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Abstract—The microgrid (MG) plays a crucial role in the1

energy transition, but its nonlinearity presents a significant2

challenge for large-signal power systems studies in the electro-3

magnetic transient (EMT) time scale. In this paper, we develop a4

large-signal linear MG model that considers the detailed dynam-5

ics of the primary and zero-control levels based on the Koopman6

operator (KO) theory. Firstly, a set of observable functions is7

carefully designed to capture the nonlinear dynamics of the MG.8

The corresponding linear KO is then analytically derived based9

on these observables, resulting in the linear representation of the10

original nonlinear MG with observables as the new coordinate.11

The influence of external input on the system dynamics is also12

considered during the derivation, enabling control of the MG.13

We solve the voltage control problem using the traditional linear14

quadratic integrator (LQI) method to demonstrate that textbook15

linear control techniques can accurately control the original non-16

linear MG via the developed KO-linearized MG model. Our17

proposed KO linearization method is generic and can be easily18

extended for different control objectives and MG structures using19

our analytical derivation procedure. We validate the effectiveness20

of our methodology through various case studies.21

Index Terms—Microgrid (MG), electromagnetic transient22

(EMT), Koopman operator (KO), large-signal modeling,23

microgrid voltage control.24

I. INTRODUCTION25

M ICROGRIDS (MGs) are localized small-scale power26

systems with the integration of various distributed27

energy resources (DERs) such as solar panels, wind turbines,28

or generators to provide electricity to local consumers [1],29

[2], [3], [4], [5]. They are not only essential for enhancing the30

resilience, reliability, and efficiency of the power network, but31

also key to energy transition and decarbonization [6]. MGs32

can operate autonomously or be connected to the main grid.33

In grid-connected mode, the MG is mainly governed by the34
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main grid. While in islanded mode, local controls are needed 35

to coordinate multiple DERs. 36

For simplifying the controller design, MG control is usu- 37

ally decoupled based on different time scales [1], [2]. Primary 38

and zero-control levels stabilize the DERs at the fastest and 39

lowest layer. The secondary control eliminates the steady-state 40

error caused by the droop characteristics. The tertiary control 41

focuses on economic dispatching and operation scheduling in 42

the slowest time scale. For the secondary control level, there 43

are two major approaches. One assumes that the zero-control 44

level can always guarantee stability and provide fast and accu- 45

rate reference tracking performance so that its dynamic model 46

can be reduced [7]. This approach significantly increases the 47

scalability of secondary control and enables large-scale system 48

analysis. However, it inevitably results in the loss of the faster 49

electromagnetic transient (EMT) [8], [9]. Moreover, large dis- 50

turbances such as data loss, outliers, time delays, etc. are 51

possible to happen in the feedback channel or actuator and 52

result in an inappropriate secondary control signal that finally 53

deteriorates the stability of the MG [10]. Therefore, another 54

approach is to design the secondary controller with consider- 55

ation of detailed dynamics of primary and zero-control levels 56

in the EMT time scale [11], [12]. Such an approach can cap- 57

ture faster dynamics and yield a more reliable control strategy, 58

nonetheless, the consideration of these dynamics consider- 59

ably increases the system order as well as complexifies the 60

nonlinearity of MGs [12]. 61

Control of inverter-based MGs based on a nonlin- 62

ear EMT model has been widely studied over the past 63

decade [11], [12], [13]. However, controller design for non- 64

linear systems is usually case-by-case and can hardly be 65

generalized to cope with different situations, such as time- 66

delays [10], uncertainties [14], [15], constraints [16], etc. 67

Thus, some studies sort to small-signal MG models based on 68

linearization around an equilibrium point [8], [9]. With these 69

models, one can use spectral tools to easily analyze the linear 70

dynamics of MGs and adopt textbook linear control tech- 71

niques to achieve various control objectives [17]. However, 72

the results obtained with small-signal models are only valid 73

within a neighborhood around the selected equilibrium. 74

Recently, the Koopman operator (KO) prevails as an 75

effective linearization method that can accurately capture 76

large-signal nonlinear dynamics. The essential idea is that 77

a nonlinear dynamical system can be represented by an 78

infinite-dimensional linear operator on a Hilbert space of 79
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vector-valued observable functions of system states [18].80

The existing KO identification approaches can be classi-81

fied into numerical (data-driven) and analytical (model-based)82

ones [19]. In numerical methods, a finite set of observable83

functions will be firstly designed based on the knowledge of84

dynamical system nonlinearity. Then, the KO will be identified85

using the system state’s measurement data pairs of snap-86

shots as it evolves in time. Representative methods include87

dynamic mode decomposition (DMD) [20], [21] and its exten-88

sions, such as extended DMD (EDMD) [22], and extended89

DMD with control (EDMDc) [23], etc. Especially from the90

MG control perspective, the KO is applied to the secondary91

control problem of MG in [24], [25]. Five observable func-92

tions are initiated and the KO is estimated by the EDMDc93

method with the assumption that the droop gains are known94

by the secondary controller. The assumption on the knowl-95

edge of local controllers is further relaxed and an enhanced96

observer Kalman filter to optimally identify the Koopman97

operator is proposed in [26]. The proposed approaches well98

fit the studied two-dimensional state-space model, nonethe-99

less, they cannot capture the faster dynamics in the EMT100

time scale since the zero-control level is not considered.101

There are two major challenges to extending such numerical102

methods to the MGs modeled with EMT: firstly, to capture103

the EMT dynamics, model-free data-driven methods require104

measurements of the lower control levels, nonetheless, these105

measurements are usually not available due to limited meters;106

secondly, the dynamics of the lower control level significantly107

lift the observable space, such that an exponentially increased108

volume of data pairs are required for the numerical methods109

to produce an accurate estimation of the KO.110

Another way to apply KO theory to high-order nonlinear111

systems is to use analytical methods that rely on the choice112

of observable functions [27]. If the observable functions are113

chosen perfectly, the nonlinear system can be represented in114

the lifted Hilbert space without any error. However, this is115

usually unachievable for most practical systems. A common116

strategy is to start with a set of observable functions and117

then expand them until the error between the nonlinear model118

and the KO linear model is sufficiently small [28]. Analytical119

methods provide an explicit linear model that does not need120

to be re-identified for different system settings as in numeri-121

cal methods. However, deriving the KO analytically usually122

depends on the specific nonlinear dynamics of a practical123

system. For instance, [28] studied a nonlinear attitude con-124

trol problem using the KO and selected the observables as the125

first nth-order derivatives of attitude dynamics. In [29], the KO126

was used to generate approximate analytical solutions for the127

motion of a satellite orbiting a non-spherical celestial body128

with zonal harmonics. It showed that the KO could capture129

any order of zonal harmonics without changing the methodol-130

ogy. To our best knowledge, no existing study has applied an131

analytical KO derivation method to MG control problems.132

This paper proposes an analytical KO-based large-signal133

model linearization approach for inverter-dominated islanded134

MGs. The approach considers the detailed dynamics of pri-135

mary and zero-control levels in the EMT time scale. To136

capture the nonlinear dynamics of the MG, we design a set of137

observables meticulously. Then, a KO is derived analytically138

Fig. 1. Overall diagram of a nonlinear MG system model.

to represent the original nonlinear MG linearly with these 139

observables as the new coordinate. To demonstrate that stan- 140

dard linear techniques are conveniently applicable, we solve 141

the voltage control problem using the conventional linear 142

quadratic integrator (LQI) method as an example. The main 143

contributions of this paper are summarized as follows: 144

• A novel linear EMT MG model considering dynamics of 145

primary and zero-control levels is proposed based on the 146

KO theory that represents the nonlinear MG linearly with 147

a finite set of tailored observable functions. 148

• Analytically derived KO is utilized to capture the nonlin- 149

ear dynamics of the MG, thereby avoiding the need for 150

huge data sets required by numerical approaches for high- 151

dimensional complex nonlinear systems. Furthermore, the 152

proposed KO-based model can be smoothly embedded 153

into sophisticated linear control schemes. 154

• The proposed analytical KO-based model linearization 155

methodology is generic and can be extended to other MGs 156

with different control structures and topologies. 157

II. PRELIMINARIES 158

This section introduces a widely-used nonlinear MG model 159

that forms the foundation for deriving the KO-linearized model 160

in Section III. Additionally, the KO theory is briefly presented, 161

with a focus on external control inputs that facilitate the use 162

of linear control techniques. 163

A. MG Modeling 164

This section introduces the detailed nonlinear mathematical 165

model of an MG based on [8]. Figure 1 shows the schematic of 166

the overall MG model that is operating in the islanded mode. 167

The mathematical models are derived for each component of 168

the MG in the following subsections. 169

1) Power Calculation and Droop Control: The active and 170

reactive power produced by the system can be determined by 171

analyzing the transformed output voltage, vodq, and current, 172
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iodq. To obtain the filtered instantaneous powers, a low-pass173

filter with a corner frequency of ωc can be utilized, which174

yields the following results:175

Ṗi = −Piωci + ωci
(
vodiiodi + voqiioqi

)
, (1a)176

Q̇i = −Qiωci + ωci
(
voqiiodi − vodiioqi

)
. (1b)177

When operating in islanded mode, a DER lacks reference178

inputs from the main grid, necessitating the use of droop con-179

trollers to generate its own voltage and frequency references.180

The process can be achieved through the following steps:181

ωi = ωn − DPiPi, (2a)182

v∗
odi = vseti − DQiQi, (2b)183

v∗
oqi = 0. (2c)184

where ωn and vseti are nominal frequency and voltage set-185

points, respectively. The detailed determination of droop gains186

DPi and DQi can be found in [8], [12].187

2) Voltage and Current Controllers: The DER output volt-188

ages and inductor currents are usually controlled via the189

standard proportional–integral (PI) method at the zero level.190

As shown below, the voltage controllers are designed to reg-191

ulate the DER output voltages to their references which are192

generated by the droop control at the primary level:193

φ̇di = v∗
odi − vodi, (3a)194

i∗ldi = Kiviφdi + Kpviφ̇di + Fiiod − ωnCfivoq, (3b)195

φ̇qi = v∗
oqi − voqi, (3c)196

i∗lqi = Kiviφqi + Kpviφ̇qi + Fiioq + ωnCfivod. (3d)197

The commanded voltage reference, v∗
ldqi, is generated by198

the current controllers through the computation of the error199

between the reference inductor currents, i∗ldqi, and correspond-200

ing feedback measurements, ildqi:201

γ̇di = i∗ldi − ildi, (4a)202

v∗
idi = −ωnLfiilqi + Kiciγdi + Kpciγ̇di, (4b)203

γ̇qi = i∗lqi − ilqi, (4c)204

v∗
iqi = ωnLfiildi + Kiciγqi + Kpciγ̇qi. (4d)205

3) LC Filters and Coupling Inductors: By assuming that206

the inverter produces the demanded voltage, i.e., vidi = v∗
idi,207

viqi = v∗
iqi, the dynamical models of LC filters and coupling208

inductors are as follows209

i̇ldi = (−rfiildi + vidi − vodi)/Lfi + ωiilqi, (5a)210

i̇lqi = (−rfiilqi + viqi − voqi
)
/Lfi − ωiildi, (5b)211

v̇odi = (ildi − iodi)/Cfi + ωivoqi, (5c)212

v̇oqi = (
ilqi − ioqi

)
/Cfi − ωivodi. (5d)213

i̇odi = (−rciiodi + vodi − vbdi)/Lci + ωiioqi, (5e)214

i̇oqi = (−rciioqi + voqi − vbqi
)
/Lci − ωiiodi, (5f)215

4) Transforming Local Reference Frame to Global Frame:216

The above mathematical model of each DER is developed in217

their own local d − q reference frame. Suppose that the local218

d − q reference frame of the ith DER is rotating at ωi and the219

global D − Q reference frame is rotating at ωcom. Then, we220

can connect each individual DER to the network by using the221

following rotation transformation:222

[
xDi

xQi

]
=
[

cos δi − sin δi

sin δi cos δi

][
xdi

xqi

]
(6) 223

where x generally represents each state variable in (1)-(5). δi 224

is the difference between the global reference phase and the 225

local one of the ith DER, which is defined as 226

δ̇i = ωi − ωcom (7) 227

For islanded MGs, the first DER is selected as the common 228

global reference in the following derivation, i.e., ωcom = ω1. 229

5) Network Model: The network model is developed in the 230

global reference frame. The dynamic model of the ith (i = 231

1, . . . , q) line current between bus j and bus k is represented 232

as follows, 233

i̇linei = (
vbDj − vbDk − rlineiilinei

)
/Llinei + ωiilineQi, (8a) 234

i̇linei = (
vbQj − vbQk − rlineiilinei

)
/Llinei − ωiilineDi. (8b) 235

6) Load Model: As in [8], purely resistive loads and 236

resisters and inductors (RL loads) are considered. The purely 237

resistive loads directly follow Ohm’s law without dynamics. 238

While the ith (i = 1, . . . , p) RL load can be modeled as, 239

i̇loadDi = (vbDi − RloadiiloadDi)/Lloadi + ωiiloadQi, (9a) 240

i̇loadQi = (
vbQi − RloadiiloadQi

)
/Lloadi − ωiiloadDi. (9b) 241

The frequency is constant throughout the network, thus the 242

dynamic equations of lines and loads can adopt ω1 derived 243

from the first inverter [9]. 244

7) Virtual Resistor Method: As shown in (5), (8) and (9), 245

the bus voltages are treated as inputs to each subsystem, such 246

that the influences of load perturbation could not be precisely 247

predicted [9]. To define the bus voltage, a virtual resistor is 248

assumed between each bus and the ground. By selecting a suf- 249

ficiently large resistance rn for the virtual resistor, its impact 250

on the system dynamics can be negligible. Then, the bus volt- 251

age connecting the inverters, loads and the network can be 252

defined as 253

vbDi = rn

⎛

⎝ioDi − iloadDi +
N∑

j=1

ilineDi,j

⎞

⎠, (10a) 254

vbQi = rn

⎛

⎝ioQi − iloadQi +
N∑

j=1

ilineQi,j

⎞

⎠ (10b) 255

where N is the number of lines connected to bus i. Care 256

should be taken on the direction of line currents in the last 257

term of (10). We assume the current entering the bus to be 258

positive and the current leaving the bus to be negative. 259

B. Compact Nonlinear Model of an MG for Voltage Control 260

For the ease of deriving KO for the MG system, we stack up 261

the state variables to form a compact state space model. From 262

the viewpoint of voltage control, an inverter-based islanded 263

MG with m DERs, p RL loads, and q lines can be represented 264

as follows: 265

ẋ(t) = f(x(t), u(t)), (11) 266

where x = [x�
inv1, . . . , x�

invm, x�
line1,. . . , x�

lineq, 267

x�
load1, . . . , x�

loadp]� is the state vector of 268
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inverters, lines and loads; xinvi = [δi, Pi, Qi,269

φdi, φqi, γdi, γqi, ildi, ilqi, vodi, voqi, iodi, ioqi]�, i = 1, . . . , m,270

denotes the state variables of the ith DER;271

xlinei = [ilineDi, ilineQi]�, i = 1, . . . , q, are the currents272

of the ith line; xloadi = [iloadDi, iloadQi]�, i = 1, . . . , p,273

are the currents of the ith load; u = [vset1, . . . , vsetm]�274

denotes the voltage control signal to be designed. Denoting275

n = 13m + 2p + 2q, f : R
n × R

m → R
n is the state276

function describing the nonlinear system dynamics. This277

high-dimensional dynamic model represents the detailed278

transient dynamics of the whole MG in the EMT time scale,279

thus facilitating fast dynamical analysis and control.280

C. Brief Introduction of Koopman Operator Theory281

The MG system described in (11) comprehensively models282

the primary and zero-control levels, resulting in a high-283

dimensional nonlinear system. Despite the increasing impor-284

tance of stability analysis and controller design for dynamical285

systems, the system’s nonlinearity presents a significant chal-286

lenge for comprehensive analysis. Traditional nonlinear con-287

trol methods, in particular, exhibit low generality and require288

complex potential function designs. From a practical stand-289

point, it is crucial to develop an accurate large-signal linearized290

MG model that bridges existing mature linear control methods291

and the nonlinear MG system.292

The KO theory has gained considerable attention in nonlin-293

ear control theory and application as an effective linearization294

method that can accurately capture large-signal nonlinear295

dynamics. The fundamental concept of KO theory is to repre-296

sent a nonlinear system as an infinite-dimensional linear oper-297

ator on a Hilbert space of vector-valued observable functions g298

of system states. Recalling the MG system model (11), where299

x and u evolve on smooth manifolds M and N , respectively,300

we define the observable vector z = g(x, u):M × N → R
N .301

Then, with an infinite-dimensional linear operator acting on302

the observable functions, the system dynamics of (11) can be303

described linearly in this Hilbert space, i.e.,304

Kg(x, u) = dg(x, u)

dt
= f1

∂g
∂x1

+ · · ·305

+ fn
∂g
∂xn

+ u̇1
∂g
∂u1

+ . . . + u̇m
∂g
∂um

. (12)306

where x = [x1, . . . , xn] and u = [u1, . . . , um]. In Eq. (12), we307

follow the assumption in [25] that the control signals influ-308

ence the state evolution, but they are not evolving dynamically,309

i.e., u̇ = 0. The above equation (12) indicates that the KO310

intrinsically describes the dynamical evolution of the obser-311

vation of the state and input g(x, u) in a linear manner as312

illustrated in Fig. 2. Therefore, it sheds light on analyzing313

the system dynamics with spectral methods and design con-314

trollers with the existing general linear control methodologies315

for nonlinear systems (11) in the KO-oriented linear space.316

From a practical engineering perspective, it is important317

to note that an infinite-dimensional system is not feasible.318

Therefore, the key to utilizing KO theory lies in identify-319

ing an appropriate set of finite-dimensional observables and320

the corresponding KO that captures the primary dynamics321

in the Hilbert space. In the following section, we develop a322

Fig. 2. Illustration of the KO theory. The upper row illustrates that a dynamic
system can be measured by an infinite set of observable functions g. The
lower row explains that the KO, K, describes the dynamical evolution of the
observation of the state and input, g(x, u), in a linear manner.

KO-linearized MG model with finite-dimensional observables 323

using an analytical approach. 324

III. DERIVATION OF KO-LINEARIZED MG MODEL 325

In this section, we present an analytical method to develop 326

a KO-linearized model of the MG system (11) in the EMT 327

time-scale, which is proposed for the first time. The deriva- 328

tion process involves several steps. First, assumptions are made 329

to eliminate the nonlinearities that have negligible impact on 330

the model accuracy. Second, we rearrange the elements in x 331

to separate the linear and nonlinear terms of the system (11). 332

Third, the KO theory is applied to eliminate the nonlinear 333

terms by designing and extending tailored observable func- 334

tions. The selection of appropriate observable functions is 335

crucial to ensure the stabilizability of the new linear system 336

for MG voltage control. Finally, we present the KO-linearized 337

model in a concise form. 338

A. Assumptions 339

To simplify the derivation, we make some reasonable 340

assumptions: 1) Since DER 1 is chosen as the common global 341

reference, the difference angle between its global and local 342

reference frame is δ1 = 0 with a zero initial value based on 343

Eq. (7). Therefore, around the equilibrium, δi are small and 344

we can approximate that sin δi ≈ δi and cos δi ≈ 1; 2) Since 345

the P − ω droop gain is minuscule, we assume ωi ≈ ωn only 346

in the coupling inductor terms in LC filters (5) and line cur- 347

rents (8). 3) More common resistive loads are considered in 348

the following derivation to reduce the load dynamics. We rig- 349

orously test the model error caused by these assumptions in 350

Section V-C under different conditions. The result shows that 351

these assumptions are valid and acceptable. 352

B. Separating Linear and Nonlinear Subsystems 353

Based on the above assumptions, some state variables 354

exhibit linear dynamics with respect to the system state x from 355

Eq. (1) to Eq. (10). We simplify the derivation by directly 356

extracting and incorporating these linear equations into the 357

final KO-linearized model and addressing the remaining non- 358

linear dynamics with the KO. 359
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1) Linear Subsystems: Define state vector whose dynamics360

linearly depends on x as361

xLi = [
δi, φdi, φqi, γdi, γqi, ildi, ilqi, vodi, voqi

]�
,362

i = 2, . . . , m. (13)363

Since DER 1 is selected as the common reference, it has364

sin δ1 = 0, cos δ1 = 1 with δ1(0) = 0. Then, for DER 1, the365

nonlinearities caused by frame transformation (6) for vbd1 and366

vbq1 are eliminated, such that (5e)-(5f) become linear equations367

with i = 1, i.e.,368

xL1 = [
φd1, φq1, γd1, γq1, ild1, ilq1, vod1, voq1, iod1, ioq1

]�
. (14)369

The state-space model with respect to xL = [x�
L1, . . . , x�

Lm]�370

is derived respectively as371

ẋL1 = Ainv1xL1 + A1
[
Q1, ilineD1, ilineQ1

]� + B1vset1, (15)372

ẋLi = AinvixLi + Ai
[
P1, Pi, Qi, iodi, ioqi

]� + Bivseti (16)373

where Ainv1, Ainvi, A1 and Ai are given in (17)-(20),374

respectively and B1 = [1, 0, Kpv1, 0, b1, 0, 0, 0, 0, 0]�, Bi =375

[0, 1, 0, Kpvi, 0, bi, 0, 0, 0]� for i = 2, . . . , m; moreover376

ai,1 = KpciKpviDQi

Lfi
, ai,2 = KpciKivi

Lfi
, ai,3 = Kici

Lfi
,377

ai,4 = rfi + Kpci

Lfi
, ai,5 = 1 + KpciKpvi

Lfi
, ai,6 = KpciωnCfi

Lfi
,378

ai,7 = KpciFi

Lfi
, ai,8 = rci

Lci
+ Rloadirn

Lci(rn + Rloadi)
,379

ai,9 = Rloadirn

Lci(rn + Rloadi)
, bi = KpciKpvi

Lfi
, for i = 1, . . . , m.380

Ainv1 =

⎡

⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 − 1 0 0 0

0 0 0 0 0 0 0 − 1 0 0

Kiv1 0 0 0 − 1 0 − Kpv1 − ωnCf1 F1 0

0 Kiv1 0 0 0 − 1 ωnCf1 − Kpv1 0 F1

a1,2 0 a1,3 0 − a1,4 0 − a1,5 − a1,6 a1,7 0

0 a1,2 0 a1,3 0 − a1,4 a1,6 − a1,5 0 a1,7

0 0 0 0 1
Cf1

0 0 ωn − 1
Cf1

0

0 0 0 0 0 1
Cf1

− ωn 0 0 − 1
Cf1

0 0 0 0 0 0 1
Lc1

0 − a1,8 ωn

0 0 0 0 0 0 0 1
Lc1

− ωn − a1,8

⎤

⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

381

(17)382

Ainvi =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 0 − 1

0 Kivi 0 0 0 − 1 0 − Kpvi − ωnCfi

0 0 Kivi 0 0 0 − 1 ωnCfi − Kpvi

0 ai,2 0 ai,3 0 − ai,4 0 − ai,5 − ai,6

0 0 ai,2 0 ai,3 0 − ai,4 ai,6 − ai,5

0 0 0 0 0 1
Cfi

0 0 ωn

0 0 0 0 0 0 1
Cfi

− ωn 0

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

(18)383

A1 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎣

−DQ1 0 0

0 0 0

−Kpv1DQ1 0 0

0 0 0

−a1,1 0 0

0 0 0

0 0 0

0 0 0

0 a1,9 0

0 0 − a1,9

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

(19)384

Ai =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

DP1 − DPi 0 0 0

0 0 − DQi 0 0

0 0 0 0 0

0 0 − KpviDQi Fi 0

0 0 0 0 Fi

0 0 − ai,1 ai,7 0

0 0 0 0 ai,7

0 0 0 − 1
Cfi

0

0 0 0 0 − 1
Cfi

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

(20) 385

2) Nonlinear Subsystems (DER Output Power): We rewrite 386

the dynamics of active and reactive powers (1) as 387

[
Ṗi

Q̇i

]

︸︷︷ ︸
ẋpqi

= −
[
ωci 0
0 ωci

]

︸ ︷︷ ︸
Wci

[
Pi

Qi

]

︸︷︷ ︸
xpqi

388

+
[
ωci 0
0 ωci

]

︸ ︷︷ ︸
Wci

[
vodi voqi

voqi − vodi

]

︸ ︷︷ ︸
Voi

[
iodi

ioqi

]

︸ ︷︷ ︸
Ioi

�
[

zi,1
zi,2

]

︸ ︷︷ ︸
zi,1

. (21) 389

In (21), zi,1 is a designed observable vector. For the control 390

perspective, we take the second derivative of zi,1 until the con- 391

trol signal u appears in the second derivative of DER output 392

voltage v̈odi. The derivation process is as follows, 393

żi,1 = −Wcizi,1 + Wci
(
V̇oiIoi + V̇oiİoi

)
� zi,2, (22) 394

żi,2 = −Wcizi,2 + Wci
(
V̈oiIoi + 2V̇oiİoi + VoiÏoi

)
. (23) 395

Define the second term at the right-hand side of (23) as Upqi: 396

Upqi = Wci
(
V̈oiIoi + 2V̇oiİoi + VoiÏoi

)
397

= Wci

([
v̈oqiioqi

v̈oqiiodi

]
+ 2V̇oiİoi + VoiÏoi +

[
v̈odiiodi

−v̈odiioqi

])
398

� fpqi(x) + Bpqiu (24) 399

where fpqi(x) is a nonlinear vector-valued function of x that 400

can be extracted by substracting Bpqiu from Upqi and 401

Bpqi =
[

biωciiodi
Cfi

0 0

− biωciioqi
Cfi

0 0

]

402

In conclusion, we define the observable vector for the 403

nonlinear subsystems with respect to DER output power as 404

zpqi =
[
x�

pqi, z�
i,1, z�

i,2

]�
, i = 1, . . . , m. (25) 405

3) Nonlinear Subsystems (Currents of DERs and Network): 406

Since the DER output currents are coupled with the network 407

currents, we handle them together and define 408

xnet = [
iodi, ioqi, ilineDj, ilineQj

]�
, 409

i = 2, . . . , m, j = 1, . . . , q. (26) 410

Then, from (5e)-(10), we rewrite the state equations as 411

ẋnet = Anetxnet + Hξ + Dxnet � znet1, (27) 412

The positions of elements in Anet, H, and D depend on the 413

topology of the MG. To illustrate the derivation, we take a 414

test system shown in Fig. 3 as an example. Then, xnet = 415

[iod2, ioq2, iod3, ioq3, ilineD1, ilineQ1, ilineD2, ilineQ2]�, ξ = [iod1, 416
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Fig. 3. Diagram of the test MG system.

ioq1, vod2, voq2, vod3, voq3]� and the matrices are given as417

follows,418

Anet =

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎣

−a2,8 ωn 0 0 − a2,9 0 a2,9 0

−ωn − a2,8 0 0 0 a2,9 0 − a2,9

0 0 − a3,8 ωn 0 0 − a3,9 0

0 0 − ωn − a3,8 0 0 0 a3,9

− rn
Lline1

0 0 0 − a10 ωn
rn

Lline1
0

0 − rn
Lline1

0 0 − ωn − a10 0 rn
Lline1

rn
Lline2

0 − a13 0 rn
Lline2

0 − a11 ωn

0 rn
Lline2

0 − a13 0 rn
Lline2

− ωn − a11

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎦

419

(28)420

H =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 1
Lc2

0 0 0

0 0 0 1
Lc2

0 0

0 0 0 0 1
Lc3

0

0 0 0 0 0 1
Lc3

a12 0 0 0 0 0

0 a12 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

(29)421

D =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

0 0 0 0 0 − a2,9δ2 0 a2,9δ2

0 0 0 0 a2,9δ2 0 − a2,9δ2 0

0 0 0 0 0 0 0 − a3,9δ3

0 0 0 0 0 0 a3,9δ3 0

0 rnδ2
Lline1

0 0 0 0 0 0
−rnδ2
Lline1

0 0 0 0 0 0 0

0 −rnδ2
Lline2

0 a13δ3 0 0 0 0
rnδ2
Lline2

0 − a13δ3 0 0 0 0 0

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

422

(30)423

where the parameters a10 to a13 are defined as424

a10 = rline1 + rn

Lline1
+ Rload1rn

Lline1(Rload1 + rn)
,425

a11 = rline2 + rn

Lline2
+ Rload3rn

Lline2(Rload3 + rn)
,426

a12 = Rload1rn

Lline1(Rload1 + rn)
, a13 = Rload3rn

Lline2(Rload3 + rn)
427

For the control purpose, we take the second derivative of428

znet1 until the control signal u appears in the second derivative429

of v̈odi in ξ̈. The derivation process is as follows,430

żnet1 = Anetznet1 + Hξ̇ + Ḋxnet + Dznet1 � znet2, (31)431

żnet2 = Anetznet2 + D̈xnet + 2Ḋznet1 + Dznet2 + Hξ̈. (32)432

Define the control vector Unet as (33). Note that znet1 and znet2433

can be represented with x, and u can be extracted from ξ̈, thus434

the control vector Unet can be separated as follows, 435

Unet = D̈xnet + 2Ḋznet1 + Dznet2 + Hξ̈ 436

= D̈xnet + 2Ḋznet1 + Dznet2 + Hξ̈∗
︸ ︷︷ ︸

fnet(x)

+Bnetu (33) 437

where ξ̈∗ = ξ̈ − Bnetu, Bnet = HB̄net and 438

B̄net =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0
0 0 0
0 b2 0
0 0 0
0 0 b3
0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

(34) 439

In conclusion, we define the observable vector for the nonlin- 440

ear subsystems with respect to DER output currents and the 441

network as 442

znet =
[
x�

net, z�
net1, z�

net2

]�
. (35) 443

Remark 1: The treatment in the KO derivations (21)- 444

(24) and (27)-(33) embodies a comparable concept to that 445

of input-state feedback linearization. However, their intrinsic 446

philosophies diverge significantly. Primarily, input-state feed- 447

back linearization endeavors to eliminate all nonlinearities in 448

the state space by determining appropriate changes in state 449

variables and employing feedback control laws. This process 450

remains confined to the state space and typically does not 451

result in an increase in state or input dimensions. Conversely, 452

the proposed analytical method linearly represents the non- 453

linear MG system in a lifted observable space and control 454

input space, which constitutes the fundamental characteristic 455

of KO. Secondly, while input-state feedback can yield a per- 456

fectly linear model, achieving input-state feedback lineariza- 457

tion necessitates meeting a series of feedback-linearizable 458

conditions to guarantee the existence of a solution. These 459

feedback-linearizable conditions (e.g., [30, Th. 13.2]) may not 460

be applicable to MG and can be difficult to verify for high- 461

order nonlinear systems. In contrast, the KO-based method 462

can consistently furnish an approximated (or ideally, a per- 463

fect, contingent upon the impeccable selection of observables 464

or infinite-dimensional considerations) linear model. Finally, 465

due to the fundamentally distinct overall derivation philosophy, 466

the final KO-linearized model (36) deviates from Brunovsky’s 467

canonical form as seen in feedback linearization. 468

C. Overall KO-Linearized MG Model 469

Defining the observable vector of the overall MG system 470

as z = [x�
L , z�

pq1, . . . , z�
pqm, z�

net]
� ∈ R

N , the KO-linearized 471

model can be concluded as 472

ż = Az + BU, (36a) 473

y = Cz (36b) 474

where y = [vod1, . . . , vodm]� ∈ R
M is the output vector, which 475

can be extracted from the state vector with matrix C, U = 476

[u�, U�
pq1, . . . , U�

pqm, U�
net] is the lifted control input vector to 477

be designed according to the control performance requirement. 478
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Fig. 4. Closed-loop MG control system based on the KO-linearized model and LQI. The LQI gain is K = R−1B̃�P.

Take the system in Fig. 3 as an example, m = 3 and N = 70.479

Then the corresponding matrices A and B are derived as below480

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ainv1 0 0 A1
1 0 0 A2,3

1 0 0

0 Ainv2 0 A1
2 A2,3

2 0 A4,5
2 0 0

0 0 Ainv3 A1
3 0 A2,3

3 A4,5
3 0 0

0 0 0 Aω1 0 0 0 0 0

0 0 0 0 Aω2 0 0 0 0

0 0 0 0 0 Aω3 0 0 0

0 0 0 0 0 0 0 I8 0

0 0 0 0 0 0 0 0 I8

0 0 0 0 0 0 0 0 Anet

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

70×70

481

B = [
B1 B2 B3

]
70×17482

where the blocks regarding Ainvi (i = 1, . . . , 3) at the upper-483

left of A correspond to the linear parts of the inverter models;484

the blocks regarding Aj,k
i at the upper-middle of A correspond485

to the linear part of DER output power and currents; the blocks486

regarding Aωi (i = 1, . . . , 3) at the middle of A correspond487

to the nonlinear part of DER output power and currents; the488

blocks regarding Anet and I at the lower-right of A correspond489

to the network topology. B has a similar arrangement.490

For simplification, we define the elements in A and491

B with MATLAB language (e.g., A1(:, 2:3) means the492

second to the third columns of matrix A1 and “;”493

denotes line break) A1
1 = [010×1,A1(:, 1), 010×4], A2,3

1 =494

[010×4,A1(:, 2:3), 010×2], A1
2 = [A2(:, 1), 09×5], A2,3

2 =495

[A2(:, 2:3), 09×4], A4,5
2 = [A2(:, 4:5), 09×6], A1

3 =496

[A3(:, 1), 09×5], A2,3
3 = [A3(:, 2:3), 09×4], A4,5

3 =497

[09×2,A3(:, 4:5), 09×4], ki = [1, 0, Kpvi0, bi]� for i = 1, 2, 3.498

B1 = [k1, 01×65; 01×11, k2, 01×54; 01×20, k3, 01×45]�, B2 =499

[02×32, I2, 02×36; 02×38, I2, 02×30; 02×44, I2, 02×24]�, B3 =500

[062×8; I8], and501

Aωi =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 − ωci 0
0 0 0 0 0 − ωci

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.502

503

Remark 2: One of the benefits of model-based KO identifi-504

cation methods over data-driven ones is their scalability, which505

stems from the absence of data requirements. The proposed506

analytical KO identification methodology has a modular design 507

that facilitates the scaling up of the MG. This can be achieved 508

by simply inserting additional block matrices at the appropri- 509

ate locations in the KO-linearized system matrices A and B, 510

and then adjusting the matrix Anet to reflect the new network 511

topology. 512

Remark 3: The purpose of the KO-linearized model (36) is 513

to enable general linear control techniques that are still effec- 514

tive for the original nonlinear system. In practical application, 515

the lifted-dimensional controller U will be designed based on 516

the auxiliary linear model (36) using any general linear con- 517

trol methods. Then, an analytical actual control signal u will 518

be obtained from U. Finally, u will be applied to the original 519

nonlinear MG system (11). It should also be noted that since 520

part of system dynamics F(x) is included in the control term 521

BU, one should not expect stability of the original nonlin- 522

ear model (11) can be analyzed through the eigenvalues of A 523

(assuming zero input) as usually done in small-signal models. 524

This problem is further discussed in the case study section. 525

IV. VOLTAGE CONTROL OF MG BASED ON THE 526

KO-LINEARIZED MODEL 527

A critical contribution of this work is that users can select 528

any linear control methods according to their requirements on 529

their control objectives. In this section, we use MG’s volt- 530

age restoration problem as an example to demonstrate how to 531

use the above-developed linear MG model based on the KO 532

theory. The control objective is to eliminate the steady-state 533

errors between the output voltages of DERs and their reference 534

values caused by the droop characteristics [2]. 535

A. Controller Design Based on KO-Linearized Model 536

With LQI 537

To achieve zero-offset voltage regulation and facilitate easy 538

deployment, the optimal control method LQI is adopted in this 539

Section [17]. 540

Firstly, as shown in the very left block in Fig. 4, an inte- 541

grator that dynamically feeds back the integral of the offset 542

between DER output voltages and their references is designed 543

as follows, 544

żI = yref − y, (37) 545
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where zI denotes the error dynamics of the integrator and yref546

contains the voltage setpoints to be tracked.547

Then, by defining new state vector z̃ � [z� − z�∞, z�
I ]�,548

control input vector Ũ = [U − U∞] and output offset vector549

ỹ(k) = y(k) − yref, the bias system is derived as follows,550

˙̃z = Ãz̃ + B̃Ũ, (38a)551

ỹ = C̃z̃ (38b)552

where the system matrices of the above-augmented system are553

given as554

Ã =
[

A 0
−C 0

]
, B̃ =

[
B
0

]
, C̃ = [

C 0
]
. (39)555

Finally, to achieve offset-free setpoint tracking, the steady-556

state values z∞ and U∞ should satisfy557

[
A B
C 0

][
z∞
U∞

]
=
[

0
yref

]
. (40)558

Considering the following optimal performance index for559

the continuous-time system (38),560

J = 1

2

∫ ∞

t=0

(
z̃�Qz̃ + Ũ�RŨ

)
dt, (41)561

where Q and R are weighting matrices. The optimal control562

law minimizing J is derived as563

Ũ = −R−1B̃�Pz̃, (42)564

U = −R−1B̃�Pz̃ + U∞, (43)565

where P is the unique positive definite solution to the following566

continuous-time algebraic Riccati equation567

Ã�P + PÃ − PB̃R−1B̃�P + Q = 0. (44)568

When the bias system (38)-(40) is stabilized by Ũ in569

Eq. (42), it is equivalent that: a) the KO-linearized model (36)570

is stabilized; b) the DER output voltages of (36), y is regulated571

to the setpoint yref with zero offsets, since żI = yref − y = 0.572

B. Recovering Lower-Dimensional Control Signal for the573

Original MG System From the Lifted Control Vector574

Note that the lifted control vector U ∈ R
M of the KO-575

linearized model (36) is of higher dimensional than the control576

vector u ∈ R
m of the original nonlinear MG model (11). Thus,577

the lifted control signal U is not directly applicable. Since the578

first three elements of U are just u, one can use them as the579

control inputs of the original MG system. However, such a580

choice is no longer optimal due to the loss of information of581

the other elements in U. Therefore, we propose the following582

optimal control signal recovery method.583

Denote Upq = [Upq1, . . . , Upqm]�, Bpq =584

[Bpq1, . . . ,Bpqm]� and fpq = [fpq1, . . . , fpqm]�, from (24)585

and (33), it has586

BU = B1u + B2Upq + B3Unet587

= B1u + B2
(
fpq(x) + Bpqu

) + B3(fnet(x) + Bnetu)588

= B2fpq(x) + B3fnet(x)
︸ ︷︷ ︸

F(x)

+ (
B1 + B2Bpq + B3Bnet

)

︸ ︷︷ ︸
B

u589

(45)590

Fig. 5. Dynamic responses of DER output voltages of the test MG.

Notice that matrix B is not a square matrix such that u cannot 591

be directly retrieved via B−1. Therefore, we optimally recover 592

u from U by solving the following least square problem, 593

min
1

2
(Bu − (BU − F(x)))�(Bu − (BU − F(x))) (46) 594

whose solution is 595

u =
(
B�B

)−1B�(BU − F(x)). (47) 596

By substituting (43) into (47), the controller for original 597

MG (11) is obtained as follows 598

u =
(
B�B

)−1B�(BU∞ − BR−1B̃�Pz̃ − F(x)
)

(48) 599

Remark 4: The nonlinear term F(x) in the control law (48) 600

has a known expression that can be computed by inserting 601

the values of the state variables x. Moreover, U∞ and z∞ 602

are calculated through Eq. (40), z in z̃ can be substituted by 603

the designed measurement function z = g(x, u) and zI can 604

be directly obtained via the integrator (37). Thus, the con- 605

troller (48) only requires feedback of x and is ready to be 606

implemented in the original MG system (11). 607

The overall closed-loop MG control system based on the 608

KO and LQI is shown in Fig. 4. 609

V. CASE STUDIES 610

This section presents several case studies that demonstrate 611

the effectiveness of using the developed KO-linearized model 612

with the traditional LQI control method to stabilize the original 613

nonlinear MG system and eliminate the steady-state error of 614

DER output voltages caused by the droop equations. 615

A. Simulation Setup 616

The test system is a widely used 220 V MG with three 617

inverter-based DERs as shown in Fig. 3 [8]. The network 618

is resistance-dominated for such a low-voltage distribution 619

system. Table I provides the parameter setting and initial states 620

in this section. All three DERs are rated at 10 kVA with the 621

same droop gain, so the load consumption is shared equally. 622

Before the designed controller u in (48) is applied, the volt- 623

age setpoints vseti (i = 1, . . . , 3) in the droop equation (2b) 624

for each DER are set as 380 V, resulting in steady-state errors 625

in DER output voltages vodi. All the dynamic simulations are 626
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Fig. 6. Dynamic responses of all the other state variables of the test MG.

TABLE I
PARAMETER SETTING OF MG

conducted in the MATLAB environment on a standard PC with627

an Intel Core i9-13900HX CPU running at 2.20 GHz and with628

32.0 GB of RAM.629

B. Control Performance Based on the KO and LQI630

The proposed KO-linearized MG model for the voltage con-631

trol of MGs is verified by applying the LQI controller (48) to632

the original nonlinear MG model (11) after 1 s. Before that, the633

voltage setpoints for the droop equations are kept constant at634

u = [380, 380, 380]� V. Figure 5 shows that the DER output635

voltages have steady-state errors due to the droop characteristic636

before 1 s. When the proposed KO-based LQI controller takes637

over, the steady-state errors are quickly eliminated, confirming638

the effectiveness of the proposed method.639

Figure 6 shows the dynamic responses of all the other stable640

variables. It can be observed that all the state variables are641

stabilized to a new equilibrium point. For a more systematic 642

study of the system stability, we compare the poles of the 643

system (36) before and after the LQI controller Ũ are applied, 644

i.e., eigenvalues of A and Ã − B̃K. The maximum of the real 645

part of eigenvalues of matrix A is 7.7709 × 10−11 while that 646

of matrix Ã − B̃K is −9.4000 × 10−4. However, it should be 647

mentioned that the original nonlinear system (11) is actually 648

stable with the provided configuration. The reason that the KO- 649

linearized model (36) has positive poles (indicating unstable 650

modes) is that part of system dynamics F(x) is absorbed into 651

the term BU as discussed in Remark 1. Therefore, the poles 652

of A only reflect the open-loop stability of the KO-linearized 653

system (36), but do not indicate the stability of the original 654

nonlinear system (11). With the application of LQI, all the 655

poles are placed on the plane’s left side, indicating that the 656

LQI controller stabilizes the system (36) as shown in Fig. 7. 657

The lifted control vector U can stabilize the MG system as 658

verified by the above pole analysis. However, the proposed 659

KO-based control scheme also relies on the approximation 660

of the original control input u by solving the least square 661

optimization problem (46), which introduces an approxima- 662

tion error. Figure 8 shows that the least square approximation 663

error converges to a small value of 0.124 after 4 s, implying 664

that the approximation error has a negligible impact on the 665

overall control performance in this case. 666

C. Model Error and Sensitivity Analyses 667

The KO-linearized model (36) is derived analytically, so 668

the only source of model error between (36) and (11) should 669

be the assumptions made in the model development, namely 670

sin δi ≈ δi, cos δi ≈ 1, and ωi ≈ ωn in the LC filters and 671

lines. To verify this claim, we set u = [380, 380, 380]� V for 672
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Fig. 7. Comparison of poles of system (36) before and after the LQI controller
Ũ is applied.

Fig. 8. The time-varying approximation error of the control signal using the
least square method (46).

both (11) and (36). Since the observable vector z contains an673

explicit representation of the state vector of the original MG674

x, we can denote the x in z as zx. This allows us to directly675

compare the dynamic responses of the two models. Use mean676

absolute error (MAE) to define the model error as677

MAE(t) = 1

n

n∑

i=1

|x(t) − zx(t)|. (49)678

We also conduct sensitivity analysis of the developed KO-679

linearized model by simulating 50 different sets of initial680

conditions. For each run, we add a 30% random perturbation681

to the initial condition in Table I. Figure 9 shows that all the682

model errors MAE(t) with different initial conditions oscil-683

late during the settling period and finally converge to around684

0.357. Moreover, the MAE(t) is always below 1 throughout685

the timeline. To investigate the source of the steady-state error,686

we examine the detailed error of each state. Figure 10 reveals687

that the steady-state errors mainly occur in the active and reac-688

tive powers, but their actual values are negligible compared689

Fig. 9. The time-varying model error measured by MAE with 50 different
initial condition settings.

Fig. 10. The steady-state absolute model error of each state at time T = 5
seconds. �P and �Q denote the absolute error of real and reactive powers,
respectively.

to the magnitude of P and Q. Therefore, we conclude that 690

the developed KO-linearized model is sufficiently accurate and 691

robust against different initial conditions. 692

D. Comparison Case Studies 693

This subsection compares the proposed LQI control method 694

based on the KO-linearized model with two common MG 695

voltage control methods. The first method is a proportional- 696

integral-derivative (PID) control based on the original non- 697

linear MG model (11), with the output function y = 698

[vod1, vod2, vod3]. The proportional, integral, and derivative 699

gains for all three PID controllers are set to 1.5, 320, and 0, 700

respectively. The second method is an LQI control based on 701

the small-signal model (first-order Taylor expansion) from [8], 702

with the same LQI setting as in Section V-B. 703

As shown in Fig. 11, the PID and SS+LQI achieve sig- 704

nificantly faster dynamic response speeds than the KO+LQI. 705

However, they also lead to much larger overshoots dur- 706

ing the transients, which are hazardous for MG operation. 707

Furthermore, the comparison between SS+LQI and KO+LQI 708

reveals that the proposed KO-linearized model can capture 709

the nonlinear dynamics more precisely than the small-signal 710

model based on first-order Taylor expansion, resulting in a 711

smoother dynamic performance. 712



IE
EE P

ro
of

MA et al.: ANALYTICAL LARGE-SIGNAL MODELING OF INVERTER-BASED MGs WITH KO THEORY 11

Fig. 11. Comparison of the control performances of DER output voltages
using the small-signal-model-based LQI (SS+LQI), original-nonlinear-model-
based PID, and the proposed KO-linearized-model-based LQI (KO+LQI).

E. Computational Efficiency Analysis713

The performance of the KO-based method in terms of com-714

putational efficiency can be evaluated by considering two715

aspects: the identification of KO and the dynamic simulation716

of the controlled MG system.717

Firstly, the proposed KO identification method is fully718

model-based which means the analytical linear system (36)719

is manually derived offline. Therefore, the proposed analytical720

KO derivation approach does not require any computational721

effort. This contrasts with the data-driven methods that rely722

on numerical computation of the KO [20], [21], [22], [23],723

[24], [25], [26].724

The second aspect of the computational efficiency of the725

KO-based method is the impact of the increased dimen-726

sion of the studied MG system, which is lifted from 43727

to 70 in this case. To assess this impact, we compare the728

computational times of dynamic simulations of the proposed729

KO+LQI method with the two other methods (based on730

unlifted-dimensional MG models) studied in Section V-D.731

The simulation is performed using the ode15s solver with732

0.01 s sampling time over 5 s dynamic simulation duration 733

in MATLAB. The average computational times over 100 runs 734

of PID, SS+LQI, and the proposed KO+LQI methods are 735

0.0218 s, 0.0232 s, and 0.0422 s, respectively. We can see 736

that, the computational times of PID and SS+LQI are similar 737

because they both use the original 43-dimensional MG system. 738

On the other hand, the computational time of the proposed 739

KO+LQI method is higher than the others mainly due to the 740

increased system dimension, however, it is still sufficiently fast 741

for practical implementation. 742

VI. CONCLUSION 743

This paper presents a novel large-signal method to lin- 744

earize microgrid (MG) models for controller design using the 745

Koopman operator (KO) theory. The primary and zero con- 746

trol levels are modeled for electromagnetic transient (EMT) 747

analysis, which increases system order and nonlinearity. To 748

overcome these challenges, we have derived the observable 749

functions and KO analytically, avoiding data dependence and 750

improving explainability. Voltage control with linear quadratic 751

integrator (LQI) is used as an example to show how our 752

KO-linearized model enables textbook linear control tech- 753

niques for nonlinear MGs. To guarantee stabilizability, a 754

lifted-dimensional control signal has been derived in the 755

KO-linearized model. We use least squares to map the high- 756

dimensional control vector to the original one. The case studies 757

validate the LQI and KO-linearized model for DER output 758

voltage restoration. The model error without a state-feedback 759

controller under different initial conditions confirms the accu- 760

racy and robustness of our analytical KO-linearized MG 761

model. Comparison case studies with benchmark approaches 762

such as PID and small-signal-model-based methods are con- 763

ducted to validate the advantages of the proposed KO-based 764

MG voltage control scheme. The proposed analytical deriva- 765

tion methodology is generic and applicable to other MG 766

systems with different structures and objectives due to a 767

modular design. 768

Our future work will focus on discovering the theoreti- 769

cal stability analysis of the original nonlinear system (11), 770

i.e., developing a sufficient condition with respect to 771

A, B, F(x) and B, under which, the control signal u recovered 772

by the least square method can theoretically ensure the stabil- 773

ity of the original system (11). This mathematical problem is 774

still fundamentally challenging, but its solution can contribute 775

to addressing a wide class of nonlinear control problems. 776
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