�Vi =
∑

Kp
ij · �pg

j + Kq
ij · �qg

j ,∀j ∈ NG (7)370

where Kp
ij and Kq

i are the voltage sensitivities at bus i to the371

active and reactive power injections at bus j, respectively.372

It is worth mentioning that the PV deviation �pg
j from the373

base PV set point pg,b
j is an uncertain parameter:374

�pg
j ∈

[
�pmin

j ,�pmax
j

]
,∀j ∈ NG (8)375

where �pmin
j ≤ 0, �pmax

j ≥ 0 indicates that the actual PV376

outputs can deviate from the predicted values in both posi-377

tive and negative directions. The second-stage VVC strategy378

is expected to be robust against the PV output uncertainty.379

Considering the uncertain parameter �pg
j , the second-stage380

VVC problem can be formulated as a robust optimization381

problem:382

min
n∑

i=1

⏐
⏐
⏐�Vi

⏐
⏐
⏐ (9)383

subject to:384

(7), (8)385

To get rid of the absolute value operator in (9), an auxil-386

iary variable Vaux
i is introduced, and the problem (9) can be387

rewritten as follows:388

min
n∑

i=1

Vaux
i (10)389

subject to:390

(8)391

Vaux
i ≥

n∑

j=1

(
Kp

ij + αj · Kq
ij

)
· �pg

j ,∀i ∈ N ,∀j ∈ NG (11a)392

Vaux
i ≥ −

n∑

j=1

(
Kp

ij + αj · Kq
ij

)
· �pg

j ,∀i ∈ N ,∀j ∈ NG (11b)393

Given that �pg
i varies in the uncertainty interval, the corre-394

sponding affinely adjustable robust counterpart (AARC) [35]395

of (11) can be reformulated as follows: 396

min
n∑

i=1

Vaux
i (12) 397

for ∀i ∈ N ,∀j ∈ NG, subject to: 398

Vaux
i ≥

n∑

j=1

(
θ ′

ij · �pmax
j + θ ′′

ij · �pmin
j

)
(13a) 399

Vaux
i ≥ −

n∑

j=1

(
θ ′

ij · �pmin
j + θ ′′

ij · �pmax
j

)
(13b) 400

θ ′
ij ≥ 0 (13c) 401

θ ′′
ij ≤ 0 (13d) 402

θ ′
ij ≥ Kp

ij + αj · Kq
ij (13e) 403

θ ′′
ij ≤ Kp

ij + αj · Kq
ij (13f) 404

where θ ′
ij and θ ′′

ij are the dual variables. Finally, the AARC 405

problem reduces to a linear problem [26], whose solution is 406

the optimal slope αi for each PV inverter. 407

With respect to the AARC problem, two main challenges 408

should be considered: 409

(i) The first one is how to efficiently obtain the values 410

of voltage sensitivities to the active/reactive power injections. 411

Traditional methods to estimate voltage sensitivities, e.g., the 412

inversion of Jacobian matrix and the perturb and observe 413

method, can be time-consuming and complicated. 414

(ii) What’s more is that the AARC problems (12) and (13) 415

are formulated in a centralized manner, which means the cen- 416

tral agent needs to collect all the information from local agents, 417

leading to large computational burdens for the central agent. 418

To this end, we propose a data-driven AARVVC scheme 419

consisting of the data-driven voltage sensitivity estimation and 420

distributed consensus-based AARVVC. 421

B. Data-Driven Voltage Sensitivity Estimation 422

Reflecting the impact of power injections change on nodal 423

voltages by projecting the complex power flow relationship 424

into linear space, the voltage sensitivities Kp
ij and Kq

ij are impor- 425

tant parameters in the optimization problem in (12)-(13). In 426

other words, the optimal reactive power adjustment ratio of the 427

affine function in (2) depends on accurate voltage sensitivity 428

calculation. If the accuracy of voltage sensitivity estimation 429

can not be guaranteed, it is difficult to get a reliable affine 430

adjust ratio, thus significantly affecting the performance of 431

the second-stage VVC. To this end, the data-driven voltage 432

sensitivity estimation method is proposed. 433

The data-driven voltage sensitivity estimation includes the 434

rule-based bus selection with a BDS process and the DNN- 435

based voltage sensitivity estimation. The rule-based bus selec- 436

tion with a BDS process is applied to select a subset of buses 437

whose operating statuses have a more important and greater 438

impact on the voltage sensitivity estimation, thus improving 439

the training efficiency and reducing redundant information. 440

And the DNN-based voltage sensitivity estimation can effi- 441

ciently predict voltage sensitivities with high accuracy. 442
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1) Rule-Based Bus Selection With a BDS Process: The443

relationship between the voltage deviations and the deviations444

of bus power injections is presented as follows:445

[
�p
�q

]

= J ·
[

�θ

�V

]

(14)446

where J is the Jacobian matrix, �p and �q are the deviations447

of bus power injections, �V and �θ represent the deviations448

of voltage magnitudes and angles. This work mainly focuses449

on the impact of bus power injections on voltage magnitudes.450

By inverting the Jacobian matrix, the relationship between the451

deviations of voltage magnitudes and the deviations of bus452

power injections can be written as:453

�v = [
Kp Kq ] ·

[
�p
�q

]

(15)454

where Kp and Kq in (15) are sub-matrices of J−1. The opera-455

tion of matrix inversion can be time-consuming for large-scale456

systems.457

Conventionally, the entries of Kp and Kq can be calculated458

from the power flow solutions, demanding operating statuses459

of all buses. However, there is always redundant information460

behind operating statuses of all buses. By introducing the461

feature selection process, the information redundancy can be462

reduced. What’s more, from the point of practicality, it is not463

easy to collect the operating statuses of every single bus and464

use them for calculating the voltage sensitivities. The rule-465

based feature selection process can pick out some key buses466

whose operation statuses contain more valuable information467

for voltage regulation, which makes the proposed data-driven468

AARVVC more practical.469

To this end, a rule-based bus selection with a BDS Process is470

utilized to pick the key buses for voltage sensitivity estimation.471

Only the operating statuses of the selected buses will be used472

to perform voltage sensitivity estimation.473

The operating statuses, including the bus active and reactive474

power injections and its voltage, of each bus are regarded as475

one feature, then the bus-selection problem can be converted476

into a feature-selection problem, which can be resolved by the477

BDS feature-selection method.478

As a sequential searching strategy, BDS consists of two sep-479

arate processes: a sequential forward selection (SFS) which480

selects the feature that contributes most to improving the481

estimation accuracy from the remaining feature set, and a482

sequential backward selection (SBS) that deletes the feature483

which contributes the least to improving accuracy from the484

remaining feature set.485

The procedure of the BDS is shown in Algorithm 1: BDS-486

Based Bus Selection in detail. In step S2, E represents the487

estimation error between the true and predicted voltage sensi-488

tivities. Every feature from the feature set (B), combines with489

the set of selected features (F) forming the input for training.490

As for the feature union with the lowest error, the selected491

feature from set B is added to set F. In step S3, each feature492

in the current feature set B is temporarily excluded, and the493

DNN models are trained based on the remaining feature sets.494

By comparing the errors, one feature that contributes the least495

information for voltage sensitivity estimation, which means the496

Algorithm 1 BDS-Based Bus Selection
S1: Initialization: Define set F=∅ and set B=N , m = 0, and the

number of buses to be selected n.
S2: SFS process:

Let set I={i|i /∈ F and i ∈ B}, which contains k buses
{i1, i2, . . . , ik}.
Initialize i∗ = i1, η∗ = E(F ∪ i1), where E is an indicator of
estimation error. The larger E is, the larger the error is.
for i = i1, i2, . . . , ik,

η=E(F ∪ i).
if (η ≤ η∗)

i∗ = i
η∗ = η

end if
end for
F = F ∪ {i∗}

S3: SBS process:
Let set J={j|j /∈ F and j ∈ B} which contains l buses
{j1, j2, . . . , jl}.
Initialize j∗ = j1, μ∗ = E(Bk − j1).
for j = j1, j2, . . . , jl,

μ=E(Bk − j).
if (μ ≤ μ∗)

j∗ = j
μ∗ = μ

end if
end for
B = B − {j∗}

S4: Let m = m+1, and go back to S2 until m = n, which means
that the pre-defined number of buses have been selected and
added to set F.

well-trained DNN model achieves the highest accuracy with- 497

out this feature, will be finally removed from the current set B. 498

Note that features selected by SFS will not be deleted by SBS 499

while features removed by SBS will not be selected by SFS. 500

This can ensure that the two processes can converge to the 501

same solution from two directions. 502

In the second-stage VVC, the PV inverter’s reactive power is 503

adjusted in accordance with its real-time active power. It indi- 504

cates that the operating statuses of buses with PV installed are 505

usually necessary for the AARVVC. From a practical point of 506

view, to reduce the investment in measuring devices, we fur- 507

ther define a rule to combine the key buses selected by the 508

BDS process and the buses with PV installed. The rule is 509

defined as follows: if one bus selected by the BDS process is 510

the neighboring bus of any bus with PV installed, then the bus, 511

selected by the BDS process, will be replaced by its neighbor- 512

ing bus with PV installed. This rule is based on the intuition 513

that there are relatively strong correlations between the operat- 514

ing statuses of two neighboring buses. An illustration example 515

to explain the rule to merge buses selected by BDS and buses 516

with PV installed is depicted in Fig. 3. 517

2) A DNN-Based Voltage Sensitivity Estimation: The 518

buses, selected by the proposed rule-based bus selection, are 519

used for voltage sensitivity estimation. Instead of requiring the 520

operation statuses of the whole system, only the operating sta- 521

tuses of selected buses are set as the input of DNN. Aiming to 522

establish the mapping relationship from the input features to 523

the voltage sensitivities, supervised machine learning, using a 524

three-layer fully connected DNN, is performed. With the help 525
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Fig. 3. Merging process of buses selected by BDS and buses with PV
installed.

of the well-trained DNN, the estimated voltage sensitivities526

can be obtained in real-time. Compared with the conventional527

methods to calculate the voltage sensitivities, the DNN-based528

voltage sensitivity estimation can be much more efficient and529

more capable of coping with the rapidly changing operating530

statuses of power systems.531

C. Distributed Consensus-Based AARVVC532

To obtain the slope of the affine ‘P-Q’ rule for PV inverter533

in a distributed manner, we propose the distributed consensus-534

based AARVVC to solve the AARC problem (12)-(13). For535

each bus i ∈ N , we introduce zi = {zj
i|zj

i = αj,∀j ∈ NG}, and536

let z = {zi|∀i ∈ N }. Then the AARC problem (12)-(13) can537

be reformulated as follows:538

min
n∑

i=1

Vaux
i (16)539

for ∀i ∈ N ,∀j ∈ NG, subject to:540

Vaux
i ≥

n∑

j=1

(
θ ′

ij · �pmax
j + θ ′′

ij · �pmin
j

)
(17a)541

Vaux
i ≥ −

n∑

j=1

(
θ ′

ij · �pmin
j + θ ′′

ij · �pmax
j

)
(17b)542

θ ′
ij ≥ 0 (17c)543

θ ′′
ij ≤ 0 (17d)544

θ ′
ij ≥ Kp

ij + zj
i ∗ Kq

ij (17e)545

θ ′′
ij ≤ Kp

ij + zj
i ∗ Kq

ij (17f)546

zj
i = αj (17g)547

Note �pmin = [�pmin
j ]j∈NG ,�pmax = [�pmax

j ]j∈NG are the548

uncertain parameters, which are assumed to be accessed by549

Algorithm 2 Distributed Consensus-Based AARVVC
S1: Initialization. Let the number of iterations k = 1, α(1) =

0, zi(1) = 0,λi(1) = 0, ρ > 0.
S2: Each local bus agent i updates zi(k) based on the voltage

sensitivities Kp
ij and Kq

ij.

zi(k + 1) = arg min
zi

L(i)
ρ (α(k + 1), zi, λi(k))

s.t. (17a) − (17f )

S3: Each local agent then communicates zi(k + 1) to the central
agent.

S4: Collecting zi(k) from each local bus agent i ∈ N , the central
agent then updates α(k + 1). Each entry αj(k + 1) of α(k + 1)
can be expressed as:

αj(k + 1) =
∑

i∈N zj
i(k + 1)

n + 1
, ∀i ∈ N ,∀j ∈ NG

The central agent then sends α(k + 1) back to each local bus
agent i.

S5: Each local bus agent i updates λi(k + 1):

λi(k + 1) =λi(k) + ρ · (zi(k + 1) − α(k + 1)),∀i ∈ N

S6: Let k = k + 1. If k > kmax, or the consensus is achieved,
stop the iteration process; otherwise, go to S2, where kmax is
the maximum number of iterations.

each bus i ∈ N in this paper, and Kp
ij, Kp

ij are the voltage 550

sensitivity of bus i with respect to the active and reactive power 551

of bus j, which can be accessed by bus i. It is worth mentioning 552

Kp
ij, Kp

ij can be estimated by the proposed data-driven voltage 553

sensitivity estimation. 554

In addition, θ ′
ij, θ

′′
ij can be regarded as the variables associ- 555

ated with bus i. In this case, the objective function (16) as well 556

as the constraints (17a)-(17f) can be split into subproblems 557

related to each bus i ∈ N . Then, the only coupling constraint 558

is (17g). 559

To deal with the coupling constraint (17g), let λ = 560

{λi|i ∈ N }, where λi = {λj
i|j ∈ NG}, denote dual variables 561

associated with (17g), then the augmented Lagrangian function 562

can be written as: 563

Lρ(α, z,λ) =
n∑

i=1

L(i)
ρ (αi, zi,λi) 564

=
n∑

i=1

⎡

⎣Vaux
i +

∑

j∈NG

(
λ

j
i ·
(

zj
i − αj

)
+ ρ

2
· ‖zj

i − αj‖2
)
⎤

⎦ (18) 565

where ρ is a parameter. Based on ADMM, the 566

problem (16)-(17) can be solved in a distributed man- 567

ner, which is shown in detail in Algorithm 2: Distributed 568

Consensus-Based AARVVC. 569

As seen in S2 and S3 of Algorithm 2, each local agent is 570

assigned its own subproblem to obtain the optimal values of 571

zi(k) and then communicates zi(k) to the central agent using 572

the communication capacity of the inverters during the k-th 573

iteration. Then in step S4, the consensus-based ADMM also 574

simplifies the iteration process and the update of αj can be 575

realized by simply averaging all entries in the jth column of 576

z, and the values of αj are then sent back to corresponding 577
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Fig. 4. The modified IEEE-123 bus test system.

local agents. The local agents then update the dual vari-578

able λi based on the updated α, zi and the parameter ρ in579

step S5. The iteration process will stop until the consensus is580

achieved among all the local agents or the maximum number581

of iterations is reached.582

V. NUMERICAL RESULTS583

In this section, the proposed data-driven AARVVC is imple-584

mented on the modified IEEE-123 bus test system to test its585

performance. The modified IEEE-123 bus test system with586

PV generators is shown in Fig. 4. The base voltage for the test587

system is set to 4.16 kV and the base power is set to 100 kVA.588

The first-stage VVC strategy is run at a circle of 15 minutes589

based on the forecast PV generations to dispatch the switch-590

based discrete devices, e.g., OLTC, and determine the base591

reactive power set points for PV inverters. For the data-driven592

voltage sensitivity estimation process, 1500 scenarios are gen-593

erated by randomly setting the nodal power injections, and594

the real values of voltage sensitivities are obtained by invert-595

ing the Jacobian matrices. The dataset is split into three parts596

of training, validation, and testing, accounting for 80%, 10%,597

and 10% of data, respectively. The model training, parameter598

tuning, and testing are conducted offline, then the well-trained599

model can be utilized for online voltage sensitivity estimation.600

In the firs-stage VVC, the forecast PV penetration of this601

system is 47.79%. In the second-stage VVC, a 50% uncertainty602

interval is considered for each single PV, indicating the uncer-603

tainty set of the PV penetration of this system can be 23.89%604

to 71.68%. Note that the tap positions of discrete devices keep605

unchanged within the second stage. The reactive power of PV606

inverter is adjusted following the optimal affine ‘P-Q’ rule,607

determined by the proposed data-driven AARVVC. In the dis-608

tributed consensus-based AARVVC, the parameter ρ is set as609

0.01 and the maximum number of iterations is set as 100.610

A. Voltage Sensitivity Comparisons611

As discussed before, the data-driven voltage sensitivity612

estimation includes two main parts: the bus-selection process613

and the DNN-based voltage sensitivity estimation, where the614

Fig. 5. MAE versus the number of selected buses.

operating statuses of these selected buses are used as the input 615

of DNN for voltage sensitivity prediction. 616

To evaluate the impact of the number of selected buses 617

on the prediction accuracy, the mean average error (MAE) 618

is chosen as the evaluation metric, which can be expressed as 619

follows: 620

MAE = 1

nc

nc∑

i=1

∣
∣xi − x̂i

∣
∣ (19) 621

where nc is the number of entries of the predicted voltage 622

sensitivities, xi represents the real voltage sensitivity and x̂i is 623

the estimated voltage sensitivity. The number of features to 624

be selected by the bidirectional search process is an important 625

hyperparameter, since it reflects the number of buses whose 626

operation statuses are included in the voltage sensitivity esti- 627

mation. Setting different numbers of features to be selected by 628

the bidirectional search method and comparing the correspond- 629

ing MAE on the validation set, Figure 5 shows the relationship 630

of MAE versus the value of buses selected by BDS. As can 631

be seen Fig. 5, MAE first decreases sharply as the number of 632

selected buses increases, then MAE shows slight fluctuations 633

as the number of selected buses is greater than 20. It shows that 634

after the number of selected buses reaches 30, incorporating 635

operating statuses of more buses does not contribute much to 636

improving the prediction accuracy of voltage sensitivity. This 637

phenomenon indicates there is redundant information behind 638

the operating status of all the buses. 639

In this case, the number of selected buses to perform volt- 640

age sensitivity estimation is set to 30. The results of the 641

bus-selection process for the modified IEEE-123 bus test 642

system, selected by the proposed rule-based voltage sensitiv- 643

ity in Section IV, are depicted as red dots in Fig. 4. Those 644

selected buses are distributed across the distribution network. 645

It indicates information coming from almost all parts of the 646

distribution network is incorporated in those selected buses. 647

This might shed light on the reason why using the operat- 648

ing status of part of buses is enough to achieve the accurate 649

voltage sensitivity estimation. 650

Taking bus 7 as an example, Fig. 6 shows the actual and 651

estimated voltage sensitivities of each bus i ∈ N with respect 652

to the active and reactive power injection at bus 7, i.e., dVi/dp7 653

and dVi/dq7 for ∀i ∈ N . The actual voltage sensitives are cal- 654

culated by inverting the Jacobian matrix, which are regarded 655

as the benchmark, and the estimated voltage sensitivities are 656

calculated from the proposed data-driven voltage sensitivity 657
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Fig. 6. Actual and estimated voltage sensitivities with respect to active and
reactive power injections at bus 7.

estimation method. As shown in Fig. 6, the values of the658

estimated and actual voltage sensitivities are very close. It659

validates that the proposed data-driven voltage sensitivity esti-660

mation method provides accurate prediction of the voltage661

sensitivities by only making use of the information from the662

selected buses.663

B. Performance of the Distributed Consensus-Based664

AARVVC665

As important parameters, the voltage sensitivities with666

respect to bus power injections, to decide the slope of the667

affine ‘P-Q’ rule αi, it has been validated in Section V-A668

that the proposed data-driven voltage sensitivity estimation669

method can accurately predict voltage sensitivities. We further670

test the performance of our proposed Algorithm 2: Distributed671

Consensus-Based AAARVC.672

Once the estimated voltage sensitivities are given, the slope673

αi of the affine ‘P-Q’ rule for each PV inverter can be deter-674

mined by our proposed Algorithm 2: Distributed Consensus-675

Based AAARVC. Taking PV inverters at buses 7, 23, 50 and676

107 as an example, the adjustment slopes for those PV invert-677

ers, determined by the distributed consensus-based AAARVC,678

are shown in Fig. 7. The adjustment slopes for those PV invert-679

ers solved by the centralized optimization, i.e., the AARC680

problem (12) and (13) is solved in a centralized manner,681

are depicted in Fig. 7 as the benchmark. It can be observed682

from Fig. 7 that all those slopes, determined by the distributed683

consensus-based AAARVC, can converge to the benchmark,684

the slopes determined by the centralized optimization. It means685

that the optimal ‘P-Q’ rules can be accurately calculated686

by our proposed distributed consensus-based AAARVC in a687

hierarchical distributed manner.688

C. Algorithm Comparisons689

For algorithm comparisons, four different VVC schemes are690

considered:691

Scheme 1-First-stage VVC: Only the first-stage VVC is692

considered.693

Fig. 7. Slopes for PV inverters at buses 7, 23, 50, and 107.

TABLE I
NUMBER OF BUSES WITH VOLTAGE VIOLATIONS

UNDER ONE EXTREME SCENARIO

Scheme 2-Centralized AARVVC with accurate voltage sen- 694

sitives: The AARC problem (12) and (13) is solved in a 695

centralized manner, where the voltage sensitivities are obtained 696

by inverting the Jacobian matrix. 697

Scheme 3-Distributed consensus-based AARVVC with 698

accurate voltage sensitives: The AARC problem (12) and (13) 699

is solved in a distributed consensus-based manner, where the 700

voltage sensitivities are obtained by inverting the Jacobian 701

matrix. 702

Scheme 4-Our proposed data-driven AARVVC, i.e., dis- 703

tributed consensus-based AARVVC with estimated voltage 704

sensitives: The AARC problem (12) and (13) is solved in a 705

distributed consensus-based manner, where the voltage sen- 706

sitivities are estimated by the proposed data-driven voltage 707

sensitivity estimation method. 708

First, consider one extreme scenario, where all the PV gen- 709

eration is at the lowest level within the uncertainty set. The 710

voltage profiles of the modified IEEE-123 bus test system 711

under different schemes are presented in Fig. 8, and the num- 712

ber of buses with voltage violations is given in Table I. In 713

Fig. 8, the blue curves are the optimal voltage profiles deter- 714

mined in the first stage considering the forecast PV outputs, 715

the yellow curves represent the voltage profiles in different 716

schemes, and the red lines are voltage limits. As shown in 717

Fig. 8, there are voltage violations for a considerable number 718

of buses in Scheme 1. It indicates that without the second- 719

stage reactive power adjustment, the first-stage VVC can not 720

maintain the voltage profiles within the acceptable range. With 721

respect to Scheme 2 and Scheme 3, both of them utilize 722

the accurate voltage sensitivities. The only difference between 723



IE
EE P

ro
of

10 IEEE TRANSACTIONS ON SMART GRID

Fig. 8. The voltage profiles of different schemes under an extreme scenario.

Scheme 2 and Scheme 3 is the implementation manner, where724

Scheme 2 is centralized and Scheme 3 is distributed. The out-725

comes for Scheme 2 and Scheme 3 are virtually identical, it726

validates our proposed distributed consensus-based AAARVC727

can converge to the optimal solution solved by the central-728

ized optimization, but it is more scalable and practical. As729

shown in Table I, there is only one bus with voltage vio-730

lations for Scheme 1 and 2, where the lowest bus voltage731

magnitude for Scheme 2 and Scheme 3 is 0.949 p.u., which732

is very close to 0.95. For Scheme 4, its outcomes are very733

close to Scheme 2 and Scheme 3. The only minor differ-734

ence is the number of buses with voltage violations is 2 for735

Scheme 4, slightly larger than Schemes 2 and 3. Such a minor736

difference might be caused by the error between the accurate737

and estimated voltage sensitives. The extreme scenario shows738

that the proposed data-driven AARVVC can achieve a great739

performance in terms of voltage regulation.740

To further explore the performance of our proposed data-741

driven AARVVC for voltage regulation, a Monte-Carlo sim-742

ulation is carried out to randomly generate 1500 scenarios,743

where the PV active power output is uniformly sampled from744

its respective uncertainty interval. The distributions of bus volt-745

age magnitudes under different control schemes are presented746

in Fig. 9. As can be seen in Fig. 9, under Scheme 1, voltages747

can not be maintained within the pre-defined range and the748

lowest voltage can be lower than 0.94. For the other 3 schemes,749

voltages can always be maintained within the acceptable level750

in most scenarios. Table II provides the ratios of bus voltage751

violation under different schemes. Without the second-stage752

VVC, 7.73% buses are operated under voltage violations753

while the proposed data-driven AARVVC method can greatly754

Fig. 9. Distribution of system bus voltage under different control schemes.

TABLE II
PERCENTAGE OF BUSES WITH VOLTAGE VIOLATIONS

UNDER 1500 SCENARIOS

decrease the ratio to around 0.5%, which is very close to 755

the optimal performance of Scheme 2 and Scheme 3. The 756

lowest voltage for Scheme 4 is slightly lower than 0.95 p.u. 757

Note that Scheme 3 is also based on our proposed distributed 758

consensus-based AARVVC. Scheme 3 and Scheme 4 are more 759

scalable and require fewer computation burdens compared to 760

Scheme 2. Even though the performance of Scheme 4 is 761

slightly inferior to Scheme 3, it is more computationally effi- 762

cient as it intelligently relies on the DNN to predict voltage 763

sensitivities. 764

As summarized in Table III, the proposed AARVVC can 765

greatly improve the voltage issues in the system, but requires 766

only operation information from partial buses and no topol- 767

ogy information. With the hierarchical distributed solution 768

structure, it has better scalability and information privacy. 769

D. Comparisons With Other Techniques 770

To further demonstrate the performance of our proposed 771

AARVVC method, comparisons with two other voltage regu- 772

lation strategies are conducted. 773

The first one is the constant power factor (CPF) strategy. 774

As suggested in [2], DERs’ power factor settings can be spec- 775

ified by the system operator. Then local DERs can adjust the 776

reactive power following the power factor without exceeding 777

the inverters’ capability. In the first stage VVC, the optimal 778

set points of PV inverters’ reactive power qg can be obtained. 779

Based on pg and qg, the power factor can be calculated. Then 780

the second stage adjustment aims to maintain the constant 781

power factor as: 782

qg

pg
= qg + �qPF

pg + �pg
(20a) 783
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TABLE III
SUMMARY OF THE 4 SCHEMES

TABLE IV
COMPARISONS WITH OTHER TECHNIQUES

�qPF = qg

pg
· �p (20b)784

Another technique is the fixed droop control (FDC) sug-785

gested by [2] with a dead band. Under this control strategy, the786

PV inverter should control its reactive power output following787

a piecewise linear relationship with voltage.788

By conducting a Monte-Carlo simulation with 1500 ran-789

domly generated scenarios, the performance of different790

voltage regulation strategies is summarized in Table IV.791

Among all three strategies, our AARVVC achieves the best792

performance, with only 0.53% nodes experiencing voltage vio-793

lations. The CPF strategy performs worst. As a result, the794

voltage support from the PV inverters gets further weakened.795

With the default settings of parameters, the FDC can effec-796

tively reduce voltage violations, but the performance is not as797

good as the proposed AARVVC.798

E. Extension to Load Uncertainty799

It is worth mentioning that our proposed AARVVC can be800

easily extended to consider load uncertainties by making some801

minor modifications. See the Appendix for more details about802

it.803

In this subsection, to make our proposed AARVVC more804

generally applicable to various scenarios, the uncertainty of805

nodal active and reactive power loads is considered. For the806

second stage VVC, in addition to the PV uncertainty, a 10%807

percent uncertainty interval of both active and reactive power808

loads is considered for each bus.809

A Monte-Carlo simulation with 1500 randomly generated810

scenarios is carried out to test the performance of the extended811

AARVVC under the uncertainty of both loads and PV gen-812

eration. The PV active power outputs, as well as active813

and reactive power loads are uniformly sampled from their814

uncertain interval. For comparison, a base case without any815

second-stage adjustment is conducted.816

TABLE V
PERCENTAGE OF BUSES WITH VOLTAGE VIOLATIONS

As can be seen in Table V, our proposed AARVVC can also 817

effectively mitigate voltage issues with considerations of both 818

load and PV uncertainties. For the base case, the percentage of 819

bus voltage violations increases greatly to 20.74%, meanwhile 820

the lowest bus voltage can be as low as 0.927 p.u. In con- 821

trast, after the extended form of the AARVVC is carried out, 822

the occurrence of voltage violations is drastically reduced to 823

1.59% and the lowest bus voltage can be maintained at 0.948. 824

The results validate the capability of the extended AARVVC 825

to deal with the load uncertainty. 826

VI. CONCLUSION 827

This paper introduces a data-driven AARVVC strategy for 828

voltage regulation against PV and load uncertainties. The data- 829

driven AARVVC strategy includes two parts: the data-driven 830

voltage sensitivity estimation and the distributed consensus- 831

based AARVVC, which are performed in a distributed manner 832

with the estimated voltage sensitivities. The voltage sensitiv- 833

ities are efficiently predicted by the DNN with the operating 834

statuses of selected buses as the input. The effectiveness and 835

superiority of the proposed data-driven AARVVC strategy are 836

tested on the modified IEEE-123 bus test system. The results 837

show it can accurately and efficiently estimate voltage sensi- 838

tivities and achieve a good voltage regulation performance in 839

a distributed consensus-based manner. In the future, we will 840

take into account the network topology change. 841

APPENDIX 842

Extension to Load Uncertainties: The proposed AARVVC 843

method can be further extended to take the load uncertainty 844

into consideration. Let �pl and �ql denote the active and 845

reactive power load uncertainty, respectively. The voltage 846

deviations in (7) can be further expressed as follows: 847

�Vi =
n∑

j=1

Kp
ij ·
(
�pg

j − �pl
j

)
+ Kq

ij ·
(
�qg

j − �ql
j

)
, 848
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=
n∑

j=1

Kp
ij ·
(

�pg
j − �pl

j − Kq
ij

Kp
ij

∗ �ql
j

)

+ Kq
ij · �qg

j849

=
n∑

j=1

Kp
ij · �pi	

j + Kq
ij · �qg

j ,∀i, j ∈ N (21)850

Let �pi	
j = �pg

j − �pl
j −

Kq
ij

Kp
ij

∗ �ql
j, then equation (21) can be851

written as:852

�Vi =
n∑

j=1

Kp
ij · �pi	

j + Kq
ij · �qg

j ,∀i, j ∈ N (22)853

Note that �Vi considers the influences from both PV and854

load uncertainties here, instead of only PV uncertainties. The855

formulation in (12) and (13) can be reformulated as:856

min
n∑

i=1

Vaux
i (23)857

subject to:858

�p	
j ∈

[
�pi	

j ,�pi	
j

]
,∀j ∈ N (24a)859

Vaux
i ≥

n∑

j=1

(
Kp

ij + αj · Kq
ij

)
· �pi	

j ,∀i, j ∈ N (24b)860

Vaux
i ≥ −

n∑

j=1

(
Kp

ij + αj · Kq
ij

)
· �pi	

j ,∀i, j ∈ N (24c)861

Then the corresponding affinely adjustable robust counterpart862

can be written as:863

min
n∑

i=1

Vaux
i (25)864

for ∀i, j ∈ N , subject to:865

Vaux
i ≥

n∑

j=1

(
θ ′

ij · �pi	
j + θ ′′

ij · �pi	
j

)
(26a)866

Vaux
i ≥ −

n∑

j=1

(
θ ′

ij · �pi	
j + θ ′′

ij · �pi	
j

)
(26b)867

θ ′
ij ≥ 0 (26c)868

θ ′′
ij ≤ 0 (26d)869

θ ′
ij ≥ Kp

ij + αj · Kq
ij (26e)870

θ ′′
ij ≤ Kp

ij + αj · Kq
ij (26f)871

Similarly, this problem can be solved by our proposed872

AARVVC strategy to determine the ‘P-Q’ rule.873
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