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Abstract—The increasing penetration of distributed energy
resources (DERs) highlights the growing importance of
microgrids (MGs) in enhancing power system reliability.
Employing electromagnetic transient (EMT) analysis in MGs
becomes crucial for controlling the rapid transients. However, this
requires an accurate but high-order model of power electronics
and their underlying control loops, complexifying the stability
analysis from the viewpoint of a higher control level. To
overcome these challenges, this paper proposes a large-signal
o order reduction (LSOR) method for MGs with considerations of
1 external control inputs and the detailed dynamics of underlying
12 control levels based on singular perturbation theory (SPT).
s Specially, we innovatively proposed and strictly proved a general
4 stability and accuracy assessment theorem that allows us to
15 analyze the dynamic stability of a full-order nonlinear system
16 by only leveraging our derived reduced-order model (ROM)
17 and boundary layer model (BLM). Furthermore, this theorem
18 furnishes a set of conditions that determine the accuracy of the
9 developed ROM. Finally, by embedding such a theorem into
20 the SPT, we propose a novel LSOR approach with guaranteed
21 accuracy and stability analysis equivalence. Case studies are
22 conducted on MG systems to show the effectiveness of the
23 proposed approach.
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2 NOMENCLATURE

27 Abbreviations

s BLM Boundary layer model

20  DER Distributed energy resource
o EMT Electromagnetic transient

s GAS Global asymptotic stability
2 ISS Input-to-state stability
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sy Solution of the BLM
e Ey Error vector between the slow states and the
77 solution of the ROM
s E, Error vector between the fast states and the
79 solution of the BLM

so Parameters

st OMjfyg Switch between grid-tied and islanded mode:
82 1-grid-tied mode; 2-islanded mode

8 Corner frequency of LPF for instantaneous
84 powers

85  (WePLL: Corner frequency of LPF for DER output
86 voltage

&7 KppLL Proportional gain of PI controller in PLL

s KipLL Integral gain of PI controller in PLL

o Kip Integral gain of PI controller in power con-
9% troller

s Kpp Proportional gain of PI controller in power
92 controller

3 Dp P-w droop gain

u Dqg Q-V droop gain

s Kiv Integral gain of PI controller in voltage con-
9% troller

o Kpv Proportional gain of PI controller in voltage
98 controller

9 Wy Nominal angular frequency

10 Lf Inductance of LC filter

o1 K¢ Integral gain of PI controller in current con-
102 troller

13 Kpc Proportional gain of PI controller in current
104 controller

105 R, R Parasitic resistances of the inductors

106 Cr Capacitance of LC filter

107 Ry Dumping resistor of LC filter

108 & Perturbation coefficient

109 &* Threshold of & below which the error of ROM
110 converges asymptotically

1w g Threshold of & below which the error of ROM
112 converges within a finite time T

ns n,m,p Dimensions of slow/fast states and input
T Fast time scale variable defined as /¢

ws T Finite error convergence time if ¢ < &**

116 I. INTRODUCTION

117 ICROGRIDS (MGs) are localized small-scale power
118 Msystems composed of interconnected loads and dis-
19 tributed energy resources (DERs) in low-voltage and
120 medium-voltage distribution networks. It can be operated in
121 grid-connected and islanded modes [1], [2], [3], [4], [5], [6].
122 The high penetration of low-inertia DERs makes the dynamic
123 response of MGs different from conventional networks domi-
124 nated by synchronous machines. This low-inertia characteristic
125 highlights the importance of dynamic modeling, stability
126 analysis, and control studies of MGs in the electromagnetic
127 transient (EMT) time scale [7], [8], [9]. To precisely capture
128 the comprehensive transient dynamics of MGs in a hierarchical
129 control structure, detailed dynamic models of the lower control
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levels such as primary and zero-control levels, and the impact
of external input from higher control levels such as secondary
control, need to be taken into account. However, the high-
order nature of these detailed dynamics of the underlying
control structures makes it intractable to analyze the stability
of MGs with such a complex dynamic model [10], [11], [12],
[13], [14]. In addition, another critical challenge brought by
considering the underlying controllers is the two-time-scale
behavior of MGs due to the different evolutionary velocities
of different state variables, which leads to a stiff differential
equation problem [15]. In the dynamic simulation of MGs,
numerically solving this stiff problem requires extremely small
time steps, which results in an unmanageable computational
complexity [16].

To solve the above problems, model order reduction tech-
niques have been studied and applied to power system
analyses. In [17], [18], an aggregate equivalent model was
developed for the order reduction of MGs by assuming similar
inverter dynamics. Kron reduction was adopted to simplify
the network of MGs in [19]. In [20], the authors used a
balanced truncation method for DC MGs described by a linear
model with inhomogeneous initial conditions. Although these
methods can effectively simplify the MG model, the time-scale
separation problem aroused by the consideration of underlying
control levels for EMT analysis is still not solved.

Given the inherent two-time-scale property of MGs, singular
perturbation theory (SPT) is a suitable technology for this
purpose. The SPT is a mathematical framework that focuses
on analyzing problems with a parameter, where the solutions
of the problem at a specific limiting value of the parameter
exhibit distinct characteristics compared to the solutions of the
general problem, resulting in a singular limit. It facilitates the
separation of the system into a reduced-order model (ROM)
that captures the slow states, and a boundary layer model
(BLM) that represents the errors between fast and quasi-
steady states. It is worth noting that the terms “slow” and
“fast” refer to the transient evolutionary velocity of states in
this context. Unlike conventional model reduction methods
that simply neglect certain state variables, SPT preserves the
characteristics of fast dynamics by integrating them into the
“slow” states, as advocated by [21]. Additionally, SPT has the
advantage of converting the original stiff problem into a non-
stiff problem, resulting in improved computational efficiency.
Due to the above advantages, the SPT has been widely used
in power system studies. The transient stability of type-3
wind turbines is investigated in [22] by applying the SPT
and Lyapunov methods and taking into account the dynamics
of phase-locked loop (PLL) and current control. In [23],
a model-order reduction and dynamic aggregation strategy
are proposed for grid-forming inverter-based power networks.
More reduced-order models for grid-forming virtual-oscillator-
controlled inverters with nested current and voltage-control
loops, and current-limiting action for overcurrent protection
by using the SPT are outlined in [24]. In [25], a linear active
disturbance rejection control scheme for two-mass systems
is developed based on the SPT. In the context of the MG
order reduction problem, a spatiotemporal model reduction
method of MGs using SPT and Kron reduction was proposed
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in [26], nonetheless, the method is not generic enough.
In [27], [28], a linear SPT was applied to small-signal models
of MGs. A small-signal ROM considering coupling dynamics
is developed for autonomous wind-solar multi-MGs based on
the SPT in [29]. However, since the above studies use the
small-signal model, the results only hold in the neighborhood
of a stable equilibrium point.

The above studies focus on the development of the reduced-
order MG modeling, whereas the stability assessment based
on the derived ROM is not included. To fill this gap, the
system order is reduced to simplify the stability analysis
by neglecting the underlying voltage controller in [30] at
the expense of losing fast dynamics. In [31], the nonlinear
Lyapunov stability of DC/AC inverters with different ROMs
was studied. A method for simplifying the stability assessment
was developed and applied to an islanded MG with droop
control by using inverter angles in [32]. Nevertheless, it
was demonstrated that such a simplification process could
affect the accuracy of ROMs in [33], [34], [35]. Moreover,
to our best knowledge, the existing studies do not consider
the impact of external inputs such as power commands and
voltage frequency references on MG stability analysis. A
typical way is to consider the unforced system by neglecting
the inputs to study the internal stability. However, even
though the unforced system is stable, a continuous input
signal can render the system unstable. In [36], a stability
assessment criterion that used the input-to-state stability (ISS)
of ROM and global asymptotic stability (GAS) of BLM
was proposed to analyze the total stability of the original
system. This method is generic for arbitrary singular per-
turbed systems under certain conditions, nevertheless, the
convergence of the error between reduced and original models
is not theoretically analyzed, which hinders the accuracy
evaluation of ROMs. This work is further extended in [37],
where the stability and accuracy issues are simultaneously
proved, however, the effect of external inputs is still not
analyzed.

To overcome the above challenges, this paper proposes
a novel large-signal order reduction (LSOR) strategy for
inverter-based MGs with detailed dynamics of the underlying
control levels in the EMT time scale. Firstly, a general theorem
for analyzing the dynamic stability of the full-order model
by only alternatively assessing the stability of its derived
ROM and BLM is proposed. A key point is that we consider
ISS to quantify the system’s response to external inputs and
unify internal and external stability. In particular, by assuming
the ROM to be ISS, the unforced ROM to be exponentially
stable, and BLM to be uniformly GAS, one can prove that
the original system is totally ISS. Then, we develop the
conditions that guarantee the accuracy of ROMs for both
slow and fast dynamics. Finally, by embedding the proposed
stability and accuracy assessment theorem into the large-signal
SPT, an improved LSOR algorithm is proposed for MGs.
Strict mathematical proof is provided to illustrate that the
proposed order reduction technique is generic for arbitrary
dynamic systems. The main contributions can be summarized
as follows:

« We propose a general theorem that allows us to assess

the large-signal stability of MGs with detailed dynamics

of underlying controllers in the EMT time scale by only
analyzing their ROMs and BLMs.

o A set of accuracy criteria is developed, under which the
error between the reduced and original models is bounded
and converges as the perturbation coefficients decrease.

o The impact of external control input from the higher
control level on the above stability and accuracy analyses
is studied with strict mathematical proof.

« The stability and accuracy assessment synthesis is embed-
ded into the LSOR method to improve the model accuracy
via a feedback mechanism, which automatically tunes
the bounds of perturbation coefficients as an index for
identifying the slow and fast dynamics.

The rest of the paper is organized as follows. Section II
describes the large-signal mathematical model of the stud-
ied MG system. Section III introduces the general singular
perturbation theory and proposes our stability and accuracy
assessment theory. Section IV gives the simulation validation
of the proposed method. Section V concludes the paper.

II. LARGE-SIGNAL MODELING OF INVERTER-BASED MGS

This section introduces a nonlinear model of the studied
MG system with detailed primary and zero-control levels.
Depending on the research objectives, control strategies, and
operation modes, MGs may have different models. According
to [27], the transient response velocity of line dynamics is
much faster than the slow ones in DERs due to the small line
impedance. Moreover, the state equations are fully decoupled
between DERs and lines. As a result, the line dynamics can be
neglected. Therefore, this section focuses on the modeling of
DERs, which are the main dynamic components in an inverter-
based MG.

A general control diagram of DERs is shown in Fig. 1.
The model can switch between two subsystems according to
the MG operation modes. In grid-tied mode, OMy,g switches
to 1, then the voltage source inverter is controlled by the
power controller and current controller to follow the power
command (P*, Q*). The MG bus voltage and system frequency
are maintained by the main grid. In islanded mode, OMgy,
is set to 0, and the MG voltage and frequency are regulated
by the DERs using droop controllers. According to Fig. 1, the
mathematical model can be derived for each component where
i=1,...,N denotes the index of N DERs in the MG.

A. Average Power Calculation

The generated active and reactive power can be calculated
using the transformed output voltage vodqq and current iodq.
Using a low-pass filter (LPF) with the corner frequency w,
we can obtain the filtered instantaneous powers as follows,

Pi = —Piwci + 1.50ci(Vodiloai + Vogilogi) (la)
Qi —Qjwe + 1-560ci(Voqi10di - Vodiloqi)~ (1b)

B. Phase Lock Loop

The model of PLL is the same as that established in [27]
as follows,

Vodfi = (2a)

(2b)

@cPLL;i Vodi — @cPLLi Vodti

PpLLi = —Vodfi-
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Controller Power V. q ¢
LPF calculator Odqy f abe
Fig. 1. The block diagram of voltage-sourced inverter-based DER with underlying control loops.
sor  In grid-tied mode, the inverter output phase is synchronized E. Current Controllers 329
w2 to the main grid using PLL, therefore the derivative of phase The PI controllers are adopted for current controllers. They sz
ws angle §; is set to wpLL;: generate the commanded voltage reference Vi ; according to o
. the error between the inductor currents reference Ifjlql. and its s
504 8; = wpLLi = 377 — KppuLiVodfi + KLPLL PPLLi- () feedback measurements Nqgi: 33
ss In islanded mode, the phase angle of the first inverter can f‘di = Il*dl. — hgi, (8a) 3
as be arbitrarily set as the reference for the other inverters: VlTi i = —oniLiiligi + KiciTai + Kpcilai, (8b) sss
. I"-:I*‘—I]», 8¢) a6
s07 8; = wpLL1 — WPLLi- “4) f’ loi ) ()
Vigi = —@niLiilai + Kicilgi + Kpcil'gi- (8d) sa7
ss C. Power Controllers . .
F. LC Filters and Coupling Inductors 338

ss  In grid-tied mode, the output power of DER is regulated by

s10 the power controller using the PI control method. The input The dynamical models of LC filters and coupling inductors s

a11 references are the commanded real and reactive powers: are as follows, o0
. o = i — P, 50) ?1(11' = (=Rgilai + Vidi — Vodi) /Lti + @niligis (9a) a1
N It = Kupi@pi + Knpibor, (5b) 'Ilqi = (—Ryilgi + Vigi — Voqi)/Lti — wnildis (9b) s
N <15(§i _oor (50) {odi = (—=Rcilodi + Vodi — Vodi) /Lei + onilogis (9¢) s
N It = Kipi®or + Kopidhor D Iogi = (—Reilogi + Vogi — Voai)/Lei — @nilodi, (9d) 544

Vodi = (hdi — Ioai)/ Cii + @ni Vogi + Rai(hai — Toai), (9€) s

Voqi = (Ilqi - qui)/cfi — wniVodi + Rdi(ilqi - ioqi)~ (91) s
st D. Voltage Controllers and Droop Controllers
In conclusion, when the MG system is operating in grid- s«

tied mode, the mathematical model can be represented by ass
equations (1)-(3), (5) and (8)-(9). In islanded mode, the MG 4
model can be represented by equations (1)-(2), (4) and (6)-(9). s

sz In islanded mode, a DER has no reference inputs from the
ais main grid. Therefore, it must generate its only voltage and

a1e frequency references using droop controllers as follows,

@

0

320 a);-k = Wpj — Dp,’Pl’, (6a)
s (;kqi = Voqni — DQi0:i- (6b) III. IMPROVED LSOR BY EMBEDDING STABILITY AND 351
ACCURACY ASSESSMENT THEOREM 352
a2 These references will be used as the set points for voltage In this section, we propose an improved LSOR method sss
a2 controllers. Two PI controllers are adopted for the voltage together with stability and accuracy assessment synthesis. ass
a4 controllers as follows, Firstly, we briefly present the SPT-based LSOR approach. as
Then a novel large-signal stability and accuracy assess- ase
325 ®4; = wpLL; — ], (7a) ment theorem with consideration of external control input is ss
o6 Iy = Kivi®ai + KpviPai, (7b)  proposed. Finally, we improve the LSOR algorithm by embed- 35
: " ding the stability and accuracy assessment theorem, so that sse

327 ¢qi = oqi — Voqi, (70)

. it can guarantee the accuracy of derived ROM and efficiently seo
k
328 Ly = K1vi®Pqi + Kpvi®Py;. (7d)  evaluate the stability of original models. The proposed LSOR se1

=3
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strategy is essentially generic and is suitable for the above MG
model introduced in Section II.

a4 A. LSOR Approach Using the SPT for MGs

365

366

36

N

368

369

37

o

37

372

373

374

375

376

377

378

379

38

o

38

382

383

384

385

386

387

388

389

390

39

392

393

394

395

396

397

39

®

399

40

o

40

40:

o

403

404

40!

a

406

407

408

409

410

M

Due to the two-time-scale property, the dynamics of MGs
can be classified as slow and fast dynamics according to the
transient velocities. Based on this phenomenon, here we first
rewrite the mathematical model introduced in Section II as
the general singular perturbed form (10). Then, the detailed
algorithm, theoretical supports, and case studies illustrating the
identification of slow and fast will be proposed in the later
sections.

x() = f(x(?), z(1), u(®), €),
ez(t) = g(x(1), z(1), u(?), &),

(10a)
(10b)

where all the state variables in (1)-(9) are collected in the
vector [x| 21T = [PiQiVoari PpLLi 8 Ppi PQi Tai Tyi
Lai Lgi Vodi Vogi Todi Togil (i = 1,...,N) in grid-tied mode
or [x' z'1" = [Pi Qi ®prri Vodri & Pai Pgi Tai Tqi Dai
Lgi Vodi Voqi Todi Togl] i = 1,...,N) in islanded mode,
respectively; X € R"” and z € R™ denote the derivatives of
slow and fast states, respectively; the external control input
is denoted as u = [P} Qj-‘]T in grid-tied mode or u =
[wni Voq,m-]T in islanded mode, respectively; & denotes the
small parameters in MGs such as capacitances and inductances
named as perturbation coefficient and its identification method
will be proposed in the later sections; f and g are locally
Lipschitz functions on their arguments. For simplicity, we
neglect the notation of time-dependency (f) in the rest of this
paper.

The two-time-scale characteristic of MGs motivates the
adoption of SPT. The main idea of SPT is to freeze the fast
dynamics and degenerate them into static equations. Thus, the
ROM can be obtained by substituting the solutions of the static
equations into the slow dynamic equations. Since ¢ is small,
the fast transient velocity Z = g/¢ can be much larger than the
slow dynamics x. To solve this two-time-scale problem, we
can set ¢ = 0, then equation (10b) degenerates to the following
algebraic equation,

0=g(x,zu,0). (1

If equation (11) has at least one isolated real root and
satisfies the implicit function theory, then for each argument,
we have the following closed-form solution,

z =h(x, u). (12)

Substitute equation (12) into equation (10a) and let ¢ = 0,
we have a quasi-steady-state (QSS) model,

x = f(x, h(x, u), u, 0). (13)

Note that the order of the QSS system (13) drops from n+m
to n. The inherent two-time-scale property can be described
by introducing the BLM. Define a fast time scale variable
T = t/e, and a new coordinate y = z — h(x, u). In this new
coordinate, equation (10b) is rewritten as

&= gxy+hxu.ue)
oh oh .
—¢| —fx,y+hx,u),u,¢)+ —u|. (14)
0x Ju
Let ¢ = 0, we obtain the BLM as follows,
— =g(x,y+ h(x,u), u, 0). (15)

dr

B. Stability and Accuracy Assessment Theorem

In this subsection, we propose a criterion to assess the
stability of the original system and the accuracy of ROM
and BLM. We first introduce a few technical definitions and
assumptions below.

Definition 1: Class K function « : [0,1) — [0,00) is a
continuous strictly increasing function with «(0) = 0. Further,
if + = oo and lim,_, o, @ (r) = 00, then « is said to belong to
class K function.

Definition 2: Class KL function 8 : [0,f) x [0,00) —
[0, c0) is a continuous function satisfying: for each fixed s,
the function B(r, s) belongs to class IC; for each fixed r, the
function B(r, s) is decreasing with respect to s and g(r, s) — 0
for s — oo.

Considering the impact of external inputs on the stability of
MGs, we define the ISS as follows.

Definition 3 (ISS): Consider such a nonlinear system

x = f(x,v], n) (16)

where x € R” is the state vector, vi € R™, v, € RP are
input vectors, and fis locally Lipschitz on R" x R™ x R?.
The system (16) is ISS with Lyapunov gains «,, and «,, of
class /C, if there exists a class KL function 8 such that for
x(0) € R" and bounded inputs vy, v, the solution of (16)
exists and satisfies

Ix@ Il = BUAXO), ) + vy (lvill) + a, (lIv21D.

The above definition indicates that an MG system is ISS
when all the trajectories are bounded by some functions of the
input magnitudes. Then we give the following three assump-
tions which are the sufficient conditions for the theorem.

Assumption 1 (Growth Conditions): The functions f, g,
and their first partial derivatives are continuous and bounded
with respect to (x,z,u, ¢); h and its first partial derivatives
oh/0x, oh/0u is locally Lipschitz; and the Jacobian dg/dz has
bounded first partial derivatives with respect to its arguments.

Assumption 2 (Stability of ROM): The ROM (13) is ISS
with Lyapunov gain &,, and its unforced system has an
exponentially stable equilibrium at the origin.

Assumption 3 (Stability of BLM): The origin of the
BLM (15) is a GAS equilibrium, uniformly in x € R”, u € R”.

Remark 1: The conditions in Assumption 1 are commonly
satisfied for most MGs [34]. Inspired by [36], we propose the
stability and accuracy assessment of MGs as the following
theorem. Note that the conditions, results and proof of our
theorem and [36] are different. In [36], only the stability
of the original system is proved, nonetheless, the accuracy
of the ROM and BLM is not analyzed, which is of vital
importance to make sure that the derived reduced-order model
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is correct. However, the addition of accuracy analysis arouses
new challenges in the proof which cannot be solved by directly
using [36]. Therefore, we add a constraint condition on the
transient speed in Assumption 2 and propose a new proving
method for our theorem.

Theorem 1: If the MGs system (10), its ROM (13) and the
BLM (15) satisfy the Assumptions 1-3, then for each pair
of (u, &), there exists a positive constant £*, such that for
all ¢+ € [0, oo), max{|x(O)[[, [[y(O)[, lull, [lall} < u, and & €
(0, *] the errors between the solutions of the original MGs
system (10) and its ROM (13) and BLM (15) satisfy

Ix(t, &) = X0l = O(e),
Iz(z, &) — h(x(®), u(®) — y(©) || = O(e),

where X(r) and y(tr) are the solutions of ROM (13) and
BLM (15), respectively. |x —X|| = O(¢) means that ||x —X|| <
k|le|| for some positive constant k. Furthermore, for any given
T > 0, there exists a positive constant £** < ¢* such that for
t € [T,00) and ¢ < ¢**, it follows uniformly that

lz(t, &) — h(X(®), u(®)|l = O(e).

(18)
19)

(20)

Moreover, there exist class KL functions By, By, a Lyapunov
gain «, of class K and positive constants &, such that the
solutions of the original MGs system (10a) and (14) exist
and satisfy

Ix(z, )1l = Bx(IxO), 1) + ex(llul)) + &,
Iy o)l < By(llyO)ll, 7) +&.

1)
(22)

Remark 2: Theorem 1 indicates large-signal stability by
observing that p can be arbitrarily large. This is more
comprehensive than the small-signal stability studied in [27].
Moreover, the errors between the solutions of reduced and
original MGs should be small and bounded to guarantee
accuracy. Equations (18) and (19) show that for sufficiently
small ¢, these errors tend to be zero. Equation (20) means that
for small enough ¢, the solution y of the BLM decays to zero
exponentially fast in time 7, so that the fast solutions can be
estimated by only QSS solutions h(z, x(¢)) after time 7.

Remark 3: According to the theorem, if the ROM is ISS
and BLM is GAS, then the original system is stable as
shown in (21) and (22). Moreover, in real physical systems,
one challenge of SPT is how to identify the slow and fast
dynamic states. A commonly used approach is the knowledge
discover-based method that relies on expert knowledge for
specific domains. For example, in MGs, some small parasitic
parameters such as capacitances, inductances, and small time
constants, can be selected as the perturbation coefficients €.
The states with respect to these small ¢ are identified as fast
states. This conventional empirical identification method falls
short of efficiency and accuracy. Therefore, we propose a
more efficient and accurate method to identify the slow/fast
dynamics by finding the bound of ¢ in the following proof.

Proof: The proof of the theorem is conducted in three steps.
First, we prove the GAS of y (22). This result will then be
used in proving the accuracy of ROM and BLM (18)-(20).
Finally, we provide the proof of ISS of x (21).
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Using the converse theorem and Assumption 3, there exists
a smooth function Vi(x,y,u) : R” x R” x R” — Rx, and
three class oo functions «, ap and 3, such that

(23)
(24)

ar(lyl) = Vix,y,w) < ax(llylD,
Vi
E)_yg(x’ y+hx,u),u,0) < —az(llyl).

Using [36, Lemmas 1 and 2] together with (23) and (24),
it can be verified that there exists a class K function ay, a
class KCL function B, and a continuous nonincreasing function
¥y : Rso — Rxg, such that for essentially bounded inputs
and & < yy(max{[Ix|, [y(O)[l, [[ull, [[a]l}), the solution of (14)
exists for all # > 0 and satisfies

ly(@ o)l = By(ly O, ©) + ay(e).

Note that at this step we do not know the boundedness of
x. To use the inequality (25), we apply the causality and
signal truncations. Define a positive constant f satisfying i >
By, 0) ot (n)+E. It can be verified that u < ft. Considering
the continuity for a given initial condition, we can define T >
0 as the upper bound of [0, T) within which |x|| < . Since
¥y is nonincreasing, it follows that

y() < yy(w) < yy(max{[xO)[I, lyO)[I, [lull, [lall}), (26)
vy = py(IXID. 27)

For ¢ < &1 = p(i), (26) and (27) yield that ¢ <
yy(max{|[x[l, [[y(O)[I, l[all, [[@[l}) holds for all + € [0,7).
However, from the definition of [, there must exist a positive
constant 7, such that ||x|| < g for all + € [0, T 4 n). This
contradicts that 7" is maximal, so 7 = oo. Therefore, there
exists an &; satisfying ay(e2) = &, such that (22) holds for all
t >0, and & < min{ey, &3}

Then, we prove the second step about the accuracy of the
ROM (18)-(20). Define the error between solutions of reduced
and original slow dynamics as E, = x — X. When ¢ = 0,
y =z — h(x,u) = 0. Then, we have

(25)

E, = f(E,, 0, u, 0) + Af, (28)

where Af = [f(X + Ey, 0, u, 0) — f(X, 0, u, 0) — f(E,, 0, u, 0)]
+ f(x,y,u,¢) — f(x,0,u, 0). According to Assumption 1, it
follows that
IAf]] < €4 11EL ) + I Ecll | %]|
+ &By(ly(O) I, T) + €35 + Lae,

for some positive constants €1, £2, £3, £4. The last term in
system (28) can be viewed as a perturbation of

(29)

E, = f(E,, 0, u, 0). (30)

Since the origin of the system (30) is exponentially stable with
u = 0, using the converse theorem, there exist a Lyapunov
function V> (E,), and positive constants c1, ¢z, 3, c4, for which
it follows that

A

Va(Ey) < el El?,

2
— c3[IExl7,

crllE? <
f(Exv O’ uv 0) S

3D

oV (32)

oE,
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< cal|Exll.

B

oE,

Using (22), (29) and (31)-(33), the Lyapunov function of (30)
along the trajectory of (28) satisfies

A% A%
2f(E,, 0, u, 0) + —
IE, 9E,

< = Gl + ol Eal €1 B + L2l %]
+ BB IYO) ], 7) + 36 + tae |
For |E|| < ¢3/(2c4€1), using Assumption 2, it follows that
2= =2fes —cats[B([KO) . 1) + auub ] }v2
+2[tae + 638 + Lapy (O D]VV2
< —2fe - wh (O] )}V

+2[Lee + Lapy(lyO) I, )]/ V2, (35)

where 0 < £, < ¢3 — cal1@x(sup [[ul]), €c > €3(1 +&/e) > 0,
and £, £4 > 0. Using the comparison lemma, we have

W2 (1) = ¢ (1, 0)W2(0)
t
+/0 o1, 5)[Lee + Lapy(lyO) |, )]ds, (36)

where W, = /V; and
6t $)| < Lee™ ", for Le. by > 0.

Vz = Af

(34)

(37

Because

t
/0 58, (lyO), T)ds = O(e), (38)

it can be verified that W)(f) = O(e). Then it follows that
E,(t,e) = O(e), and this means that (18) holds.
Since we have already verified that (22) holds in the first
step, then by Assumption 3, it follows that
Ey(t,¢) = |z(t, &) —h(X(, &), u() = §(7)
= |yt &) =3@) | < lly@ o)l + [0 (39)
< ByUlyOll, ) + ay(@) + By ([§O) ||, 7) = OCe)
for given initial points and all # > 0. This proves (19).
According to Assumption 3, y(r) = B,(|ly(0)|l, ) — 0 as

& — 0. Thus, the term y(z) = O(¢) for all t > T > 0 if ¢ is
small enough to satisfy

By(ly(O)1, 7) < ke

Let ¢ and T denote a solution of (40) with equal sign.
Subsequently, (20) holds for all ¢ < &** uniformly on [T, co).
Finally, we prove the ISS of original slow dynamics. Since
Ix(# &)l — IXO] < %7, &) —=x()]| = O(e), (41

there exist some class JCL function 8y, class K function o and
a small positive constant e3, such that the solution of (10a)
exists for all £ > 0 and ¢ < &* := min{ey, &, £3} satisfying
[x(, &)l < [X(®)]l + O(e)
< Be([|XO) |, ) + éx(llal)) + O(e)
< B:(IIXO)I, ) + ax([ull) + &. (42)
This completes the proof of (21). |

(40)

_________ D N G
( -
| Slow/Fast Dynamics £>¢ Determining the Bound of |
Identification | Perturbation Coefficients |
I |
L l x lZ | | le* ls** |
:‘; | ROM/BLM Candidates I _’E) || Trade-off between Accuracy |
Z’ I | % | and Efficiency I
D — _ =/ | |
2 9 Accuracy Assessment y
[ S AR ;____l____
L ISS of GAS of [
ROM BLM L] The ROM and BLM are
|

accurate and Original
System is stable

Fig. 2. The diagram of stability and accuracy assessment embedded LSOR.

Slow
0 . \’
2 & separates slow/fast o®® °
@» ; i [ ]
=z dynamics o ©®
SRl oo O, T .....................
&
=
= .
é Significant gap
(D]
(o]
) |
+~ °® ;
§ Fast ° £ is computed
g ° based on T
E \, °
A o
oo ®

Sorted state variables X

Fig. 3. Illustration of slow/fast dynamics separation by determining &*. The
smaller value of the dominant coefficient indicates faster speed. If all the
dominant coefficients of fast states are smaller than £**, the solution of BLM
¥ converges to zero within time 7.

C. Stability and Accuracy Assessment Embedded LSOR

This subsection develops a novel LSOR method by embed-
ding the above theorem. The overall flowchart is shown in
Fig. 2 and the detailed algorithm is proposed in Alogrithm 1.

Algorithm 1 provides a method to identify the slow and fast
dynamics of a system with guaranteed stability and accuracy.
The feasibility of Algorithm I relies on the inherent singularly
perturbed nature of inverter-based MGs, indicating the exis-
tence of at least one significant gap among the dynamic speeds
of the states. To quantitatively analyze the relationship between
the gap size and dynamic performance of the reduced model,
we have introduced an additional threshold £** in Algorithm 1,
whose efficacy has been proved in Theorem 1. The relationship
between ¢* and &** is illustrated in Fig. 3. A numerical case
study is given in the next section to demonstrate how &** helps
balance the accuracy and computational cost.

On the other hand, it is also possible that different partitions
of fast and slow dynamics result in similar performance
of the ROM. Choosing more dynamics as fast ones can
reduce the order of the ROM and improve the computational
efficiency, but it can also compromise the accuracy. Therefore,
a careful trade-off should be made according to the engineer-
ing requirements. For instance, in the MG control problem,
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Algorithm 1 Stability/Accuracy Assessment Embedded LSOR
1: Choose the smaller parameters dominating the transient
velocity as e. The states with respect to ¢ are identified
as fast states, while the others as slow states.
2: procedure ROM AND BLM DERIVATION
Let ¢ = 0, solve the algebraic equation (11) to obtain
the isolated QSS solutions z = h(x, u)
4 Substitute z into (10a), obtaining the ROM (13)
5:  Derive the BLM using equation (15).
6: end procedure
7
8
9

(95]

: procedure STABILITY ASSESSMENT
if Assumption 2 and 3 are satisfied then
Go to next procedure

else
11: Return to Step 1 to re-identify slow/fast dynamics.
12 end if

13: end procedure

14: procedure CALCULATE THE BOUND OF ¢

15:  Calculate ¢* = min{ey, &3, €3} according to proof.

16:  Calculate ¢** by solving equation (40) with equal sign.
17: end procedure

18: procedure ACCURACY ASSESSMENT

19: if e <&* then

20: if ¢ < &** then

21 z = h(xX, u) is the solution of fast dynamics

22: else

23: Use z = h(X, u) + § by solving the BLM (15).
24: end if

25:  else

26: Return to Step 1 to re-identify slow/fast dynamics
27:  end if

28: end procedure

minimizing the computational time of solving differential
equations is not a priority. In this case, as long as the
computational speed meets the sampling rate requirement to
avoid input time delays, it is preferable to use a higher-order
but more accurate ROM to design the controller [38]. On the
other hand, if the modeling error tolerance is higher while
the computational burden is more critical, such as in some
qualitative analysis, then it is suggested to consider more states
as fast ones [26].

This algorithm is designed for MGs with two-time-scale
properties, however, no basic assumptions of the MGs are
required. Therefore, the proposed method can be applied to
arbitrary dynamic systems.

IV. CASE STUDY
A. Simulation Setup

The proposed method is tested on a modified IEEE-37 bus
MG, which can be operated in grid-tied or islanded modes
as shown in Fig. 4. According to [26], seven inverters are
connected to buses 15, 18, 22, 24, 29, 33, and 34. When the
point of common coupling (PCC) is closed, the MG is operated
in grid-tied mode. Otherwise, it is operated in islanded mode.

We first let the MG be operated in grid-tied mode. In
order to analyze the detailed dynamic properties of both slow

IEEE TRANSACTIONS ON SMART GRID

. Bus without inverter
. Bus with inverter

24

11

31

30

28

22

35 21 25 29 10

Fig. 4. The diagram of modified IEEE-37 bus system.

and fast dynamics as well as compare our method with the
small-signal order reduction approach, a single bus of interest
(bus 34) is chosen to show its dynamic responses after power
command (input) changes for clearance. Then, a simulation is
conducted in islanded mode to show the dynamic responses
of multiple buses with DERs when a load sudden change is
given to verify its effectiveness against large disturbances. The
detailed load and line parameter settings can be found in [26].

B. Performance in Grid-Tied Mode and Comparison With
Small-Signal ROM

We start by defining a set of candidate coefficients that
dominate the dynamic response speeds to identify the slow
and fast dynamics. In [26], [27], the dominant coefficients
are selected as the common coefficients of the state variables
and their derivative terms. This selection has been verified
within a neighborhood of an equilibrium using modal analysis
and tested with hardware experiments in [27]. However, this
method may not be applicable to nonlinear systems in our
problem. For nonlinear systems, there is no general method
like spectral analysis in linear systems that can precisely
measure the dynamic response speeds.

To overcome this challenge, we first approximately follow
the definition of dominant coefficients which has been val-
idated on a small-signal model of the MG in [27]. Then,
we select the smaller coefficients as perturbation coefficients
. Finally, if the derived ROM and BLM pass the proposed
stability and accuracy assessment in Theorem 1, this candidate
¢ and the corresponding separation of slow and fast dynamics
are theoretically verified. If not, we need to re-identify the
slow and fast dynamics by lowering the threshold of ¢ and
considering different combinations of parameters as dominant
coefficients in the differential equations.

Considering the MG model in grid-tied mode, the derivative
term can be rewritten as

1 . 1 . . . KPPl KPPi .
—Pi, —Qi, PrLLi, 81, —— Ppi, —— D,
<(Uc i we Ql PLLi» 9i KI,Pz Pi KI,Pi Qi
Kpci .. Kpgi - r . Lg;
“Tai, S Vod tis = hdi,
Kici Kici e PLL Ry
Lg. L Li, Cy. Cg.
L hais —Iogis — T ogi, — ,—V, 43
Ry 1qi Re; odi Re; oqi Ry odi Ru; oqi (43)
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Substituting the parameters in [39] into the vector (43), we
have
0i, PpLLi» §is ¥¢di7 %qjqi, eri,
0.00421ldi 0.0042]1 '
05 % 05
0.0005 . 0.0005 . 0.000015 . 0.000015 .
0.09 0.09 2.025 2.025 °q")

= (0.0213,-, 0.020;, $prLi, 8, 0.02dg;, 0.02;, 0.011 s,

1 . 1
—P;, ——
(50.26 50.26
1 . 1
7Fqi,
100 7853.98

Vod fi»

odi» oqi» odi»

0.01Tg;, 1.3 x 10™*Voa 53, 8.4 x 10 I1g;, 8.4 x 10 Ijg,
14 % 107 g, 14 x 10 Toqi, 74 X 107 Voai, 7.4 x 107 Vo).

It can be seen that the magnitudes of dominant coefficients
vary significantly, which is caused by the two-time-scale
property of the system. The smaller parameters are selected as
perturbation coefficients ¢, which are utilized to classify the
slow and fast states in this system:

-

Xi = [Pi Qi PpLLi 8 Ppi PQi Tai Tqi |
T

21 = [Vodsi hai Dgi Todi Togi Vodi Vogi] -

Remark 4: The concepts of slow and fast dynamics are rel-
ative and depend on the specific parameter settings. Different
parameters can alter the dynamic response speeds of the
states accordingly. For instance, the states associated with PI
controllers are regarded as slow dynamics under the parameter
setting in [39], but as fast dynamics under the parameter setting
in [26]. Hence, the identification of slow and fast dynamics
should take into account the detailed parameter setting, and
the results (44)-(45) are not generalizable for any MGs.

We first set ¢ to O and calculate the QSS solution z; =
h(xp, u;) by solving the algebraic equation with respect to the
fast dynamics (45). Then the ROM is obtained by substituting
z into the slow dynamic equations with respect to (44).
Comparing the numbers of state variables in equation (43)
and (44), the order of the original model is reduced to 53.33%.
Then we derive the BLM using equation (15). Once the ROM
and BLM are obtained, we use the conventional ISS and GAS

(44)
(45)

720 judging theorems in [21] to evaluate their stability of them.
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Specially, the unforced nonlinear ROM is exponentially stable
by checking that its linearized system matrix has eigenvalues
with strictly negative real parts. It can be verified that the
assumptions are satisfied. Based on this result, we are inclined
to anticipate the stability of the original system.

To ensure this, we still need to theoretically verify the
accuracy of the ROM and BLM. Following the technique
in the proof, we can calculate the boundary of ¢ as &* =
min{e, €2, €3} = 7.92 x 1073. Note that max{e} = 3.9 x
1073 < 7.92x1073 = &*. Therefore, we can conclude that this
MGs system is stable and we can use the solutions of its ROM
x and z = h(X, u) + ¥ to accurately represent its real dynamic
responses. Furthermore, given 7T = 0.43 s, we can find a &**
satisfying max{e} < &** = 4.2 x 1073, which indicates that
the term § will be O(e) after 0.43 s. Here, a trade-off exists
between accuracy and efficiency. When the accuracy is prior,
one can choose z = h(X, u) + y by computing an additional
differential equation (BLM). When the efficiency dominates,
use z = h(X, u) suffering the inaccuracy only within (0, T).
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Fig. 5. Simulation results of slow and fast dynamic responses of interested
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Then we conduct the simulation of the derived ROM using
MATLAB. The active power command changes to 1000 W at
2 s and changes to 500 W at 4 s. The reactive power command
changes to 500 W at 2 s and changes to 300 W at 4 s. A
comparison simulation using the small-signal order reduction
method in [27] is conducted under the same conditions. The
simulation results are shown in Fig. 5-7, where blue solid lines
denote the responses of the original model, green dash-dotted
lines denote that using small-signal order reduction method,
pink dotted lines denote the results of proposed LSOR without
BLM compensation (i.e., QSS solution), and red dashed lines
are the responses with the addition of solution y of BLM
(i.e., z = h +¥). For the main slow dynamics (active and
reactive powers) shown in (a), the proposed LSOR method is
more accurate than the small-signal model during the transient
period. Regarding the fast dynamics voltages and currents
illustrated in (b) and (c), the LSOR method with compensation
y provides the most accurate performance. However, the
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Fig. 7. Simulation results of slow and fast dynamic responses of interested
bus 34: dg-axis output voltages Voq and Voq.

TABLE I
RMSES OF SLOW AND FAST DYNAMICS USING LSOR, LSOR
WITH BLM COMPENSATION, AND SMALL-SIGNAL
ORDER REDUCTION METHODS

Model LSOR LSOR w/ Small-signal
State compensation
P (kW) 0.014 0.019
Q@ (kVAR) 0.004 0.008
Ioaq (A) 0.257 0.021 0.101
Iogq (A) 0.499 0.040 0.227
Voa (V) 0.022 0.002 0.008
Voq (V) 0.286 0.023 0.127

LSOR without § gives worse performance than the small-
signal one used in [27]. This is because the fast dynamics
predicted by the method in [27] are also compensated with
a corrected response. From the stability point of view, the
red lines in Fig. 5-7 show that, with bounded input power
commands, both ROM and BLM are stable, which indicates
that the original system is stable as justified by the stability
of blue lines. To systematically evaluate the quantitative
contrasts in the dynamic behaviors of both the proposed
large-signal and small-signal order reduction methods, we
present the root-mean-square errors (RMSEs) computed from
the results displayed in Figs. 5-7. As tabulated in Table I,
these RMSE values are sufficiently small when compared to
the magnitudes of their corresponding state variables. It is
important to note that the compensation facilitated by the BLM
exclusively pertains to fast dynamics. Thus, the respective
cells of active/reactive powers which are identified as slow
dynamics in this case in Table I remain unpopulated.

C. Computational Efficiency Analysis

In order to evaluate the computational efficiency of the
proposed SPT-based method, particularly from the view-
point of reducing stiffness, two different ordinary differential
equation (ODE) solvers are implemented: ode45 solver and

IEEE TRANSACTIONS ON SMART GRID

TABLE II
COMPUTATIONAL TIME OF ORIGINAL, SMALL-SIGNAL AND
LARGE-SIGNAL ROMS USING DIFFERENT ODE SOLVERS

Model Original aroe-sions all-sions
model Large-signal Small-signal
Solver
ode45 94.25 s 11.92 s 9.56 s
odel5s 11.43 s 10.81 s 8.24 s

odelS5s solver. Stiffness is a property of a system of ordinary
differential equations that affects the numerical stability and
efficiency of solving the system. A system is stiff if it has
some components that vary much faster than others, or if it
has some solutions that decay much faster than the solution of
interest [40]. In such cases, a nonstiff numerical method, such
as ode45 in MATLAB, would require very small time steps
to capture the rapid changes or avoid numerical oscillations,
which would result in a large computational cost and possibly
loss of accuracy. A stiff numerical method such as odel5s in
MATLAB, on the other hand, can handle larger time steps
and maintain stability and accuracy. However, it may slightly
reduce the accuracy of the solution.

Table III demonstrates that the ode45 solver achieves a
more significant reduction in computational time than the
odel5s solver when applied to the reduced-order models
obtained from the original full-order model. This compari-
son suggests that our LSOR method transforms the original
model from a stiff ODE problem to a non-stiff one. The
proposed method also enhances the stability of the ODE-
solving process through this transformation. Therefore, the
proposed method can decrease the computational time from
two aspects: the order of the system and the stiffness of the
ODE problem. Furthermore, the small-signal order reduction
method is slightly faster than the LSOR method. This is
because the LSOR results in a set of ODEs with many
nonlinear terms, which require more time to solve than a linear
one. However, as Table I indicates, the accuracy of the small-
signal method is lower than the proposed LSOR method.

Remark 5: Note that with the addition of the solution of
BLM, we need to solve another set of differential equations.
This seems that the proposed method has limited ability to
reduce the computational burden. However, this is not the case.
As discussed above, SPT reduces the computational burden
not only by reducing the number of differential equations
but also by converting the stiff problem to a non-stiff one.
Moreover, the adopted example is a possible worst case that
the perturbation coefficients are not small enough. When ¢ is
sufficiently small, the converging time 7' can be sufficiently
small as well. Then we can directly use the algebraic equation
to estimate the fast states.

D. Performance in Grid-Tied Mode Under Short-Circuit
Faults

In the preceding subsections, we examined the performance
of our proposed LSOR method under external disturbances
induced by load sudden changes. To gain deeper theoretical
insights, we investigated how load sudden changes influence
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Fig. 8. Diagram illustrating the implementation of short-circuit fault test.
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4501 1 Fig. 10.  Simulation results of slow and fast dynamic responses of the

interested bus 34 under short-circuit fault disturbance: dg-axis output currents
) . A . . . ) ) Iod and Iog.

350 1 TABLE III
COMPUTATIONAL TIME OF ORIGINAL AND REDUCED-ORDER MODELS
USING DIFFERENT ODE SOLVERS IN ISLANDED MODE

)

— 300

Q (W

Model

250 Original model Reduced model | Percentage

Solver

ode45 104.25 s 11.25 s 89.2%

- S N I N B
S U ; odel5s 13.23 s 11.37 s 14%

Fig. 9. Simulation results of slow and fast dynamic responses of the interested

bus 34 under short-circuit fault disturbance: active and reactive power. . L.
both the slow and fast dynamics of the original full-order ss

model under the complex short-circuit fault scenario, which ass

s2s the inverters’ internal states through the power controller (5). demonstrates its effectiveness and robustness. 856
s20 Seeking a comprehensive understanding of various external

s30 disturbances’ influence on the dynamic performance of the E. Performance in Islanded Mode Under Load Sudden as7
sst ROM, we further explore the impact of disturbance induced by =~ Change 858
sz short-circuit faults in this subsection. In contrast to load sudden In this subsection, a simulation in islanded mode is con- sso

s changes, the influence of short-circuit faults is transmitted ducted to verify the effectiveness of the proposed method by eso
sas through the bus voltages Vpq and Vipq connected to the LC  showing the dynamic responses of the buses with DERs. To s
sas filter of the DER, as detailed in (9). This discovery establishes study the dynamic characteristics, a 20 € load is connected sz
s a theoretical foundation that streamlines the simulation setup.  parallel to bus 12 at 2 s and disconnected at 2.5 s. Following ses
s7 Illustrated in Fig. 8, this approach allows us to concentrate  the similar procedure in case 1, we can identify the slow and s
se on the key variables influencing order reduction performance,  fast dynamics of this multi-bus system. Despite the different ass
s0 ensuring efficiency in our simulation. parameter settings of inverters, the relative magnitudes of ses
o The fault scenario replicates real-world conditions by adopt-  derivative terms’ coefficients still hold uniformly. That means s
sa1 Ing time-varying real utility-measured faulted voltage data. we can obtain a uniform division of slow and fast dynamics. ees
sz The fault sequence stages short-circuit scenarios, starting with  This fact is based on the nature of different components’ time s

s an A-B fault at 5 seconds, followed by an A-B-G fault gcales. The slow and fast states are divided as follows, 870
sas at 5.24 seconds, and a more severe three-phase fault at T
a5 5.63 seconds. The sequence concludes with fault clearance X2 = [P; Qi PpLLi 8 Pai Pgi Tai Tgi | (46) on
sss at 6.38 seconds, restoring the system to its normal operating 2o = [Voue T Tt T Tos Vorts Vo] T

2 = [ Vodsi hi i lod d : (47) en
s47 state. Same as in Section IV-B, the DER at the interested bus [ o T T fod Toar Todt Oql] ’
s 34 is analyzed. The ROM can be derived using the Algorithm 1. The order e

sso  Figs. 9-11 compare the dynamic responses of the proposed of the original model is reduced from 105" to 56™. The e
sso SPT-based LSOR and the original full-order model for simulation time is shown in Table III. Same as analyzed in ess
es1 the states (P, O, Iod, logs Vod, Voq), which have RMSEs of the last case study, the proposed method can convert the ez
ss2 (0.01,0.01, 0.01, 0.01, 0.01, 0.01). The results show that the stiff model of islanded MG to a non-stiff one to reduce s
ss3 proposed SPT-based LSOR method can accurately capture the computational burden. Figs. 12-14 show the dynamic es
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Fig. 12. Comparison of the active/reactive power of the seven buses with

DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

responses of the original and reduced models of seven buses
with DERs. The comparison between the results of the original
model and the reduced one shows the accuracy of the ROM.
In addition, the responses under load sudden change verify
the effectiveness of our method against large disturbances in
islanded systems.

V. CONCLUSION

This paper proposes an LSOR approach for MGs in the
EMT time scale with consideration of external control input
by synthesizing a novel stability and accuracy assessment
theorem. The advantages of our proposed theorem can be
summarized into two aspects. Firstly, one can determine the
stability of a full-order system by only analyzing the stability
of its derived ROM and BLM. Specially, when the ROM
is input-to-state stable and the BLM is uniformly globally
asymptotically stable, the original MG system can be proved
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20 20
18
l <16
} S14
12
0 10
1.5 2 2.5 3 1.5 2 2.5 3
Time (s) Time (s)
(a) (b)
20 20 |

18
=16

o =

Bus 22

— Bus 2:

12 *:’:u:l:

| Bus 33

0 10 — Bus 34

1.5 2 25 3 1.5 2 25 3
Time (s) Time (s)

(c) (d)

Fig. 13.  Comparison of the dg-axis output currents of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

10 386
5 384
R S N—
5 0 T § = I t
k3 2 =380
? 378
10 376
L5 2 2.5 3 1.5 2 2.5 3
Time (s) Time (s)
(a) (b)
10 386
5 l 384
E =382
SN ] =
2 2 I +Z 380 g
O = Bus 22
|~ Bus 2:
-5 378 —guslg
Bus 33
—— Bus 34
-10 376
L5 2 2.5 3 1.5 2 2.5 3
Time (s) Time (s)
(c) (d)

Fig. 14. Comparison of the dg-axis output voltages of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

to be stable under several common growth conditions. This
makes it easier and more feasible to determine the stability of
a high-order system. Secondly, a set of quantitative accuracy
assessment criteria is developed and embedded into a tailored
feedback mechanism to guarantee the accuracy of the derived
ROM. It is proved that the errors between solutions of reduced
and original models are bounded and convergent under such
conditions. The above stability and accuracy theorem has
been strictly proven indicating that the proposed method is
generic for arbitrary dynamic systems satisfying the given
assumptions. Finally, we have conducted multiple simulations
under different conditions on an IEEE standard MG system to
verify the effectiveness of the proposed method.

The suggested LSOR method holds promise for future
extensions. One potential avenue involves exploring its
applicability across diverse classes of nonlinear systems,
encompassing uncertainties, time-varying coefficients, time
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o2 delays, and similar complexities. Investigating whether the
established sufficient conditions for stability and accuracy
of ROM can be extended to these intricate systems would
be a valuable pursuit. Another potential extension lies in
integrating the proposed LSOR method with nonlinear control
and optimization techniques. This could involve designing sta-
o1s bilizing controllers based on the ROM for high-order systems,
919 presenting an opportunity to streamline the complexity of
20 controller design.
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