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Abstract—This study presents a novel approach for the pre-
cise monitoring and prognosis of photovoltaic (PV) inverter sta-
tus, which is crucial for the proactive maintenance of PV sys-
tems. It addresses the gaps in traditional model-based methods,
which tend to neglect the overall reliability of inverters, and
the limitations of data-driven approaches that largely depend on
simulated data. This research presents a robust solution appli-
cable to real-world scenarios. The proposed data-driven model
for PV inverter failure prognosis employs actual inverter mea-
surements, integrating various operational and weather-related
factors based on domain knowledge. This approach effectively
represents inverter stressors and operational status. Utilizing an
Enhanced Siamese Convolutional Neural Network (ESCNN), the
model merges operational data with domain knowledge features,
redefining the prognosis challenge as a classification task. Fur-
thermore, the paper discusses an ESCNN-based real-time inverter
failure monitoring method developed on the well-trained model.
The proposed models are rigorously trained and tested with real
inverter data and a novel filtering method is included to address
accidental failures in practical scenarios. The results validate the
model’s efficacy, and the directions for future research are also
outlined.

Index Terms—PV inverter, failure prognosis, deep learning,
Siamese neural network, field measurements, domain-knowledge
features

I. INTRODUCTION

IN the context of the escalating global energy crisis, renew-
able energy sources have garnered considerable attention

from the research community [1] [2]. Photovoltaic (PV) solar
energy, in particular, has emerged as a key player in the sus-
tainable energy landscape. Projections suggest that by 2030,
PV power generation in distribution systems could reach an
impressive annual output of 650 GW [3]. However, the re-
alization of this potential is constrained by operational and
environmental challenges that can significantly impact the ef-
ficiency and longevity of PV systems [4]. PV inverters, which
are vital components responsible for converting solar energy
into usable electricity, are especially prone to these stressors.
Their sensitivity underscores the necessity for robust and ef-
fective maintenance strategies. Ensuring the resilience of these
inverters through proactive maintenance, vigilant monitoring,
and failure prognosis is crucial. Such measures are essential to
enhance the reliability and sustainability of PV installations,
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thereby supporting the broader objective of meeting global re-
newable energy goals. To effectively implement these strate-
gies, a precise and reliable method for failure prognosis and
monitoring is essential.

The failure prognosis research has obtained significant in-
terest across various fields, including applications in battery
[5], rolling bearings [6] and wind turbines [7]. Similarly, the
issue of solar inverter failure prognosis has emerged as a focal
point of research, attracting considerable attention. Generally,
the existing work can be divided into two primary categories:
empirical model-based methods and data-driven methods.

Regarding the empirical model-based methods, the most
prominent approach is the lifetime model of power electron-
ics derived from accelerated power cycling test data, which
estimates the device’s life expectancy based on thermal cy-
cling parameters [8]. A survey of lifetime models for power
semiconductors is provided in the report [9], highlighting sev-
eral key models: the Coffin-Manson Model [10], the Norris-
Landsberg Model [11], and the Bayerer Model [12]. Along
with these models, a general flowchart for assessing the re-
liability and useful life of PV inverters is described in the
report. Extending the basic models, researchers explore vari-
ous scenarios and potential points. [13] investigates the impact
of panel positioning and degradation on PV inverter lifetime,
finding significant effects from panel orientation but minimal
from tilt angles. [14] discusses the reliability of three types of
DC-link capacitors in power electronics, presenting the repre-
sentative lifetime models. This study also highlights challenges
in current methodologies, including the resource-consuming
nature of accelerated lifetime testing, variations in constant pa-
rameters within lifetime models, and the limited range of stres-
sors considered. [15] examines the benefits of local reactive
power provision on system performance and its implications
for PV inverter longevity. The study utilizes a parameter-based
capacitor degradation model present in [14] to assess inverter
lifetimes and predict potential failure points. [16] introduces a
Monte Carlo-based analysis method for predicting the lifetime
consumption of bond wires in insulated gate bipolar transistor
(IGBT) modules of PV inverters. This approach differs from
previous studies by incorporating variations in IGBT param-
eters, such as the on-state collector–emitter voltage, diverse
lifetime models, and a range of environmental and operational
stresses into the lifetime prediction process. Most prior studies
on PV inverter reliability have focused solely on the effects of
thermal cycling on power semiconductors and DC-link capaci-
tors in the power stage. However, the overall system reliability
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and lifetime are also influenced by other components. A more
comprehensive model that accounts for the overall reliability
of inverters, considering all these components is essential for
a complete understanding and accurate prediction of inverter
lifespan.

In terms of the data-driven method, [17] introduces an in-
novative framework utilizing a multi-evaluation index parame-
ter optimization model and Mahalanobis distance. This frame-
work features a unique inverter health indicator, which is de-
veloped using a fault feature library encompassing various
time-domain, frequency-domain, time-frequency domain char-
acteristics, and circuit performance parameters. However, this
health index has yet to be validated with real inverter mea-
surement data, which could limit the application of the in-
dex. [18] employs the LightGBM model as an alternative to
traditional thermoelectric coupling models, enhancing the ef-
ficiency of calculating IGBT junction temperatures and re-
ducing the reliance on IGBT model parameters for reliability
evaluations. However, this study focuses exclusively on the re-
liability of IGBTs, not addressing the reliability of the entire
inverter system. Similar to LightGBM, another ensemble algo-
rithm, random forests (RFs), is utilized alongside the Concor-
dia transform to enhance the robustness of the fault diagnosis
classifier in [19]. [20] presents a failure diagnostic scheme
using the AlexNet deep learning model to classify various
fault types in PV systems. While the results are promising,
the model is only tested on the simulated data. Based on the
traditional convolutional neural network (CNN) structure, [21]
introduced the global average pooling layer to replace the fully
connected layer to realize fast fault diagnosis of the DC-DC
inverter. Similarly, [22] details a fault diagnosis strategy us-
ing an attention-assisted recurrent neural network, focusing on
extracting key information from signal context. In a different
approach, [23] improves support vector machine (SVM) clas-
sification accuracy by using a radial basis kernel function and
grid-search optimization. However, the performance of SVM is
significantly influenced by the choice of kernel function and its
parameters. Likewise, principal component analysis (PCA) is
employed in [24] as a feature selection model, followed by the
proposal of a secondary classification fault diagnosis strategy
based on PCA-SVM. While previous studies have achieved
impressive results in data-driven inverter failure prognosis, a
common issue persists: most rely on simulated data, which
tend to be idealized and free from noise or accidental exter-
nal disturbances. This dependence on computer-simulated PV
measurements could potentially diminish the applicability and
credibility of these models in real-world scenarios.

Moreover, accurate prediction and analysis of inverter life-
time require understanding the stress factors affecting it. Over-
sizing PV arrays, also known as under-sizing PV inverters, is
a common strategy to maximize inverter capacity and reduce
energy costs, but it can significantly affect inverter longevity.
[25] assesses the impact of PV array sizing on inverter re-
liability and lifetime. Their findings indicate that variations
in PV array sizing can markedly alter the expected reliability
and lifespan of inverters. Additionally, environmental stres-
sors like solar irradiance, temperature, and humidity’s effects
on inverter reliability and lifespan warrant more research, as

suggested by [26]. [27] and [28] further highlight how envi-
ronmental conditions, particularly temperature extremes and
humidity, influence inverter performance and longevity, with
extreme temperatures inducing thermal stress and potentially
exceeding operational limits. Despite their significance, these
internal and external stressors are often overlooked in current
failure prognosis research.

In light of these challenges, this study proposes a data-
driven PV inverter failure prognosis model that incorporates
multiple designed domain knowledge features to evaluate the
overall reliability of PV inverters. Rather than utilizing the
simulation or lab-generated data, the field measurements are
utilized to build and test the model, ensuring its effectiveness
in real-world settings. The main contributions of this work are
summarized as follows:

• This research develops a data-driven prognosis model for
PV inverter failures using an Enhanced Siamese Convo-
lutional Neural Network (ESCNN). It incorporates mul-
tiple operational and weather-related factors grounded in
domain knowledge to reflect inverter stressors and oper-
ational status. This integration of specific features boosts
the model’s predictive accuracy.

• In this study, an inverter sample filtering process is
adopted, which employs a two-stage clustering frame-
work based on the Gaussian Mixture Models (GMM). By
identifying and excluding accidental external disturbance
failures, the filtering process can minimize the impact of
such anomalies, ensuring optimal use of the dataset for
enhanced model accuracy and reliability.

• The proposed prognosis model is developed, validated,
and tested using a dataset of around 200 real-world invert-
ers. Distinct from simulation data and lab testing results,
this industrial dataset incorporates genuine noise and ac-
cidental external disturbances. Building and testing the
model on such real-world data significantly enhances its
reliability in practical applications.

The rest of the paper is organized as follows. Section II pro-
vides the problem statement and the descriptions of the dataset.
The inverter dataset filtering method and inverter stress feature
extraction are formulated in Section III. Section IV presents
the ESCNN-based solar inverter failure prognosis framework.
Numerical results on the real inverter measurements are given
in Section V and the paper is concluded in Section VI.

II. PROBLEM STATEMENT AND DATASET DESCRIPTION

A. Dataset Description

The PV inverters data used in this study were sourced from
two industrial companies. The dataset encompasses informa-
tion gathered from more than 700 PV inverters, which are
distributed across 440 different locations. These sites include
a mix of residential and commercial customers, providing a
broad and diverse range of operational data for analysis. The
dataset in this project covers data from the date of installation
of each inverter up to the end of 2022, with a resolution of
5 minutes. For each inverter, we recorded a variety of opera-
tional parameters including total active power, AC side current
and voltage, frequency, and DC side voltage. Fig. 1 illustrates
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Fig. 1. The operational data snaps of a selected inverter with degradation progress

a segment of operational data from the lifetime curve of a
selected inverter, showcasing its degradation progression. Ini-
tially, the data indicates excellent functioning of the inverter.
However, after approximately five years, clear signs of degra-
dation appear in its operational status. This is evidenced by
erratic fluctuations in the AC side current and power, indicat-
ing inconsistencies in solar generation, and by the DC voltage
exhibiting variations rather than maintaining a steady value as
seen at the outset. Due to the grid-connected nature of the
system, the AC side voltage and frequency remain largely un-
changed. A key distinction of this operational data, as opposed
to laboratory or simulated data, is its lower fidelity, character-
ized by outliers, noise, and reduced observability due to lower
resolution. These traits are common in inverter operational data
collected from industrial environments.

Besides the historical operational data, the alert records of
the inverters are also included in the monitoring system. The
alert codes capture and record historical anomaly events of
the inverters, offering detailed information on abnormal opera-
tions. These alert codes include various alert types categorized
into four main areas: equipment, grid, storage, and communi-
cation. Among these, inverter fault-related alerts—such as In-
verter Production Issues Detected, DC Isolation, and Residual
Current Device Signal—are specifically used to assess abnor-
mal working conditions of inverters. Alerts that could be unre-
lated to the faults, like No Communication, are excluded from
the analysis. Out of all the inverters in the dataset, approxi-
mately 85 have failed at least once, leading to 103 complete
replacement events. While we have logs of all these replace-
ment events, the logged dates do not necessarily align with
the actual dates of inverter failure owing to possible delays
in repair and replacement. Thus, we combine operational data
with replacement records to more precisely identify the failure
time of each inverter. Determining failure time is crucial for
developing an accurate data-driven failure prognostic model.

B. Problem Restatement

Accurate inverter failure prognostic is vital for optimizing
inspection schedules, enhancing repair efficiency, and reducing
maintenance costs. Predicting the exact failure time is chal-
lenging due to complex failure reasons and uncertainties in
field operation conditions. To make the failure prognosis more

feasible, our approach strikes a balance between “informative-
ness” and “reliability” by framing it as a classification task.
This approach maximizes the support for solar energy compa-
nies with our prognostic results. The classification details are
defined as follows:

ys = M(X,A,W)

where X represents the operational data of inverters; A con-
tains alert information that may include valuable degradation
details of inverters, and W encompasses weather information
from the respective inverter locations. ys contains labels for
each inverter. For each equipment i in ys, ysi = 1 indicates
the anticipated failure of inverter i in a future time slot s; con-
versely, ysi is labeled as zero. The time slot in this study is set
at one month, considering the practical needs of solar energy
companies. In summary, our work aims to model the map-
ping M using an industrial dataset, employing deep learning
techniques to construct the framework. With the well-trained
model Mf , we can predict the operational status of inverters
in future time periods.

III. FEATURE EXTRACTION AND DATASET FILTERING
BASED ON DOMAIN KNOWLEDGE

In this section, several key features are generated based on
domain knowledge, focusing on inverter degradation and ex-
ternal stressors, enabling the model to detect signs of inverter
degradation accurately. Additionally, we establish a framework
for filtering the failure samples, which helps refine the dataset
for the subsequent failure prognostic task.

A. Operational Feature Extraction

Inverters accumulate vast operational data over the years.
Utilizing all this data directly can be inefficient and cumber-
some, as redundant data might obscure crucial degradation in-
dicators, particularly in limited datasets. Hence, it’s essential
to pinpoint key features related to degradation. This section
highlights two such features derived from domain expertise,
incorporating external stress factors like severe weather into
our analysis.
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1) Equivalent Under-sizing Rate: Over-sizing PV arrays (or
under-sizing inverters) is a common strategy to maximize the
utilization of the inverter capacity, reduce energy costs, and in-
crease the PV system’s return on investment [25]. While under-
sizing an inverter leads to more efficient use by frequently
operating at rated power, it also means prolonged high-power
operation, which can shorten its lifespan. This is due to in-
creased thermal stress on components like power devices and
capacitors, impacting their reliability [25]. Thus, considering
the effects of under-sizing is vital for inverter failure analysis.
Traditionally, the calculation of the under-sizing rate is based
on nominal values or standard test parameters. However, this
approach does not account for variable field operation condi-
tions and weather factors, such as cloudy or rainy days, which
affect PV panels output. Therefore, the standard method for
calculating under-sizing may not accurately reflect real oper-
ational stresses. To accurately reflect inverter under-sizing in
real-world conditions, we introduce a new metric, the equiva-
lent under-sizing rate (EUR) [29], denoted as Re. It captures
the true operational scenarios of inverters under diverse field
conditions, thus offering a better assessment of under-sizing.
This metric is based on industry data from our dataset. An ex-
ample is shown in Fig. 2, illustrating an inverter’s operational
characteristics during under-sizing. The main symptoms that
are observed are high generation levels, leading to AC power
clipping and elevated DC voltage due to excess PV gener-
ation. These phenomena, further discussed in the following
subsection, form the basis of our Re definition as:

Re =
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}
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(1)
where, vdc

d,t and pac
d,t represent the DC voltage and AC active

power of the inverter at time t on day d, respectively. The
symbol ⊙ denotes element-wise multiplication. The functions
C.25(·) and C.75(·) refer to the 25th and 75th percentiles of
the target set. Ts and Te indicate the start and end times of
the selected analysis period, which are 9 a.m. and 3 p.m., re-
spectively. The variable θ represents the load level. The metric
Re primarily measures the percentage of time an inverter oper-
ates in an undersized state during the specified intervals. Given
that heavy loading is a condition for an undersized inverter,
Re also highlights periods of significant load stress, which are
crucial for the degradation of inverter components. Therefore,
by incorporating stresses from capacitor fatigue and compo-
nent overuse, Re serves as a robust indicator for assessing the
operational longevity of inverters.

To give a mechanism analysis of Re metric, a typical three-
phase PV inverter circuit is adopted without loss of generality,
as shown in Fig. 3. Based on the structure, the voltage-current
interrelation on the DC side can be defined as:

Fig. 2. The illustration of the inverter under-sizing using field measurements
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Fig. 3. Main circuit of grid-connected PV inverter


i = icap + idc

idc = Saia + Sbib + Scic

icap = C
dUdc

dt

(2)

where, Sx (x = a, b, c) denotes the corresponding switch func-
tion; idc represents inverter DC current; icap is the capacitor
current, and ia,b,c denotes the inverter output current.

Peak sunlight conditions can lead to excess power produc-
tion by PV panels, posing a challenge for undersized invert-
ers in AC power conversion. Once the inverter’s DC current
limit is reached, any additional DC power charges the DC
bus capacitor, as detailed in (2). This can lead to overvoltage
and frequent charging/discharging cycles, jeopardizing com-
ponents like the DC link capacitor and reducing their lifes-
pan. Thus, proper sizing of inverters is key to balancing cost
efficiency with maintenance demands. It is also important to
note that inverter overvoltage is not solely due to under-sizing.
Other factors, such as abrupt increases in PV array output,
lightning strikes, and unusual system startups, can also cause
voltage surges. Consequently, in designing the Re indicator,
we take into account not just voltage variance, but also AC
power characteristics and specific time slots for analysis.

2) Abnormal Event Rate: The alert records in the dataset
can help accurately locate the position of abnormal events, pro-
viding more support for monitoring the inverter’s health status.
Fig. 4 shows the operational features collected over three days
from an inverter, with corresponding inverter-related alerts also
marked on the figure. As can be seen, two types of abnormal
events, DC isolation and inverter production issues, occurred
within three days. When these faults happen, typical charac-
teristics include AC output (current and power) decreasing to
a low level, nearly zero, while DC voltage increases. How-
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Fig. 4. The snaps of inverter operational data with alert information

ever, it is evident that not all abnormal events are captured
by the alerts. Some obvious generation losses are observed
in the features but not marked by the alert records, like the
red rectangular area shown in the figure. To address this is-
sue, we propose the abnormal event ratio (AER) to capture
the abnormal operations and provide a general description of
the operation status during any selected period. The abnormal
events are defined as follows:

Ra =
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where, iac
d,t denotes the AC current power of the inverter at

time point t of day d. J·K represents Iverson’s convention; Ξ
represents a tolerance for accidentally abnormal operation be-
haviors, which means only the abnormal status last a long
time, the day will be marked as an abnormal event. ξ is a
non-zero small quantity, which is set as 0.1 in our analysis.
The abnormal event rate can complement alert records, pro-
viding a comprehensive view of abnormalities, which typically
represent degradation symptoms.

3) Weather-related Impact Features: Extreme temperature-
related factors are the significant inverter stress factors, which
have been mentioned in previous works [30]. In this work,
temperature factors TH and TL are introduced to comprehen-
sively analyze how extreme temperature-related factors affect
inverter lifetime. Specifically, TH represents the average high
temperature experienced by the top 1% of instances, account-
ing for dynamic stress conditions during periods of extremely
high-temperature events. TL denotes the average of the lowest
1% daily temperature over a long period.

Extreme weather events, though less impactful on inverters
than solar panels due to their different installation positions,
still affect inverter lifetimes. Such events include lightning,
intense heat, and thunderstorms. To measure the impacts, we
introduce a metric called CSE, the average number of extreme
weather events. It’s calculated by dividing the total count of
these events by the inverter’s working time, which is discussed
in the next section.

B. Selective Filtering of Inverter Failure Samples
Operating under diverse conditions, inverters experience

varying levels of product quality and workplace stress, lead-

ing to different failure modes upon malfunctioning. These in-
clude not only the gradual wear and tear of components but
also external, accidental impacts, defined here as “shock-based
failures”. The identification of these failures presents a chal-
lenge due to their lack of distinct symptoms. Moreover, even
with a focus on degradation-based failures, the characteristics
of inverters can vary significantly based on their wear lev-
els. Distinguishing and excluding shock-based failure cases is
critical to prevent data distortion in the development of the
subsequent prognostic model. To effectively address this is-
sue, the paper proposes a two-stage method for identifying
shock-based failures, employing the clustering approach.

1) Clustering Analysis Based on GMMs: By clustering the
failure data, we aim to identify distinct groups of failures that
exhibit similar behavior or patterns. Given the feature extrac-
tion conducted earlier, we employ these extracted features for
the clustering process, and the GMM clustering method is se-
lected. GMM, widely used in pattern recognition and data min-
ing, assigns each data point a probability of belonging to a par-
ticular cluster. It calculates Gaussian distribution parameters,
including means, covariances, and cluster membership prob-
abilities, through an iterative Expectation-Maximization algo-
rithm. The GMM’s probability density function, a weighted
sum of these Gaussian distributions, represents the dataset.
Given a dataset with N data points, the probability density
function (PDF) of the GMM can be mathematically repre-
sented as:

P (X) =

K∑
k=1

πk · N (X | µk,Σk) , (4)

where P (X)is the PDF of the GMM for the dataset X; K is
the number of clusters, which are the Gaussian components, in
the mixture model; πk represents the weight of the k-th Gaus-
sian component, satisfying

∑K
k=1 πk = 1; N (X | µk,Σk) is

the PDF of the k-th Gaussian component. The GMM aims to
find the optimal values for the parameters πk and µk that max-
imize the likelihood of the data given the model. Once trained,
the GMM assigns data points to their most likely generating
cluster. The strength of GMM lies in managing complex, over-
lapping or irregularly shaped data distributions. Our dataset
presents specific characteristics that make the GMM partic-
ularly suitable for this task. In our case, it’s impractical to
rigidly separate samples of different inverter failure modes due
to indistinct boundaries in the feature spaces. This issue also
arises when differentiating between failing and functioning in-
verters. The GMM’s ability to handle overlapping clusters or
features makes it a promising method for analyzing inverter
samples in our study. Utilizing the GMM clustering model,
we designed a two-stage shock-based method for failure iden-
tification.

2) Two-stage shock-based failure identification method:
The two-stage shock-based failure identification framework,
illustrated in Fig. 5, focuses on identifying failure samples
with operational features similar to functioning inverters. The
first stage involves identifying typical failure modes within
the dataset of failed inverters. Using the domain-knowledge
features, these inverters are categorized into Q clusters, and



6

the cluster labels serve as inputs for the subsequent stage.
The features for this phase are derived from previously men-
tioned domain-knowledge features, including the Re over the
inverter’s lifetime, the Ra during specific periods (like the first
three months after installation and the months preceding fail-
ure), and the continuous working time (CWT) of the inverters.
The CWT is defined as the period from the installation date
to the present time. Obviously, for the failed inverters, it en-
compasses the interval from the inverter’s installation date to
the moment it experiences failure, essentially representing the
lifespan of the inverters. These features collectively constitute
the feature set XF for the failure samples.

In the first stage, the GMM clustering method is applied
to segregate the inverter failures into distinct groups based on
their exhibited behavior or patterns. This approach is pred-
icated on the assumption that inverters experiencing shock-
based failures do not show typical degradation symptoms.
Consequently, most shock-based inverter samples are likely
to be clustered into a single group, designated with the label
c and the associated features denoted as Xc

F. In contrast, sam-
ples that display degradation characteristics are clustered into
other groups, presumed to be labeled a and b, and the fea-
tures denoted as Xa

F and Xb
F . It is important to note that while

we reference two clusters for simplicity, the actual number of
clusters could be greater and will be determined based on the
performance of the clustering. These clustering results then
serve as inputs for the second analysis stage.

In the second stage, we amalgamate the normally working
inverters, denoted as XN, with each identified failure group
to create distinct sub-datasets. This combination is mathemat-
ically represented as Xg = Xg

F ∪ XN, where g ∈ {a, b, c}.
As a result, three sub-datasets are formed: Xa, Xb, and Xc.
Each sub-dataset undergoes a further clustering process to dis-
cern and categorize sample patterns. For Xa, which comprises
inverters with degradation-based failures, the clustering tends
to separate these failure inverters into their own group, due
to their distinct characteristics from normally functioning in-
verters. This clear segregation is observable in the left bar
chart of corresponding sub-cluster 1, where all failure sam-
ples (depicted in blue) are grouped distinctly, illustrating an
obvious separation. A similar pattern is observed with Xb.
However, the sub-dataset Xc, which includes shock-based fail-
ures, presents a different scenario. The underlying hypothesis
is that shock-based failures, not exhibiting prolonged degra-
dation, might display operational statuses similar to those of
normally functioning inverters prior to their failure. Conse-
quently, these inverters are not distinctly segregated by the
clustering method, leading to failure samples appearing across
all groups without clear separation, as depicted in the right bar
chart of Fig. 5. By implementing this two-stage shock-based
failure identification framework on the datasets, we can dis-
cern shock-based failures, as evidenced by the lack of isolation
of these samples in the second-stage clustering.

Our primary objective in filtering the dataset is to exclude as
many shock-based inverters as possible while retaining those
exhibiting degradation symptoms. Indeed, there is no strict
separation between shock-based inverters and others, which
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Fig. 5. The two-stage shock-based failure identification framework

complicates this task. However, this selective filtering en-
hances the dataset’s quality and reduces the invalid informa-
tion introduced by the shock-based inverters, further boost-
ing the prognostic model’s accuracy. Without this process,
shock-based samples would mask the degradation signals dur-
ing model training, a risk exacerbated by the limited size of the
failure sample set. Although some inverters might be “misla-
beled” during this process, the refined dataset provides a more
reliable foundation for training our ESCNN model than an un-
processed dataset would.

IV. PV INVERTER FAILURE PROGNOSTIC MODEL

In this section, the ESCNN-based PV inverter failure prog-
nostic model is designed, as depicted in Fig. 6. The model is
comprised of three primary components: the domain knowl-
edge integrated network, the contrastive feature extraction net-
work (i.e., basic SCNN model), and the classification network.
Operational features (i.e., Re and Ra) and weather-related im-
pact features serve as inputs for the domain-feature integrated
network. These inputs are utilized to generate long-term fea-
tures since they encompass the entire lifespan of the inverter.
The SCNN model plays a pivotal role in generating contrastive
features, which highlight the differences between the initial op-
erational phase and the performance after prolonged usage. By
amalgamating these two types of features, namely long-term
and contrastive features, the classification network is capable
of deriving prognosis results.

A. Contrastive Feature Extraction

In Fig. 1, it’s evident that inverters show signs of degrada-
tion after extended use. This degradation is marked by a de-
viation in the inverter’s operational state from its initial state,
eventually leading to failure. Identifying these deviations in
operational features is key to predicting inverter failures. The
extent and nature of these deviations are crucial indicators.
The focus of the failure prognostic process is centered on the
detection of differences. While certain deviations are clear and
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Fig. 6. The structure of the ESCNN-based PV inverter failure prognosis model

can be identified manually, subtler ones necessitate more ad-
vanced detection techniques. In this context, the deep learn-
ing model is instrumental. It serves to transform less evident
features into more discernible ones, referred to as contrastive
features, thereby simplifying their identification and analysis.
The realization of this process is facilitated by the Siamese
neural network.

B. Siamese Convolutional Neural Network

The Siamese neural network (SNN), pioneered by Bromley
and LeCun [31], has significantly advanced signature verifica-
tion with its unique “twin” subnetwork architecture that shares
weights and processes different inputs efficiently. It excels in
transforming complex, high-dimensional inputs into a simpler
latent space, ideal for tasks like failure prognosis. This ap-
proach, especially effective with fewer samples, involves com-
paring long-term feature distributions of inverters. In our case,
the SNN’s subnetworks, acting as encoders, are integrated with
convolutional neural network (CNN) layers [32], known for
their effectiveness in image and video recognition, to form the
Siamese convolutional neural network (SCNN). These CNN
layers allow the SCNN to adaptively learn from varied data
resolutions and historical ranges in industrial inverter opera-
tions. The CNN’s local connectivity also simplifies the model
by reducing the number of parameters, which is beneficial for
mitigating overfitting and improving computational efficiency.

We selected the SNN model for our inverter failure prog-
nosis task due to its superior capabilities in analyzing and
comparing inputs, which perfectly aligns with our objective to
detect and evaluate discrepancies between the operational sta-
tuses of inverters over time. Specifically, there are three main
reasons for choosing the SNN model: firstly, the unique ar-
chitecture of SNNs, featuring parallel subnetworks that share
weights, is inherently proficient at assessing subtle similari-
ties and differences between paired inputs, which is crucial for
analyzing inverter performance across different periods [31].
Secondly, the robustness of SNNs in handling imbalanced and

limited data sets makes them ideal for our context, where in-
verter failure samples are scarce, thus effectively mitigating
data bias and enhancing model generalization [33]. Lastly, the
transferability of learned features by SNNs facilitates effective
adaptation using transfer learning techniques [34], accommo-
dating the lack of extensive historical data and ensuring the
model’s efficacy under the unique conditions faced by solar
companies.

Considering the twin structure of SCNN, the paired sam-
ples set building process is conducted to promise the inputs to
satisfy the requirement of the model. Dividing the raw dataset
into training set Dtr and testing set Dte, the two sets can be
expressed as:

Dtr = {Xtr,ytr}
Dte = {Xte}

where

Xtr =


xtr,s
1 xtr,e

1

xtr,s
2 xtr,e

2
...

xtr,s
n xtr,e

n

 ,ytr =


ytr1
ytr2

...
ytrn

 ,Xte =


xte,s
1 xte,e

1

xte,s
2 xte,e

2
...

xte,s
n xte,e

n


Xtr is the set of sample data in the training set and ytr col-
lects the corresponding labels for the sample data, indicating
whether the inverter is likely to fail in the near future (where
1 represents failure). The total number of samples in Dtr is
n and the set of their index is denoted as N = {1, 2, ..., n}.
Xte is the set of sample data in the testing set. Both Xtr and
Xte are the sample pairs that contain the inverter operational
data collected from their respective start and end time slots.
The initial paired sample data are transformed into a lower-
dimensional latent space using a CNN-based encoder layer.
Subsequently, the Euclidean distance is used as the similarity
function between each pair of samples. For a paired sample
(xs

i , x
e
i ), the similarity can be calculated as follows:

Ψ(Zs
i , Z

e
i ) = Ψ(ϕ(xs

i ), ϕ(x
e
i ))
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= ∥ϕ(xs
i )− ϕ(xe

i )∥2 (5)

where, ϕ(xs
i ) represents the transformation of the CNN-based

encoder. Ψ(Zs
i , Z

e
i ) denotes similarity distance and it will be

the input of the contrastive loss, which will be introduced
in the next section. The SCNN structure is designed to ex-
tract contrasting features of inverters across different time pe-
riods, specifically between the start and end time slots. These
extracted features become integral components of the feature
space utilized by the classification model.

C. Domain Knowledge Integrated Network

When utilizing the SCNN structure to discern differences
between various periods, it’s noted that the method does not
fully leverage all inverter operational data; it primarily fo-
cuses on contrasting data from the start and end time slots.
To enhance the model, particularly in scenarios where failure
samples are limited, integrating domain knowledge into the
network has proven beneficial.

To overcome these challenges, an enhanced SCNN model
has been developed by integrating domain knowledge, realized
by the domain knowledge integrated network, with the existing
SCNN framework. The domain knowledge integrated network
employs a multi-layered fully connected neural network to in-
corporate long-term features rich in domain knowledge. The
selected features include the Re, which assesses inverter stress
due to prolonged overloading, and the Ra, which evaluates the
long-term operational status and potential product defects that
may cause frequent faults, even shortly after installation. Ad-
ditionally, weather-related features such as peak high temper-
ature (TH), low temperature (TL), and severe event data (CSE)
are incorporated as input variables. The output of this net-
work is then amalgamated with the latent feature space of the
SCNN, culminating in a comprehensive final feature set. Using
this enriched feature set, a classification model is constructed
using the multi-layer perception model, guided by label data
derived from inverter failure records as shown in Fig. 6. Once
trained, this integrated structure is equipped to effectively per-
form failure monitoring and prognosis for inverters.

D. Loss function of the framework

The proposed model is trained using a composite loss func-
tion comprising two key components: the contrastive Loss
function adopted for the SCNN module and the cross-entropy
loss function addressing the overarching classification task.
To capture distinctive features of inverters across varying time
frames, we employ the contrastive loss function [35]. This loss
function aims to maximize the dissimilarity between start and
end periods in case of inverter failure while minimizing this
dissimilarity if the inverters are operational. Its mathematical
formulation is given as:

LC (Dq
tr) =

∑
sj∈Dq

tr

[
1
[
ytir = 0

]
·Ψ(Zs

i , Z
e
i ) (6)

+ 1
[
ytir ̸= 0

]
·max (0, ϵ−Ψ(Zs

i , Z
e
i ))

]
, (7)

where Dq
tr denotes the batch q from Dtr, and sj =

(xtr,s
i , xtr,e

i , ytri ) denotes a sample pair with the output label

in Dq
tr. The hyperparameter ϵ defines the minimum separation

between operational states across time periods for the target
inverter.

Complementing the functionality of the contrastive loss
function, the weight-regularized cross-entropy loss function is
introduced to gauge the overall performance of the framework:

LE(Dq
tr) = −

∑
sj∈Dq

tr

[
log p(ytir = 1|xtr,s

i , xtr,e
i )

+ log p(ytir = 0|xtr,s
i , xtr,e

i )
]
+ λT ||w||2 (8)

where λT ||w||2 represents the regularization item. Then, the
total loss function of the framework can be expressed as:

LT = λLC + βLE (9)

where, λ and β are weights of the two loss functions. This
comprehensive loss formulation enables the framework to en-
hance classification performance while optimizing the extrac-
tion of contrasting features by the SCNN module.

V. NUMERICAL RESULTS

This section presents numerical case studies to validate the
proposed model’s performance. We specifically consider in-
verter working time for the sample selection, choosing only
inverters that have operated for more than one year. Acknowl-
edging the inevitable presence of noise in the data, we conduct
data processing to ensure the model’s stability and accuracy.
First, during data processing, we discard the operational data
from sunrise and sunset periods and focus on times of higher
irradiance during the day, such as from 9 am to 3 pm. This
helps mitigate the impact of abnormal inverter operation be-
haviors due to insufficient irradiance. Second, we employ in-
terpolation to repair short-term missing data, discarding sam-
ples with prolonged missing data. These criteria ensure the
reliability of our input data. Consequently, the testing dataset
incorporates 44 failed inverter samples and 139 functional in-
verter samples.

A. Two-stage shock-based failure identification results

In order to validate the effectiveness of the proposed shock-
based failure identification model, it was applied to the se-
lected PV inverter dataset. Using the GMM clustering method,
the model initially groups the failure samples into three dis-
tinct categories: Group A with 5 inverters, Group B with 9
inverters, and Group C with 21 inverters. In the second stage,
the GMM clustering method, set to three clusters, was reap-
plied as previously described. The outcomes of this process
are illustrated in Fig. 7. To enhance understanding, we have
marked the proportions of failure samples in each cluster. This
step highlights the percentage of failed units within each group
and addresses the significant disparity between normal and
failed inverter counts. In the first sub-cluster analysis, all fail-
ure samples were predominantly assigned to Group 1, com-
prising over 50%. Although this percentage does not reach
100%, the substantial presence of failed inverters in Group 1,
which is nearly half, indicates a pronounced demarcation. In
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Fig. 7. The results of the two-stage shock-based failure identification method
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Fig. 8. The illustration of Ra, Re, and CWT across various inverter samples

the third sub-cluster analysis, the failure samples were sig-
nificantly found in Groups 1 and 3, with a minimal presence
in Group 2, less than 9%, demonstrating a clear separation.
However, the second sub-cluster analysis presented similar low
proportions across all three groups, with average percentage
less than 10%, posing a challenge in effectively identifying the
failure samples. The clustering results from these three groups
suggest that inverters in Group B are more likely to be shock-
based failures. Consequently, these inverters will be excluded
from further analyses in our study.

B. Performance of PV Inverter Failure Prognostic Model

1) Discussion on domain knowledge features: Based on the
filtered dataset, the performance of the inverter failure prog-
nostic model is discussed in this section. First, the comparison
of two key features: Ra, Re, and CWT across various inverter
samples are showcased in the Fig. 8. Notably, the figure re-
veals that failure samples generally exhibit higher average Ra
values compared to normal inverters, indicating a higher inci-
dence of abnormal operation during their operational period.
Furthermore, the scatter plot suggests that inverters with higher
Re values often have a shorter operational lifespan, a pattern
observable in both failed and operational inverters. Specifi-
cally, for the failed samples, a clear correlation exists between
higher Re values and reduced working times. However, this
trend is less definitive for normal inverters, as their CWT val-
ues are “censored” and do not represent their full lifespan. To

Fig. 9. The results comparison among ESCNN, CNN-GA, PCA-SV, and RF
four models

further elucidate this relationship, the survival analysis can be
found in our related work on the PV inverter stress factors
analysis [36].

2) Simulation results comparison and analysis: To address
the imbalance in the dataset, we augmented samples using the
rolling horizon method for the failure inverter, generating mul-
tiple samples from start and end periods. Pair samples were
then created by combining data from both timeframes, enhanc-
ing subsequent analyses and model training. Additionally, we
employed a 5-fold cross-validation approach and grid search-
ing method to ensure robustness and reliability in assessing the
predictive model’s performance and determining optimal pa-
rameters such as learning rate, batch size, and margin (ϵ). To
showcase the effectiveness of our proposed model, we com-
pared it with three existing solar inverter failure detection mod-
els: modified CNN with global average pooling (CNN-GAP)
[21], support vector machine combined with principal com-
ponent analysis (PCA-SVM) [24], and random forests (RF)
[19]. In addition to these models, we explored SCNN models
with long-term features, referred to as enhanced-SCNN (ES-
CNN), within our simulations. Comparative results for these
four models are presented with common evaluation metrics,
namely accuracy, precision, and F1-score, in Fig. 9.

The bar chart depicts the average outcomes from the 5-fold
validation process. Notably, the ESCNN model achieves an
accuracy rate exceeding 94%, with its lowest metric, the F1-
score, also nearing 92%. Across all three metrics, ESCNN con-
sistently outperforms the other three models. The contrasting
features extracted from a well-trained model and transformed
using t-SNE technology are depicted in Fig. 10. In compari-
son, the CNN-GAP model demonstrates effectiveness second
only to the ESCNN model, achieving an accuracy of 88%. This
may stem from its well-designed CNN-based structure, pro-
ficient in capturing features from extensive operational data.
However, CNN-GAP’s lack of focus on capturing differential
features limits its ability to recognize failure samples with sub-
tle degradation symptoms. Despite PCA technology excelling
in feature reduction tasks, PCA-SVM struggles, likely due to
inputs from large volumes of operational data. Enhancing per-
formance would require extensive feature generation and se-
lection, which poses challenges in terms of difficulty and time
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Fig. 10. The t-SNE visualization results of the contrasting features of aug-
mented samples

consumption.

3) Ablation study on ESCNN model: To comprehensively
assess the impact of various components within the ESCNN
model, an ablation study was conducted. Three distinct sce-
narios were meticulously chosen for analysis. These scenar-
ios include the ESCNN model with contrastive loss (ESCNN-
wCL), the ESCNN model lacking domain knowledge inte-
gration network (SCNN-wCL), and the ESCNN model with-
out contrastive loss (ESCNN-woCL). Evaluation metrics for
these scenarios are illustrated in Fig. 11. A comparison be-
tween ESCNN-woCL and ESCNN-wCL highlights the effects
of removing the contrastive loss function, resulting in a 4.6%
decrease in overall accuracy. It is shown that the integration
of the contrastive loss function enhances the SCNN module’s
capacity to discern deviations in inverter operation statuses.
Similarly, contrasting SCNN-wCL with ESCNN-wCL reveals
a 5.6% reduction in overall accuracy following the exclusion
of domain knowledge features. Detailed analysis of confusion
matrices, as depicted in Fig. 12, reveals that the decline in ac-
curacy stemming from the absence of the domain knowledge
integrated network primarily arises from misclassifying failure
samples as functioning ones. Domain knowledge features play
a pivotal role in identifying samples lacking strong degrada-
tion symptoms, a task that the SCNN model alone struggles
with. In summary, the ablation study underscores the critical
importance of both the contrastive loss function and the do-
main knowledge integrated network within the ESCNN model.

In analyzing the prediction results of the ESCNN model, it
becomes evident that a minority of inverters are misclassified.
This misclassification can be attributed to the fact that not all
failing inverters exhibit distinct degradation patterns. The vary-
ing intensities of failure symptoms contribute to the misiden-
tification of certain inverters. While the proposed model aims
to capture symptoms comprehensively, it is acknowledged that
not every failure is predictable. Furthermore, prolonged oper-
ational stress may cause some inverters in normal conditions

Fig. 11. The evaluation metrics of the three ablation groups

to display signs of degradation. Although these instances do
not necessarily indicate immediate failure, they signal poten-
tial future issues. Such findings emphasize the importance of
continuous monitoring and draw attention to inverters that may
require future intervention.

4) Discussion on generalization of domain-feature inte-
grated network: Domain features could vary significantly
across different inverter datasets, which is a common challenge
for data-driven methods. In addressing variations in domain
knowledge-related features among inverters from different so-
lar companies, a practical strategy is retraining the model sep-
arately using historical data from each company. However, for
companies with limited historical data, this strategy could be
infeasible. Instead, employing transfer learning by fine-tuning
a pre-trained public model can be more feasible and effec-
tive. This approach helps reconcile feature discrepancies and
improves model performance, adapting it to the unique condi-
tions of each company despite data constraints. Additionally,
variations in feature distributions among inverters from the
same company can also be the challenge to the generalization
of domain-feature integrated network. This problem can be
managed by initially training a uniform model using the entire
dataset and subsequently updating it with new data from spe-
cific target inverters. Over time, iterative updates incorporating
new insights from target inverter data enhance the model’s pre-
dictive accuracy. Furthermore, for companies seeking to incor-
porate additional features tailored to local weather conditions
or specific inverter characteristics, our proposed method offers
a flexible framework for customization. Integrating specialized
features refines the model to better address unique operational
scenarios while maintaining broad applicability. The solutions
discussed above can mitigate the influence and strength the
generalization ability of our model.

C. ESCNN-based PV Inverter Failure Monitoring

To enable real-time awareness of inverter operation status
and provide operators with precise prognostic information, we
develop a failure monitoring method based on well-trained
ESCNN model. This method comprises two key components:
firstly, the organization of inverter feature data utilizing the
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Fig. 12. The confusion matrices of the classification results from three abla-
tion scenarios
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Fig. 13. Inverter measurements organization based on sliding window method

sliding window technique; secondly, the actual failure monitor-
ing using the ESCNN model. Fig. 13 illustrates this ESCNN-
based approach to realize the inverter failure monitoring.

In this method, historical operational data and extracted fea-
ture data of inverters are segmented into multiple data slices
using the sliding window method. This method is configured
with a window size of one month and a step size of one week.
To generate warning signals for a specific data slice, the ini-
tial data slice and subsequent slices are inputted into the ES-
CNN model. As new inverter measurements are accumulated,
they are fed into the model, enabling the continual update and
retrieval of warning information. By aggregating all warning
data from the initial time period to the present, a comprehen-
sive view of the inverter’s operational status throughout its
lifetime is obtained.

Fig. 14 presents a case study of an inverter. In this analy-
sis, the focus is not solely on weekly warning data. Instead,
the metric of average warning counts over a selected period,
such as three months, is considered. This metric calculates the
mean frequency of warnings by accumulating warnings from
the current time back to the specified period. The adoption of
this metric is motivated by the need to reduce the influence
of short-term external disturbances, which may lead to tran-
sient “false” warnings. By analyzing data over an extended
period, more insightful and reliable information about the in-
verter’s performance is obtained. However, this approach in-
evitably introduces a delay in the identification of inverter fail-
ures, creating a trade-off between result reliability and timeli-
ness. For this particular case, a three-month period has been
selected for analysis. Furthermore, a cumulative average warn-
ing count is calculated to reveal the general trend of warnings
over time. This approach aims to strike a balance between

providing timely alerts and minimizing false alarms caused
by temporary external factors.

The analysis of Fig. 14 reveals that following its initial in-
stallation, the inverter exhibited a fault-free operation, indicat-
ing optimal performance according to the framework assess-
ment. However, intermittent weak warning signals occurred
approximately one year and eighteen months post-installation.
Notably, these signals did not persist continuously, resulting in
a return to baseline operational metrics. Such sporadic warn-
ings may have been triggered by inadvertent disturbances at-
tributed to the inverter’s operation. Continuing its operation for
nearly three additional years, the inverter demonstrated a recur-
rence of warning signals, coinciding with a gradual escalation
in metric values. Intermittent output fluctuations, indicative of
incipient degradation, characterized this phase. Ultimately, af-
ter a duration of seven weeks, the inverter suffered a critical
failure.

The utilization of warning information for early prognosis
of inverter failure involves setting an appropriate threshold,
which can vary among solar companies, factoring in labor re-
source considerations. A lower threshold can facilitate earlier
detection of anomalies, albeit with an increased likelihood of
false positives due to temporary disturbances. Conversely, a
higher threshold enhances reliability but may delay the identi-
fication of inverter failures, potentially impacting replacement
timelines. The determination of this threshold is thus depen-
dent on individual solar companies, taking into account factors
such as supply chain dynamics, repair crew scheduling, and
other operational considerations.

The current model, trained on a diverse range of inverter
samples, aims for optimal performance across all cases. How-
ever, due to the varying characteristics of different inverters, a
one-size-fits-all approach may not effectively capture the spe-
cific features of each inverter. To address this, future work
will involve refining the general ESCNN model by training it
specifically on data from the target inverter or inverters with
similar operational features. Customizing the model in this
way could enhance the accuracy of failure prognosis for spe-
cific inverters.

VI. CONCLUSION

This paper introduced a data-driven PV inverter failure prog-
nostic model that leveraged real inverter measurements. The
model employed the ESCNN to detect deviations in opera-
tional status that were indicative of inverter degradation. It
integrated multiple operational and weather-related factors, in-
formed by domain knowledge, to represent inverter stressors
and status accurately. We proposed a monitoring scheme using
the ESCNN-based model for effective inverter failure detec-
tion. Test results on real inverter data confirmed the model’s
effectiveness and its application in failure monitoring demon-
strated practical utility. Currently, the proposed model was
tested on a single private inverter dataset due to the lack of
public datasets. This limitation could hinder a comprehensive
evaluation of the model across diverse datasets. To solve this,
we plan to convert the proposed model into a public tool in-
tended for solar company usage and evaluate the model based
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Fig. 14. The results of failure prognostic monitoring for a single inverter over the lifetime

on the feedback and performance metrics gathered from these
industry users. Additionally, future research will focus on cus-
tomizing the general model, trained on the overall dataset, by
fine-tuning it with data from specific inverters to enhance its
precision for single inverters. The combination of the ESCNN
model with a transfer learning mechanism will also be ex-
plored to address scenarios commonly faced by solar compa-
nies, such as the lack of historical data needed to train a model
from scratch.
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