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Abstract—The increasing penetration of distributed energy1

resources (DERs) highlights the growing importance of2

microgrids (MGs) in enhancing power system reliability.3

Employing electromagnetic transient (EMT) analysis in MGs4

becomes crucial for controlling the rapid transients. However, this5

requires an accurate but high-order model of power electronics6

and their underlying control loops, complexifying the stability7

analysis from the viewpoint of a higher control level. To8

overcome these challenges, this paper proposes a large-signal9

order reduction (LSOR) method for MGs with considerations of10

external control inputs and the detailed dynamics of underlying11

control levels based on singular perturbation theory (SPT).12

Specially, we innovatively proposed and strictly proved a general13

stability and accuracy assessment theorem that allows us to14

analyze the dynamic stability of a full-order nonlinear system15

by only leveraging our derived reduced-order model (ROM)16

and boundary layer model (BLM). Furthermore, this theorem17

furnishes a set of conditions that determine the accuracy of the18

developed ROM. Finally, by embedding such a theorem into19

the SPT, we propose a novel LSOR approach with guaranteed20

accuracy and stability analysis equivalence. Case studies are21

conducted on MG systems to show the effectiveness of the22

proposed approach.23

Index Terms—Microgrids, inverters, nonlinear, order reduc-24

tion, singular perturbation, stability, electromagnetic transient.25

NOMENCLATURE26

Abbreviations27

BLM Boundary layer model28

DER Distributed energy resource29

EMT Electromagnetic transient30

GAS Global asymptotic stability31

ISS Input-to-state stability32
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LPF Low pass filter 33

LSOR Large-signal order reduction 34

MG Microgrid 35

PI Proportion-Integral 36

PLL Phase locked loop 37

PCC Point of common coupling 38

QSS Quasi-steady-state 39

RMSE Root-mean-square error 40

ROM Reduced-order model 41

SPT Singular perturbation theory 42

Variables 43

P, Q Active and reactive powers 44

Vod, Voq dq-axis DER output voltages 45

Iod, Ioq dq-axis DER output currents 46

Vodf filtered d-axis DER output voltage 47

ΦPLL Integral of filtered d-axis DER output voltage 48

δ Phase angle 49

ωPLL Angular frequency measured by PLL 50

ΦP, ΦQ Integrals of errors between active/reactive 51

power and power commands 52

P∗, Q∗ Active and reactive power commands 53

I∗
ld, I∗

lq dq-axis inductor current commands 54

ω∗ Angular frequency command generated by 55

droop controller 56

ωn Angular frequency setpoint 57

V∗
oq DER output voltage command generated by 58

droop controller 59

Voq,n DER output voltage setpoint 60

Φd Integral of error between measured angular 61

frequency and its command 62

Φq Integral of error between DER output voltage 63

and its command 64

�d, �q Integrals of errors between dq-axis inductor 65

currents and their commands 66

V∗
ld, V∗

lq dq-axis inductor voltage commands 67

Ild, Ilq dq-axis inductor currents 68

Vbd, Vbq dq-axis bus voltages 69

x Slow state variables of the MG system 70

z Fast state variables of the MG system 71

u External control input of the MG system 72

y System output of the MG system 73

x̂ Solution of the ROM 74
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ŷ Solution of the BLM75

Ex Error vector between the slow states and the76

solution of the ROM77

Ey Error vector between the fast states and the78

solution of the BLM79

Parameters80

OMflag Switch between grid-tied and islanded mode:81

1-grid-tied mode; 2-islanded mode82

ωc Corner frequency of LPF for instantaneous83

powers84

ωcPLLi Corner frequency of LPF for DER output85

voltage86

KP,PLL Proportional gain of PI controller in PLL87

KI,PLL Integral gain of PI controller in PLL88

KI,P Integral gain of PI controller in power con-89

troller90

KP,P Proportional gain of PI controller in power91

controller92

DP P-ω droop gain93

DQ Q-V droop gain94

KI,V Integral gain of PI controller in voltage con-95

troller96

KP,V Proportional gain of PI controller in voltage97

controller98

ωn Nominal angular frequency99

Lf Inductance of LC filter100

KI,C Integral gain of PI controller in current con-101

troller102

KP,C Proportional gain of PI controller in current103

controller104

Rf, Rc Parasitic resistances of the inductors105

Cf Capacitance of LC filter106

Rd Dumping resistor of LC filter107

ε Perturbation coefficient108

ε∗ Threshold of ε below which the error of ROM109

converges asymptotically110

ε∗∗ Threshold of ε below which the error of ROM111

converges within a finite time T112

n, m, p Dimensions of slow/fast states and input113

τ Fast time scale variable defined as t/ε114

T Finite error convergence time if ε < ε∗∗
115

I. INTRODUCTION116

M ICROGRIDS (MGs) are localized small-scale power117

systems composed of interconnected loads and dis-118

tributed energy resources (DERs) in low-voltage and119

medium-voltage distribution networks. It can be operated in120

grid-connected and islanded modes [1], [2], [3], [4], [5], [6].121

The high penetration of low-inertia DERs makes the dynamic122

response of MGs different from conventional networks domi-123

nated by synchronous machines. This low-inertia characteristic124

highlights the importance of dynamic modeling, stability125

analysis, and control studies of MGs in the electromagnetic126

transient (EMT) time scale [7], [8], [9]. To precisely capture127

the comprehensive transient dynamics of MGs in a hierarchical128

control structure, detailed dynamic models of the lower control129

levels such as primary and zero-control levels, and the impact 130

of external input from higher control levels such as secondary 131

control, need to be taken into account. However, the high- 132

order nature of these detailed dynamics of the underlying 133

control structures makes it intractable to analyze the stability 134

of MGs with such a complex dynamic model [10], [11], [12], 135

[13], [14]. In addition, another critical challenge brought by 136

considering the underlying controllers is the two-time-scale 137

behavior of MGs due to the different evolutionary velocities 138

of different state variables, which leads to a stiff differential 139

equation problem [15]. In the dynamic simulation of MGs, 140

numerically solving this stiff problem requires extremely small 141

time steps, which results in an unmanageable computational 142

complexity [16]. 143

To solve the above problems, model order reduction tech- 144

niques have been studied and applied to power system 145

analyses. In [17], [18], an aggregate equivalent model was 146

developed for the order reduction of MGs by assuming similar 147

inverter dynamics. Kron reduction was adopted to simplify 148

the network of MGs in [19]. In [20], the authors used a 149

balanced truncation method for DC MGs described by a linear 150

model with inhomogeneous initial conditions. Although these 151

methods can effectively simplify the MG model, the time-scale 152

separation problem aroused by the consideration of underlying 153

control levels for EMT analysis is still not solved. 154

Given the inherent two-time-scale property of MGs, singular 155

perturbation theory (SPT) is a suitable technology for this 156

purpose. The SPT is a mathematical framework that focuses 157

on analyzing problems with a parameter, where the solutions 158

of the problem at a specific limiting value of the parameter 159

exhibit distinct characteristics compared to the solutions of the 160

general problem, resulting in a singular limit. It facilitates the 161

separation of the system into a reduced-order model (ROM) 162

that captures the slow states, and a boundary layer model 163

(BLM) that represents the errors between fast and quasi- 164

steady states. It is worth noting that the terms “slow” and 165

“fast” refer to the transient evolutionary velocity of states in 166

this context. Unlike conventional model reduction methods 167

that simply neglect certain state variables, SPT preserves the 168

characteristics of fast dynamics by integrating them into the 169

“slow” states, as advocated by [21]. Additionally, SPT has the 170

advantage of converting the original stiff problem into a non- 171

stiff problem, resulting in improved computational efficiency. 172

Due to the above advantages, the SPT has been widely used 173

in power system studies. The transient stability of type-3 174

wind turbines is investigated in [22] by applying the SPT 175

and Lyapunov methods and taking into account the dynamics 176

of phase-locked loop (PLL) and current control. In [23], 177

a model-order reduction and dynamic aggregation strategy 178

are proposed for grid-forming inverter-based power networks. 179

More reduced-order models for grid-forming virtual-oscillator- 180

controlled inverters with nested current and voltage-control 181

loops, and current-limiting action for overcurrent protection 182

by using the SPT are outlined in [24]. In [25], a linear active 183

disturbance rejection control scheme for two-mass systems 184

is developed based on the SPT. In the context of the MG 185

order reduction problem, a spatiotemporal model reduction 186

method of MGs using SPT and Kron reduction was proposed 187
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in [26], nonetheless, the method is not generic enough.188

In [27], [28], a linear SPT was applied to small-signal models189

of MGs. A small-signal ROM considering coupling dynamics190

is developed for autonomous wind-solar multi-MGs based on191

the SPT in [29]. However, since the above studies use the192

small-signal model, the results only hold in the neighborhood193

of a stable equilibrium point.194

The above studies focus on the development of the reduced-195

order MG modeling, whereas the stability assessment based196

on the derived ROM is not included. To fill this gap, the197

system order is reduced to simplify the stability analysis198

by neglecting the underlying voltage controller in [30] at199

the expense of losing fast dynamics. In [31], the nonlinear200

Lyapunov stability of DC/AC inverters with different ROMs201

was studied. A method for simplifying the stability assessment202

was developed and applied to an islanded MG with droop203

control by using inverter angles in [32]. Nevertheless, it204

was demonstrated that such a simplification process could205

affect the accuracy of ROMs in [33], [34], [35]. Moreover,206

to our best knowledge, the existing studies do not consider207

the impact of external inputs such as power commands and208

voltage frequency references on MG stability analysis. A209

typical way is to consider the unforced system by neglecting210

the inputs to study the internal stability. However, even211

though the unforced system is stable, a continuous input212

signal can render the system unstable. In [36], a stability213

assessment criterion that used the input-to-state stability (ISS)214

of ROM and global asymptotic stability (GAS) of BLM215

was proposed to analyze the total stability of the original216

system. This method is generic for arbitrary singular per-217

turbed systems under certain conditions, nevertheless, the218

convergence of the error between reduced and original models219

is not theoretically analyzed, which hinders the accuracy220

evaluation of ROMs. This work is further extended in [37],221

where the stability and accuracy issues are simultaneously222

proved, however, the effect of external inputs is still not223

analyzed.224

To overcome the above challenges, this paper proposes225

a novel large-signal order reduction (LSOR) strategy for226

inverter-based MGs with detailed dynamics of the underlying227

control levels in the EMT time scale. Firstly, a general theorem228

for analyzing the dynamic stability of the full-order model229

by only alternatively assessing the stability of its derived230

ROM and BLM is proposed. A key point is that we consider231

ISS to quantify the system’s response to external inputs and232

unify internal and external stability. In particular, by assuming233

the ROM to be ISS, the unforced ROM to be exponentially234

stable, and BLM to be uniformly GAS, one can prove that235

the original system is totally ISS. Then, we develop the236

conditions that guarantee the accuracy of ROMs for both237

slow and fast dynamics. Finally, by embedding the proposed238

stability and accuracy assessment theorem into the large-signal239

SPT, an improved LSOR algorithm is proposed for MGs.240

Strict mathematical proof is provided to illustrate that the241

proposed order reduction technique is generic for arbitrary242

dynamic systems. The main contributions can be summarized243

as follows:244

• We propose a general theorem that allows us to assess245

the large-signal stability of MGs with detailed dynamics246

of underlying controllers in the EMT time scale by only 247

analyzing their ROMs and BLMs. 248

• A set of accuracy criteria is developed, under which the 249

error between the reduced and original models is bounded 250

and converges as the perturbation coefficients decrease. 251

• The impact of external control input from the higher 252

control level on the above stability and accuracy analyses 253

is studied with strict mathematical proof. 254

• The stability and accuracy assessment synthesis is embed- 255

ded into the LSOR method to improve the model accuracy 256

via a feedback mechanism, which automatically tunes 257

the bounds of perturbation coefficients as an index for 258

identifying the slow and fast dynamics. 259

The rest of the paper is organized as follows. Section II 260

describes the large-signal mathematical model of the stud- 261

ied MG system. Section III introduces the general singular 262

perturbation theory and proposes our stability and accuracy 263

assessment theory. Section IV gives the simulation validation 264

of the proposed method. Section V concludes the paper. 265

II. LARGE-SIGNAL MODELING OF INVERTER-BASED MGS 266

This section introduces a nonlinear model of the studied 267

MG system with detailed primary and zero-control levels. 268

Depending on the research objectives, control strategies, and 269

operation modes, MGs may have different models. According 270

to [27], the transient response velocity of line dynamics is 271

much faster than the slow ones in DERs due to the small line 272

impedance. Moreover, the state equations are fully decoupled 273

between DERs and lines. As a result, the line dynamics can be 274

neglected. Therefore, this section focuses on the modeling of 275

DERs, which are the main dynamic components in an inverter- 276

based MG. 277

A general control diagram of DERs is shown in Fig. 1. 278

The model can switch between two subsystems according to 279

the MG operation modes. In grid-tied mode, OMflag switches 280

to 1, then the voltage source inverter is controlled by the 281

power controller and current controller to follow the power 282

command (P∗, Q∗). The MG bus voltage and system frequency 283

are maintained by the main grid. In islanded mode, OMflag 284

is set to 0, and the MG voltage and frequency are regulated 285

by the DERs using droop controllers. According to Fig. 1, the 286

mathematical model can be derived for each component where 287

i = 1, . . . , N denotes the index of N DERs in the MG. 288

A. Average Power Calculation 289

The generated active and reactive power can be calculated 290

using the transformed output voltage vodq and current iodq. 291

Using a low-pass filter (LPF) with the corner frequency ωc, 292

we can obtain the filtered instantaneous powers as follows, 293

Ṗi = −Piωci + 1.5ωci
(
VodiIodi + VoqiIoqi

)
, (1a) 294

Q̇i = −Qiωci + 1.5ωci
(
VoqiIodi − VodiIoqi

)
. (1b) 295

B. Phase Lock Loop 296

The model of PLL is the same as that established in [27] 297

as follows, 298

V̇odfi = ωcPLLiVodi − ωcPLLiVodfi, (2a) 299

Φ̇PLLi = −Vodfi. (2b) 300
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Fig. 1. The block diagram of voltage-sourced inverter-based DER with underlying control loops.

In grid-tied mode, the inverter output phase is synchronized301

to the main grid using PLL, therefore the derivative of phase302

angle δi is set to ωPLLi:303

δ̇i = ωPLLi = 377 − KP,PLLiVodfi + KI,PLLiΦPLLi. (3)304

In islanded mode, the phase angle of the first inverter can305

be arbitrarily set as the reference for the other inverters:306

δ̇i = ωPLL1 − ωPLLi. (4)307

C. Power Controllers308

In grid-tied mode, the output power of DER is regulated by309

the power controller using the PI control method. The input310

references are the commanded real and reactive powers:311

Φ̇Pi = Pi − P∗
i , (5a)312

I∗
lqi = KI,PiΦPi + KP,PiΦ̇Pi, (5b)313

Φ̇Qi = Qi − Q∗
i , (5c)314

I∗
ldi = KI,PiΦQi + KP,PiΦ̇Qi. (5d)315

D. Voltage Controllers and Droop Controllers316

In islanded mode, a DER has no reference inputs from the317

main grid. Therefore, it must generate its only voltage and318

frequency references using droop controllers as follows,319

ω∗
i = ωni − DPiPi, (6a)320

V∗
oqi = Voq,ni − DQiQi. (6b)321

These references will be used as the set points for voltage322

controllers. Two PI controllers are adopted for the voltage323

controllers as follows,324

Φ̇di = ωPLLi − ω∗
i , (7a)325

I∗
ldi = KI,ViΦdi + KP,ViΦ̇di, (7b)326

Φ̇qi = V∗
oqi − Voqi, (7c)327

I∗
lqi = KI,ViΦqi + KP,ViΦ̇qi. (7d)328

E. Current Controllers 329

The PI controllers are adopted for current controllers. They 330

generate the commanded voltage reference V∗
ldqi according to 331

the error between the inductor currents reference I∗
ldqi and its 332

feedback measurements Ildqi: 333

�̇di = I∗
ldi − Ildi, (8a) 334

V∗
ldi = −ωniLfiIlqi + KI,Ci�di + KP,Ci�̇di, (8b) 335

�̇qi = I∗
lqi − Ilqi, (8c) 336

V∗
lqi = −ωniLfiIldi + KI,Ci�qi + KP,Ci�̇qi. (8d) 337

F. LC Filters and Coupling Inductors 338

The dynamical models of LC filters and coupling inductors 339

are as follows, 340

İldi = (−RfiIldi + Vldi − Vodi)/Lfi + ωniIlqi, (9a) 341

İlqi = (−RfiIlqi + Vlqi − Voqi
)
/Lfi − ωniIldi, (9b) 342

İodi = (−RciIodi + Vodi − Vbdi)/Lci + ωniIoqi, (9c) 343

İoqi = (−RciIoqi + Voqi − Vbqi
)
/Lci − ωniIodi, (9d) 344

V̇odi = (Ildi − Iodi)/Cfi + ωniVoqi + Rdi
(
İldi − İodi

)
, (9e) 345

V̇oqi = (
Ilqi − Ioqi

)
/Cfi − ωniVodi + Rdi

(
İlqi − İoqi

)
. (9f) 346

In conclusion, when the MG system is operating in grid- 347

tied mode, the mathematical model can be represented by 348

equations (1)-(3), (5) and (8)-(9). In islanded mode, the MG 349

model can be represented by equations (1)-(2), (4) and (6)-(9). 350

III. IMPROVED LSOR BY EMBEDDING STABILITY AND 351

ACCURACY ASSESSMENT THEOREM 352

In this section, we propose an improved LSOR method 353

together with stability and accuracy assessment synthesis. 354

Firstly, we briefly present the SPT-based LSOR approach. 355

Then a novel large-signal stability and accuracy assess- 356

ment theorem with consideration of external control input is 357

proposed. Finally, we improve the LSOR algorithm by embed- 358

ding the stability and accuracy assessment theorem, so that 359

it can guarantee the accuracy of derived ROM and efficiently 360

evaluate the stability of original models. The proposed LSOR 361
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strategy is essentially generic and is suitable for the above MG362

model introduced in Section II.363

A. LSOR Approach Using the SPT for MGs364

Due to the two-time-scale property, the dynamics of MGs365

can be classified as slow and fast dynamics according to the366

transient velocities. Based on this phenomenon, here we first367

rewrite the mathematical model introduced in Section II as368

the general singular perturbed form (10). Then, the detailed369

algorithm, theoretical supports, and case studies illustrating the370

identification of slow and fast will be proposed in the later371

sections.372

ẋ(t) = f(x(t), z(t), u(t), ε), (10a)373

εż(t) = g(x(t), z(t), u(t), ε), (10b)374

where all the state variables in (1)-(9) are collected in the375

vector [x� z�]� = [PiQiVodfi ΦPLLi δi ΦPi ΦQi �di �qi376

Ildi Ilqi Vodi Voqi Iodi Ioqi]�(i = 1, . . . , N) in grid-tied mode377

or [x� z�]� = [Pi Qi ΦPLLi Vodfi δi Φdi Φqi �di �qi Ildi378

Ilqi Vodi Voqi Iodi Ioqi]�(i = 1, . . . , N) in islanded mode,379

respectively; ẋ ∈ R
n and ż ∈ R

m denote the derivatives of380

slow and fast states, respectively; the external control input381

is denoted as u = [P∗
i Q∗

i ]� in grid-tied mode or u =382

[ωni Voq,ni]� in islanded mode, respectively; ε denotes the383

small parameters in MGs such as capacitances and inductances384

named as perturbation coefficient and its identification method385

will be proposed in the later sections; f and g are locally386

Lipschitz functions on their arguments. For simplicity, we387

neglect the notation of time-dependency (t) in the rest of this388

paper.389

The two-time-scale characteristic of MGs motivates the390

adoption of SPT. The main idea of SPT is to freeze the fast391

dynamics and degenerate them into static equations. Thus, the392

ROM can be obtained by substituting the solutions of the static393

equations into the slow dynamic equations. Since ε is small,394

the fast transient velocity ż = g/ε can be much larger than the395

slow dynamics ẋ. To solve this two-time-scale problem, we396

can set ε = 0, then equation (10b) degenerates to the following397

algebraic equation,398

0 = g(x, z, u, 0). (11)399

If equation (11) has at least one isolated real root and400

satisfies the implicit function theory, then for each argument,401

we have the following closed-form solution,402

z = h(x, u). (12)403

Substitute equation (12) into equation (10a) and let ε = 0,404

we have a quasi-steady-state (QSS) model,405

ẋ = f(x, h(x, u), u, 0). (13)406

Note that the order of the QSS system (13) drops from n+m407

to n. The inherent two-time-scale property can be described408

by introducing the BLM. Define a fast time scale variable409

τ = t/ε, and a new coordinate y = z − h(x, u). In this new410

coordinate, equation (10b) is rewritten as411

dy
dτ

= g(x, y + h(x, u), u, ε) 412

− ε

[
∂h
∂x

f(x, y + h(x, u), u, ε) + ∂h
∂u

u̇
]
. (14) 413

Let ε = 0, we obtain the BLM as follows, 414

dy
dτ

= g(x, y + h(x, u), u, 0). (15) 415

B. Stability and Accuracy Assessment Theorem 416

In this subsection, we propose a criterion to assess the 417

stability of the original system and the accuracy of ROM 418

and BLM. We first introduce a few technical definitions and 419

assumptions below. 420

Definition 1: Class K function α : [0, t) → [0,∞) is a 421

continuous strictly increasing function with α(0) = 0. Further, 422

if t = ∞ and limr→∞ α(r) = ∞, then α is said to belong to 423

class K∞ function. 424

Definition 2: Class KL function β : [0, t) × [0,∞) → 425

[0,∞) is a continuous function satisfying: for each fixed s, 426

the function β(r, s) belongs to class K; for each fixed r, the 427

function β(r, s) is decreasing with respect to s and β(r, s) → 0 428

for s → ∞. 429

Considering the impact of external inputs on the stability of 430

MGs, we define the ISS as follows. 431

Definition 3 (ISS): Consider such a nonlinear system 432

ẋ = f̃(x, v1, v2) (16) 433

where x ∈ R
n is the state vector, v1 ∈ R

m, v2 ∈ R
p are 434

input vectors, and f̃ is locally Lipschitz on R
n × R

m × R
p. 435

The system (16) is ISS with Lyapunov gains αv1 and αv2 of 436

class K, if there exists a class KL function β such that for 437

x(0) ∈ R
n and bounded inputs v1, v2, the solution of (16) 438

exists and satisfies 439

‖x(t)‖ ≤ β(‖x(0)‖, t) + αv1(‖v1‖) + αv2(‖v2‖). (17) 440

The above definition indicates that an MG system is ISS 441

when all the trajectories are bounded by some functions of the 442

input magnitudes. Then we give the following three assump- 443

tions which are the sufficient conditions for the theorem. 444

Assumption 1 (Growth Conditions): The functions f, g, 445

and their first partial derivatives are continuous and bounded 446

with respect to (x, z, u, ε); h and its first partial derivatives 447

∂h/∂x, ∂h/∂u is locally Lipschitz; and the Jacobian ∂g/∂z has 448

bounded first partial derivatives with respect to its arguments. 449

Assumption 2 (Stability of ROM): The ROM (13) is ISS 450

with Lyapunov gain α̂x, and its unforced system has an 451

exponentially stable equilibrium at the origin. 452

Assumption 3 (Stability of BLM): The origin of the 453

BLM (15) is a GAS equilibrium, uniformly in x ∈ R
n, u ∈ R

p. 454

Remark 1: The conditions in Assumption 1 are commonly 455

satisfied for most MGs [34]. Inspired by [36], we propose the 456

stability and accuracy assessment of MGs as the following 457

theorem. Note that the conditions, results and proof of our 458

theorem and [36] are different. In [36], only the stability 459

of the original system is proved, nonetheless, the accuracy 460

of the ROM and BLM is not analyzed, which is of vital 461

importance to make sure that the derived reduced-order model 462
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is correct. However, the addition of accuracy analysis arouses463

new challenges in the proof which cannot be solved by directly464

using [36]. Therefore, we add a constraint condition on the465

transient speed in Assumption 2 and propose a new proving466

method for our theorem.467

Theorem 1: If the MGs system (10), its ROM (13) and the468

BLM (15) satisfy the Assumptions 1-3, then for each pair469

of (μ, ξ), there exists a positive constant ε∗, such that for470

all t ∈ [0,∞), max{‖x(0)‖, ‖y(0)‖, ‖u‖, ‖u̇‖} ≤ μ, and ε ∈471

(0, ε∗] the errors between the solutions of the original MGs472

system (10) and its ROM (13) and BLM (15) satisfy473

‖x(t, ε) − x̂(t)‖ = O(ε), (18)474

‖z(t, ε) − h(x̂(t), u(t)) − ŷ(τ )‖ = O(ε), (19)475

where x̂(t) and ŷ(τ ) are the solutions of ROM (13) and476

BLM (15), respectively. ‖x− x̂‖ = O(ε) means that ‖x− x̂‖ ≤477

k‖ε‖ for some positive constant k. Furthermore, for any given478

T > 0, there exists a positive constant ε∗∗ ≤ ε∗ such that for479

t ∈ [T,∞) and ε < ε∗∗, it follows uniformly that480

‖z(t, ε) − h
(
x̂(t), u(t)

)‖ = O(ε). (20)481

Moreover, there exist class KL functions βx, βy, a Lyapunov482

gain αx of class K and positive constants ξ , such that the483

solutions of the original MGs system (10a) and (14) exist484

and satisfy485

‖x(t, ε)‖ ≤ βx(‖x(0)‖, t) + αx(‖u‖) + ξ, (21)486

‖y(t, ε)‖ ≤ βy(‖y(0)‖, τ ) + ξ. (22)487

Remark 2: Theorem 1 indicates large-signal stability by488

observing that μ can be arbitrarily large. This is more489

comprehensive than the small-signal stability studied in [27].490

Moreover, the errors between the solutions of reduced and491

original MGs should be small and bounded to guarantee492

accuracy. Equations (18) and (19) show that for sufficiently493

small ε, these errors tend to be zero. Equation (20) means that494

for small enough ε, the solution ŷ of the BLM decays to zero495

exponentially fast in time T , so that the fast solutions can be496

estimated by only QSS solutions h(t, x̄(t)) after time T .497

Remark 3: According to the theorem, if the ROM is ISS498

and BLM is GAS, then the original system is stable as499

shown in (21) and (22). Moreover, in real physical systems,500

one challenge of SPT is how to identify the slow and fast501

dynamic states. A commonly used approach is the knowledge502

discover-based method that relies on expert knowledge for503

specific domains. For example, in MGs, some small parasitic504

parameters such as capacitances, inductances, and small time505

constants, can be selected as the perturbation coefficients ε.506

The states with respect to these small ε are identified as fast507

states. This conventional empirical identification method falls508

short of efficiency and accuracy. Therefore, we propose a509

more efficient and accurate method to identify the slow/fast510

dynamics by finding the bound of ε in the following proof.511

Proof: The proof of the theorem is conducted in three steps.512

First, we prove the GAS of y (22). This result will then be513

used in proving the accuracy of ROM and BLM (18)-(20).514

Finally, we provide the proof of ISS of x (21).515

Using the converse theorem and Assumption 3, there exists 516

a smooth function V1(x, y, u) : Rn × R
m × R

p → R≥0, and 517

three class K∞ functions α1, α2 and α3, such that 518

α1(‖y‖) ≤ V1(x, y, u) ≤ α2(‖y‖), (23) 519

∂V1

∂y
g(x, y + h(x, u), u, 0) ≤ −α3(‖y‖). (24) 520

Using [36, Lemmas 1 and 2] together with (23) and (24), 521

it can be verified that there exists a class K function αy, a 522

class KL function βy and a continuous nonincreasing function 523

γy : R≥0 → R≥0, such that for essentially bounded inputs 524

and ε ≤ γy(max{‖x‖, ‖y(0)‖, ‖u‖, ‖u̇‖}), the solution of (14) 525

exists for all t ≥ 0 and satisfies 526

‖y(t, ε)‖ ≤ βy(‖y(0)‖, τ ) + αy(ε). (25) 527

Note that at this step we do not know the boundedness of 528

x. To use the inequality (25), we apply the causality and 529

signal truncations. Define a positive constant μ̃ satisfying μ̃ > 530

βx(μ, 0)+αx(μ)+ξ . It can be verified that μ < μ̃. Considering 531

the continuity for a given initial condition, we can define T > 532

0 as the upper bound of [0, T) within which ‖x‖ ≤ μ̃. Since 533

γy is nonincreasing, it follows that 534

γy(μ̃) < γy(μ) ≤ γy(max{‖x(0)‖, ‖y(0)‖, ‖u‖, ‖u̇‖}),(26) 535

γy(μ̃) ≤ γy(‖x‖). (27) 536

For ε ≤ ε1 := γy(μ̃), (26) and (27) yield that ε ≤ 537

γy(max{‖x‖, ‖y(0)‖, ‖u‖, ‖u̇‖}) holds for all t ∈ [0, T). 538

However, from the definition of μ̃, there must exist a positive 539

constant η, such that ‖x‖ < μ̃ for all t ∈ [0, T + η). This 540

contradicts that T is maximal, so T = ∞. Therefore, there 541

exists an ε2 satisfying αy(ε2) = ξ , such that (22) holds for all 542

t ≥ 0, and ε ≤ min{ε1, ε2}. 543

Then, we prove the second step about the accuracy of the 544

ROM (18)-(20). Define the error between solutions of reduced 545

and original slow dynamics as Ex = x − x̂. When ε = 0, 546

y = z − h(x, u) = 0. Then, we have 547

Ėx = f(Ex, 0, u, 0) + �f, (28) 548

where �f = [f(x̂ + Ex, 0, u, 0) − f(x̂, 0, u, 0) − f(Ex, 0, u, 0)] 549

+ f(x, y, u, ε) − f(x, 0, u, 0). According to Assumption 1, it 550

follows that 551

‖�f‖ ≤ �1‖Ex‖2 + �2‖Ex‖
∥
∥x̂

∥
∥ 552

+ �3βy(‖y(0)‖, τ ) + �3ξ + �4ε, (29) 553

for some positive constants �1, �2, �3, �4. The last term in 554

system (28) can be viewed as a perturbation of 555

Ėx = f(Ex, 0, u, 0). (30) 556

Since the origin of the system (30) is exponentially stable with 557

u = 0, using the converse theorem, there exist a Lyapunov 558

function V2(Ex), and positive constants c1, c2, c3, c4, for which 559

it follows that 560

c1‖Ex‖2 ≤ V2(Ex) ≤ c2‖Ex‖2, (31) 561

∂V2

∂Ex
f(Ex, 0, u, 0) ≤ − c3‖Ex‖2, (32) 562
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∥∥
∥∥
∂V2

∂Ex

∥∥
∥∥ ≤ c4‖Ex‖. (33)563

Using (22), (29) and (31)-(33), the Lyapunov function of (30)564

along the trajectory of (28) satisfies565

V̇2 = ∂V2

∂Ex
f(Ex, 0, u, 0) + ∂V2

∂Ex
�f566

≤ − c3‖Ex‖2 + c4‖Ex‖
[
�1‖Ex‖2 + �2‖Ex‖

∥∥x̂
∥∥567

+ �3βy(‖y(0)‖, τ ) + �3ξ + �4ε
]
. (34)568

For ‖Ex‖ ≤ c3/(2c4�1), using Assumption 2, it follows that569

V̇2 ≤ − 2
{

c3 − c4�1

[
β̂x

(∥∥x̂(0)
∥∥, t

) + α̂x(‖u‖)
]}

V2570

+ 2
[
�3ε + �3ξ + �4βy(‖y(0)‖, τ )

]√
V2571

≤ − 2
{
�a − �bβ̂x

(∥∥x̂(0)
∥∥, t

)}
V2572

+ 2
[
�cε + �dβy(‖y(0)‖, τ )

]√
V2, (35)573

where 0 < �a ≤ c3 − c4�1α̂x(sup ‖u‖), �c ≥ �3(1 + ξ/ε) > 0,574

and �b, �d > 0. Using the comparison lemma, we have575

W2(t) ≤ φ(t, 0)W2(0)576

+
∫ t

0
φ(t, s)

[
�cε + �dβy(‖y(0)‖, τ )

]
ds, (36)577

where W2 = √
V2 and578

|φ(t, s)| ≤ �ee−�f t, for �e, �f > 0. (37)579

Because580
∫ t

0
e−�f tβy(‖y(0)‖, τ )ds = O(ε), (38)581

it can be verified that W2(t) = O(ε). Then it follows that582

Ex(t, ε) = O(ε), and this means that (18) holds.583

Since we have already verified that (22) holds in the first584

step, then by Assumption 3, it follows that585

Ey(t, ε) = ∥∥z(t, ε) − h
(
x̂(t, ε), u(t)

) − ŷ(τ )
∥∥586

= ∥∥y(t, ε) − ŷ(τ )
∥∥ ≤ ‖y(t, ε)‖ + ∥∥ŷ(τ )

∥∥ (39)587

≤ βy(‖y(0)‖, τ ) + αy(ε) + β̂y
(∥∥ŷ(0)

∥∥, τ
) = O(ε)588

for given initial points and all t ≥ 0. This proves (19).589

According to Assumption 3, ŷ(τ ) = β̂y(‖y(0)‖, τ ) → 0 as590

ε → 0. Thus, the term ŷ(τ ) = O(ε) for all t ≥ T > 0 if ε is591

small enough to satisfy592

β̂y(‖y(0)‖, τ ) ≤ kε (40)593

Let ε∗∗ and T denote a solution of (40) with equal sign.594

Subsequently, (20) holds for all ε ≤ ε∗∗ uniformly on [T,∞).595

Finally, we prove the ISS of original slow dynamics. Since596

‖x(t, ε)‖ − ‖x̂(t)‖ ≤ ‖x(t, ε) − x̂(t)‖ = O(ε), (41)597

there exist some class KL function βx, class K function α and598

a small positive constant ε3, such that the solution of (10a)599

exists for all t ≥ 0 and ε ≤ ε∗ := min{ε1, ε2, ε3} satisfying600

‖x(t, ε)‖ ≤ ‖x̂(t)‖ + O(ε)601

≤ β̂x
(∥∥x̂(0)

∥
∥, t

) + α̂x(‖u‖) + O(ε)602

≤ βx(‖x(0)‖, t) + αx(‖u‖) + ξ. (42)603

This completes the proof of (21).604

Fig. 2. The diagram of stability and accuracy assessment embedded LSOR.

Fig. 3. Illustration of slow/fast dynamics separation by determining ε∗. The
smaller value of the dominant coefficient indicates faster speed. If all the
dominant coefficients of fast states are smaller than ε∗∗, the solution of BLM
ŷ converges to zero within time T .

C. Stability and Accuracy Assessment Embedded LSOR 605

This subsection develops a novel LSOR method by embed- 606

ding the above theorem. The overall flowchart is shown in 607

Fig. 2 and the detailed algorithm is proposed in Alogrithm 1. 608

Algorithm 1 provides a method to identify the slow and fast 609

dynamics of a system with guaranteed stability and accuracy. 610

The feasibility of Algorithm 1 relies on the inherent singularly 611

perturbed nature of inverter-based MGs, indicating the exis- 612

tence of at least one significant gap among the dynamic speeds 613

of the states. To quantitatively analyze the relationship between 614

the gap size and dynamic performance of the reduced model, 615

we have introduced an additional threshold ε∗∗ in Algorithm 1, 616

whose efficacy has been proved in Theorem 1. The relationship 617

between ε∗ and ε∗∗ is illustrated in Fig. 3. A numerical case 618

study is given in the next section to demonstrate how ε∗∗ helps 619

balance the accuracy and computational cost. 620

On the other hand, it is also possible that different partitions 621

of fast and slow dynamics result in similar performance 622

of the ROM. Choosing more dynamics as fast ones can 623

reduce the order of the ROM and improve the computational 624

efficiency, but it can also compromise the accuracy. Therefore, 625

a careful trade-off should be made according to the engineer- 626

ing requirements. For instance, in the MG control problem, 627
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Algorithm 1 Stability/Accuracy Assessment Embedded LSOR
1: Choose the smaller parameters dominating the transient

velocity as ε. The states with respect to ε are identified
as fast states, while the others as slow states.

2: procedure ROM AND BLM DERIVATION

3: Let ε = 0, solve the algebraic equation (11) to obtain
the isolated QSS solutions z = h(x, u)

4: Substitute z into (10a), obtaining the ROM (13)
5: Derive the BLM using equation (15).
6: end procedure
7: procedure STABILITY ASSESSMENT

8: if Assumption 2 and 3 are satisfied then
9: Go to next procedure

10: else
11: Return to Step 1 to re-identify slow/fast dynamics.
12: end if
13: end procedure
14: procedure CALCULATE THE BOUND OF ε

15: Calculate ε∗ = min{ε1, ε2, ε3} according to proof.
16: Calculate ε∗∗ by solving equation (40) with equal sign.
17: end procedure
18: procedure ACCURACY ASSESSMENT

19: if ε � ε∗ then
20: if ε � ε∗∗ then
21: z = h(x̂, u) is the solution of fast dynamics
22: else
23: Use z = h(x̂, u) + ŷ by solving the BLM (15).
24: end if
25: else
26: Return to Step 1 to re-identify slow/fast dynamics
27: end if
28: end procedure

minimizing the computational time of solving differential628

equations is not a priority. In this case, as long as the629

computational speed meets the sampling rate requirement to630

avoid input time delays, it is preferable to use a higher-order631

but more accurate ROM to design the controller [38]. On the632

other hand, if the modeling error tolerance is higher while633

the computational burden is more critical, such as in some634

qualitative analysis, then it is suggested to consider more states635

as fast ones [26].636

This algorithm is designed for MGs with two-time-scale637

properties, however, no basic assumptions of the MGs are638

required. Therefore, the proposed method can be applied to639

arbitrary dynamic systems.640

IV. CASE STUDY641

A. Simulation Setup642

The proposed method is tested on a modified IEEE-37 bus643

MG, which can be operated in grid-tied or islanded modes644

as shown in Fig. 4. According to [26], seven inverters are645

connected to buses 15, 18, 22, 24, 29, 33, and 34. When the646

point of common coupling (PCC) is closed, the MG is operated647

in grid-tied mode. Otherwise, it is operated in islanded mode.648

We first let the MG be operated in grid-tied mode. In649

order to analyze the detailed dynamic properties of both slow650

Fig. 4. The diagram of modified IEEE-37 bus system.

and fast dynamics as well as compare our method with the 651

small-signal order reduction approach, a single bus of interest 652

(bus 34) is chosen to show its dynamic responses after power 653

command (input) changes for clearance. Then, a simulation is 654

conducted in islanded mode to show the dynamic responses 655

of multiple buses with DERs when a load sudden change is 656

given to verify its effectiveness against large disturbances. The 657

detailed load and line parameter settings can be found in [26]. 658

B. Performance in Grid-Tied Mode and Comparison With 659

Small-Signal ROM 660

We start by defining a set of candidate coefficients that 661

dominate the dynamic response speeds to identify the slow 662

and fast dynamics. In [26], [27], the dominant coefficients 663

are selected as the common coefficients of the state variables 664

and their derivative terms. This selection has been verified 665

within a neighborhood of an equilibrium using modal analysis 666

and tested with hardware experiments in [27]. However, this 667

method may not be applicable to nonlinear systems in our 668

problem. For nonlinear systems, there is no general method 669

like spectral analysis in linear systems that can precisely 670

measure the dynamic response speeds. 671

To overcome this challenge, we first approximately follow 672

the definition of dominant coefficients which has been val- 673

idated on a small-signal model of the MG in [27]. Then, 674

we select the smaller coefficients as perturbation coefficients 675

ε. Finally, if the derived ROM and BLM pass the proposed 676

stability and accuracy assessment in Theorem 1, this candidate 677

ε and the corresponding separation of slow and fast dynamics 678

are theoretically verified. If not, we need to re-identify the 679

slow and fast dynamics by lowering the threshold of ε and 680

considering different combinations of parameters as dominant 681

coefficients in the differential equations. 682

Considering the MG model in grid-tied mode, the derivative 683

term can be rewritten as 684

(
1

ωc
Ṗi,

1

ωc
Q̇i, Φ̇PLLi, δ̇i,

KP,Pi

KI,Pi
Φ̇Pi,

KP,Pi

KI,Pi
Φ̇Qi, 685

KP,Ci

KI,Ci
�̇di,

KP,Ci

KI,Ci
�̇qi,

1

ωc,PLLi
V̇od,fi,

Lfi

Rfi
İldi, 686

Lfi

Rfi
İlqi,

Lci

Rci
İodi,

Lci

Rci
İoqi,

Cfi

Rdi
V̇odi,

Cfi

Rdi
V̇oqi

)
(43) 687
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Substituting the parameters in [39] into the vector (43), we688

have689
(

1

50.26
Ṗi,

1

50.26
Q̇i, Φ̇PLLi, δ̇i,

0.5

25
Φ̇di,

0.5

25
Φ̇qi,

1

100
�̇di,690

1

100
�̇qi,

1

7853.98
V̇od,fi,

0.0042

0.5
İldi,

0.0042

0.5
İlqi,691

0.0005

0.09
İodi,

0.0005

0.09
İoqi,

0.000015

2.025
V̇odi,

0.000015

2.025
V̇oqi

)
692

=
(

0.02Ṗi, 0.02Q̇i, Φ̇PLLi, δ̇i, 0.02Φ̇di, 0.02Φ̇qi, 0.01�̇di,693

0.01�̇qi, 1.3 × 10−4V̇od,fi, 8.4 × 10−3 İldi, 8.4 × 10−3 İlqi,694

1.4 × 10−3 İodi, 1.4 × 10−3 İoqi, 7.4 × 10−6V̇odi, 7.4 × 10−6V̇oqi

)
.695

It can be seen that the magnitudes of dominant coefficients696

vary significantly, which is caused by the two-time-scale697

property of the system. The smaller parameters are selected as698

perturbation coefficients ε, which are utilized to classify the699

slow and fast states in this system:700

x1 = [
Pi Qi ΦPLLi δi ΦPi ΦQi �di �qi

]�
, (44)701

z1 = [
Vodfi Ildi Ilqi Iodi Ioqi Vodi Voqi

]�
. (45)702

Remark 4: The concepts of slow and fast dynamics are rel-703

ative and depend on the specific parameter settings. Different704

parameters can alter the dynamic response speeds of the705

states accordingly. For instance, the states associated with PI706

controllers are regarded as slow dynamics under the parameter707

setting in [39], but as fast dynamics under the parameter setting708

in [26]. Hence, the identification of slow and fast dynamics709

should take into account the detailed parameter setting, and710

the results (44)-(45) are not generalizable for any MGs.711

We first set ε to 0 and calculate the QSS solution z1 =712

h(x1, u1) by solving the algebraic equation with respect to the713

fast dynamics (45). Then the ROM is obtained by substituting714

z1 into the slow dynamic equations with respect to (44).715

Comparing the numbers of state variables in equation (43)716

and (44), the order of the original model is reduced to 53.33%.717

Then we derive the BLM using equation (15). Once the ROM718

and BLM are obtained, we use the conventional ISS and GAS719

judging theorems in [21] to evaluate their stability of them.720

Specially, the unforced nonlinear ROM is exponentially stable721

by checking that its linearized system matrix has eigenvalues722

with strictly negative real parts. It can be verified that the723

assumptions are satisfied. Based on this result, we are inclined724

to anticipate the stability of the original system.725

To ensure this, we still need to theoretically verify the726

accuracy of the ROM and BLM. Following the technique727

in the proof, we can calculate the boundary of ε as ε∗ =728

min{ε1, ε2, ε3} = 7.92 × 10−3. Note that max{ε} = 3.9 ×729

10−3 < 7.92×10−3 = ε∗. Therefore, we can conclude that this730

MGs system is stable and we can use the solutions of its ROM731

x̂ and z = h(x̂, u) + ŷ to accurately represent its real dynamic732

responses. Furthermore, given T = 0.43 s, we can find a ε∗∗
733

satisfying max{ε} < ε∗∗ = 4.2 × 10−3, which indicates that734

the term ŷ will be O(ε) after 0.43 s. Here, a trade-off exists735

between accuracy and efficiency. When the accuracy is prior,736

one can choose z = h(x̂, u) + ŷ by computing an additional737

differential equation (BLM). When the efficiency dominates,738

use z = h(x̂, u) suffering the inaccuracy only within (0, T).739

Fig. 5. Simulation results of slow and fast dynamic responses of interested
bus 34: active and reactive power.

Fig. 6. Simulation results of slow and fast dynamic responses of interested
bus 34: dq-axis output currents Iod and Ioq.

Then we conduct the simulation of the derived ROM using 740

MATLAB. The active power command changes to 1000 W at 741

2 s and changes to 500 W at 4 s. The reactive power command 742

changes to 500 W at 2 s and changes to 300 W at 4 s. A 743

comparison simulation using the small-signal order reduction 744

method in [27] is conducted under the same conditions. The 745

simulation results are shown in Fig. 5-7, where blue solid lines 746

denote the responses of the original model, green dash-dotted 747

lines denote that using small-signal order reduction method, 748

pink dotted lines denote the results of proposed LSOR without 749

BLM compensation (i.e., QSS solution), and red dashed lines 750

are the responses with the addition of solution ŷ of BLM 751

(i.e., z = h + ŷ). For the main slow dynamics (active and 752

reactive powers) shown in (a), the proposed LSOR method is 753

more accurate than the small-signal model during the transient 754

period. Regarding the fast dynamics voltages and currents 755

illustrated in (b) and (c), the LSOR method with compensation 756

ŷ provides the most accurate performance. However, the 757
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Fig. 7. Simulation results of slow and fast dynamic responses of interested
bus 34: dq-axis output voltages Vod and Voq.

TABLE I
RMSES OF SLOW AND FAST DYNAMICS USING LSOR, LSOR

WITH BLM COMPENSATION, AND SMALL-SIGNAL

ORDER REDUCTION METHODS

LSOR without ŷ gives worse performance than the small-758

signal one used in [27]. This is because the fast dynamics759

predicted by the method in [27] are also compensated with760

a corrected response. From the stability point of view, the761

red lines in Fig. 5-7 show that, with bounded input power762

commands, both ROM and BLM are stable, which indicates763

that the original system is stable as justified by the stability764

of blue lines. To systematically evaluate the quantitative765

contrasts in the dynamic behaviors of both the proposed766

large-signal and small-signal order reduction methods, we767

present the root-mean-square errors (RMSEs) computed from768

the results displayed in Figs. 5-7. As tabulated in Table I,769

these RMSE values are sufficiently small when compared to770

the magnitudes of their corresponding state variables. It is771

important to note that the compensation facilitated by the BLM772

exclusively pertains to fast dynamics. Thus, the respective773

cells of active/reactive powers which are identified as slow774

dynamics in this case in Table I remain unpopulated.775

C. Computational Efficiency Analysis776

In order to evaluate the computational efficiency of the777

proposed SPT-based method, particularly from the view-778

point of reducing stiffness, two different ordinary differential779

equation (ODE) solvers are implemented: ode45 solver and780

TABLE II
COMPUTATIONAL TIME OF ORIGINAL, SMALL-SIGNAL AND

LARGE-SIGNAL ROMS USING DIFFERENT ODE SOLVERS

ode15s solver. Stiffness is a property of a system of ordinary 781

differential equations that affects the numerical stability and 782

efficiency of solving the system. A system is stiff if it has 783

some components that vary much faster than others, or if it 784

has some solutions that decay much faster than the solution of 785

interest [40]. In such cases, a nonstiff numerical method, such 786

as ode45 in MATLAB, would require very small time steps 787

to capture the rapid changes or avoid numerical oscillations, 788

which would result in a large computational cost and possibly 789

loss of accuracy. A stiff numerical method such as ode15s in 790

MATLAB, on the other hand, can handle larger time steps 791

and maintain stability and accuracy. However, it may slightly 792

reduce the accuracy of the solution. 793

Table III demonstrates that the ode45 solver achieves a 794

more significant reduction in computational time than the 795

ode15s solver when applied to the reduced-order models 796

obtained from the original full-order model. This compari- 797

son suggests that our LSOR method transforms the original 798

model from a stiff ODE problem to a non-stiff one. The 799

proposed method also enhances the stability of the ODE- 800

solving process through this transformation. Therefore, the 801

proposed method can decrease the computational time from 802

two aspects: the order of the system and the stiffness of the 803

ODE problem. Furthermore, the small-signal order reduction 804

method is slightly faster than the LSOR method. This is 805

because the LSOR results in a set of ODEs with many 806

nonlinear terms, which require more time to solve than a linear 807

one. However, as Table I indicates, the accuracy of the small- 808

signal method is lower than the proposed LSOR method. 809

Remark 5: Note that with the addition of the solution of 810

BLM, we need to solve another set of differential equations. 811

This seems that the proposed method has limited ability to 812

reduce the computational burden. However, this is not the case. 813

As discussed above, SPT reduces the computational burden 814

not only by reducing the number of differential equations 815

but also by converting the stiff problem to a non-stiff one. 816

Moreover, the adopted example is a possible worst case that 817

the perturbation coefficients are not small enough. When ε is 818

sufficiently small, the converging time T can be sufficiently 819

small as well. Then we can directly use the algebraic equation 820

to estimate the fast states. 821

D. Performance in Grid-Tied Mode Under Short-Circuit 822

Faults 823

In the preceding subsections, we examined the performance 824

of our proposed LSOR method under external disturbances 825

induced by load sudden changes. To gain deeper theoretical 826

insights, we investigated how load sudden changes influence 827
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Fig. 8. Diagram illustrating the implementation of short-circuit fault test.

Fig. 9. Simulation results of slow and fast dynamic responses of the interested
bus 34 under short-circuit fault disturbance: active and reactive power.

the inverters’ internal states through the power controller (5).828

Seeking a comprehensive understanding of various external829

disturbances’ influence on the dynamic performance of the830

ROM, we further explore the impact of disturbance induced by831

short-circuit faults in this subsection. In contrast to load sudden832

changes, the influence of short-circuit faults is transmitted833

through the bus voltages Vbd and Vbq connected to the LC834

filter of the DER, as detailed in (9). This discovery establishes835

a theoretical foundation that streamlines the simulation setup.836

Illustrated in Fig. 8, this approach allows us to concentrate837

on the key variables influencing order reduction performance,838

ensuring efficiency in our simulation.839

The fault scenario replicates real-world conditions by adopt-840

ing time-varying real utility-measured faulted voltage data.841

The fault sequence stages short-circuit scenarios, starting with842

an A-B fault at 5 seconds, followed by an A-B-G fault843

at 5.24 seconds, and a more severe three-phase fault at844

5.63 seconds. The sequence concludes with fault clearance845

at 6.38 seconds, restoring the system to its normal operating846

state. Same as in Section IV-B, the DER at the interested bus847

34 is analyzed.848

Figs. 9-11 compare the dynamic responses of the proposed849

SPT-based LSOR and the original full-order model for850

the states (P, Q, Iod, Ioq, Vod, Voq), which have RMSEs of851

(0.01, 0.01, 0.01, 0.01, 0.01, 0.01). The results show that the852

proposed SPT-based LSOR method can accurately capture853

Fig. 10. Simulation results of slow and fast dynamic responses of the
interested bus 34 under short-circuit fault disturbance: dq-axis output currents
Iod and Ioq.

TABLE III
COMPUTATIONAL TIME OF ORIGINAL AND REDUCED-ORDER MODELS

USING DIFFERENT ODE SOLVERS IN ISLANDED MODE

both the slow and fast dynamics of the original full-order 854

model under the complex short-circuit fault scenario, which 855

demonstrates its effectiveness and robustness. 856

E. Performance in Islanded Mode Under Load Sudden 857

Change 858

In this subsection, a simulation in islanded mode is con- 859

ducted to verify the effectiveness of the proposed method by 860

showing the dynamic responses of the buses with DERs. To 861

study the dynamic characteristics, a 20 � load is connected 862

parallel to bus 12 at 2 s and disconnected at 2.5 s. Following 863

the similar procedure in case 1, we can identify the slow and 864

fast dynamics of this multi-bus system. Despite the different 865

parameter settings of inverters, the relative magnitudes of 866

derivative terms’ coefficients still hold uniformly. That means 867

we can obtain a uniform division of slow and fast dynamics. 868

This fact is based on the nature of different components’ time 869

scales. The slow and fast states are divided as follows, 870

x2 = [
Pi Qi ΦPLLi δi Φdi Φqi �di �qi

]�
, (46) 871

z2 = [
Vodfi Ildi Ilqi Iodi Ioqi Vodi Voqi

]�
. (47) 872

The ROM can be derived using the Algorithm 1. The order 873

of the original model is reduced from 105th to 56th. The 874

simulation time is shown in Table III. Same as analyzed in 875

the last case study, the proposed method can convert the 876

stiff model of islanded MG to a non-stiff one to reduce 877

the computational burden. Figs. 12-14 show the dynamic 878
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Fig. 11. Simulation results of slow and fast dynamic responses of the
interested bus 34 under short-circuit fault disturbance: dq-axis output voltages
Vod and Voq.

Fig. 12. Comparison of the active/reactive power of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

responses of the original and reduced models of seven buses879

with DERs. The comparison between the results of the original880

model and the reduced one shows the accuracy of the ROM.881

In addition, the responses under load sudden change verify882

the effectiveness of our method against large disturbances in883

islanded systems.884

V. CONCLUSION885

This paper proposes an LSOR approach for MGs in the886

EMT time scale with consideration of external control input887

by synthesizing a novel stability and accuracy assessment888

theorem. The advantages of our proposed theorem can be889

summarized into two aspects. Firstly, one can determine the890

stability of a full-order system by only analyzing the stability891

of its derived ROM and BLM. Specially, when the ROM892

is input-to-state stable and the BLM is uniformly globally893

asymptotically stable, the original MG system can be proved894

Fig. 13. Comparison of the dq-axis output currents of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

Fig. 14. Comparison of the dq-axis output voltages of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

to be stable under several common growth conditions. This 895

makes it easier and more feasible to determine the stability of 896

a high-order system. Secondly, a set of quantitative accuracy 897

assessment criteria is developed and embedded into a tailored 898

feedback mechanism to guarantee the accuracy of the derived 899

ROM. It is proved that the errors between solutions of reduced 900

and original models are bounded and convergent under such 901

conditions. The above stability and accuracy theorem has 902

been strictly proven indicating that the proposed method is 903

generic for arbitrary dynamic systems satisfying the given 904

assumptions. Finally, we have conducted multiple simulations 905

under different conditions on an IEEE standard MG system to 906

verify the effectiveness of the proposed method. 907

The suggested LSOR method holds promise for future 908

extensions. One potential avenue involves exploring its 909

applicability across diverse classes of nonlinear systems, 910

encompassing uncertainties, time-varying coefficients, time 911
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delays, and similar complexities. Investigating whether the912

established sufficient conditions for stability and accuracy913

of ROM can be extended to these intricate systems would914

be a valuable pursuit. Another potential extension lies in915

integrating the proposed LSOR method with nonlinear control916

and optimization techniques. This could involve designing sta-917

bilizing controllers based on the ROM for high-order systems,918

presenting an opportunity to streamline the complexity of919

controller design.920
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