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Abstract—In this paper, we introduce an innovative framework 
for the strategic planning of electric vehicle (EV) charging 
infrastructure within interconnected energy-transportation 
networks. By harnessing the small-world network model and the 
advanced optimization capabilities of the Non-dominated Sorting 
Genetic Algorithm III (NSGA-III), we address the complex 
challenges of station placement and network design. Our application 
of the small-world theory ensures that charging stations are 
optimally interconnected, fostering network resilience and ensuring 
consistent service availability. We approach the infrastructure 
planning as a multi-objective optimization task with NSGA-III, 
focusing on cost minimization and the enhancement of network 
resilience and connectivity. Through simulations and empirical case 
studies, we demonstrate the efficacy of our model, which markedly 
improves the reliability and operational efficiency of EV charging 
networks. The findings of this study significantly advance the 
integrated planning and operation of energy and transportation 
networks, offering insightful contributions to the domain of 
sustainable urban mobility. 
 

Index Terms—Charging infrastructure planning, complex 
systems theory, coupled energy-transportation networks, electric 
vehicle charging stations, small-world network model.  
 

NOMENCLATURE  

 
 ,.௡ Set of nodes in the transportation network, e.gߗ

intersections or zones 

 ௔ Set of links in the transportation network, e.g., arcs orߗ
roads 

a A specific link in ߗ௔ 

ܿ௔ Traffic flow capacity of link a 

௔ݐ
଴ Free travel time for link a at maximum speed without 

congestion 
(o,d) Origin-destination pair in the network 

 ௢ௗ Set of routes connecting origin-destination pair (o,d)ߗ

 ௢ௗ Traffic demand for origin-destination pair (o,d)ݍ

 ௔ Traffic flow on link aݔ
ఆ݂
௢ௗ Traffic flow on route o in ߗ௢ௗ 

௥݂
௢ௗ Traffic flow on route r in ߗ௢ௗ for the O-D pair (o,d) 

௔௥ߜ
௢ௗ  Indicator variable, equals 1 if route r for the O-D pair 

(o,d) includes link a; 0 otherwise 
 Travel time function for link a as a function of traffic (௔ݔ) ௔ݐ

flow ݔ௔ 
BPR Bureau of Public Roads function used to model travel 

time based on flow 
UE User Equilibrium, where no driver can reduce their 

travel time by switching routes 
SO Social Optimum, where total system travel time is 

minimized 
NdP Nesterov and de Palma model for handling non-convex 

optimization problems 
TA Subset of links used in the traffic assignment model 
௔ߨ

∗  Delay penalty at capacity for link a 
 ௢ௗ, ߯௔, andߣ
௔ߨ

  
Dual variables associated with constraints in the traffic 
assignment model 

 ௔ Binary variable for the presence of an EV chargingݏ
station. 

 ௔ Number of charging spotsݕ
R Driving range of EVs (in km) 
SOC State of Charge of an EV; ranges between 0 (empty) to 

1 (full) 
 ௗ SOC at the origin and destination nodes respectivelyߞ ,௢ߞ
 Function defining operational capacity of charging (௔ݕ)݃

stations based on the number of charging spots 
,ଵ,௔ݍ ,ଶ,௔ݍ  ,ଷ,௔ Cost parameters for setting up charging stations, spotsݍ

and infrastructure developments  
௔ܲ
௦௨௕ Power capacity (in kVA) required for substation 

upgrades 
݊௔

௖  Number of new lanes or infrastructure upgrades in the 
TN 

I. INTRODUCTION 
HE transition to sustainable energy sources has witnessed a 
remarkable surge in the adoption of electric vehicles (EVs) 

globally [1]. This shift, driven by the dual imperatives of 
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environmental sustainability and energy security [2], promises 
a future with reduced greenhouse gas emissions and diminished 
reliance on fossil fuels [3, 4]. However, the rapid proliferation 
of EVs introduces a pressing challenge: the establishment of a 
reliable, efficient, and universally accessible charging 
infrastructure [5, 6]. The charging infrastructure serves as the 
backbone of the EV ecosystem, ensuring that vehicles remain 
operational and users experience minimal disruptions [7, 8]. 
Yet, the planning and deployment of this infrastructure is a 
multifaceted endeavor. It necessitates a harmonious integration 
of the power grid, urban traffic patterns, user behaviors, and 
technological advancements [9, 10]. Current planning 
methodologies, while making strides in certain areas, often 
exhibit a narrow focus, primarily emphasizing individual 
metrics such as cost-effectiveness or charging speed [11]. Such 
an approach, while valuable in specific contexts, may overlook 
the intricate web of interdependencies that characterize the EV 
charging network.  

For instance, while a charging station's location might be 
optimized for cost, it might not necessarily cater to high-
demand areas or peak traffic periods, leading to potential 
bottlenecks and user inconveniences [12, 13]. Moreover, the 
current infrastructure, in many instances, does not guarantee 
seamless connectivity between charging stations, potentially 
complicating route planning for EV drivers and diminishing the 
overall user experience [14]. Furthermore, the resilience of 
these networks, especially in the face of unforeseen disruptions 
or station failures, has not been a focal point in many existing 
planning models [15, 16]. This oversight can have cascading 
effects, especially in densely populated urban areas where the 
demand for charging stations is high. Lastly, the dynamic 
nature of the EV market, characterized by evolving user 
behaviors, technological innovations, and variable energy 
prices, introduces a layer of uncertainty [17, 18]. Current 
planning models, while reliable in certain scenarios, might not 
be equipped to navigate these uncertainties, leading to solutions 
that might be sub-optimal in real-world scenarios. In essence, 
while the EV revolution holds immense promise, the path to its 
full realization is riddled with complexities. Addressing these 
requires a holistic, integrated, and forward-thinking approach to 
EV charging infrastructure planning [19, 20]. We summarize 
the research gaps of EV charging infrastructure planning as 
follows:  

Limited Network Connectivity: Current EV charging 
infrastructure planning often overlooks the importance of a 
seamless user experience. Many existing networks do not offer 
the level of connectivity and convenience that users expect, 
leading to longer travel times, difficulty in locating charging 
stations, and potential congestion during peak periods. There's a 
need for a model ensuring users can easily move between 
charging stations, enhancing their overall experience. 

Vulnerability to Disruptions: Current EV charging networks 
may not be equipped to handle disruptions effectively. If a 
charging station becomes unavailable, it can lead to significant 
inconveniences for users. The resilience of the charging 
infrastructure, especially its ability to maintain functionality 
during interruptions, is not adequately addressed. 

Single-objective Focus: Many existing planning methods 
tend to focus on optimizing individual aspects, e.g., cost or 
charging speed. This siloed approach can lead to potential 

inefficiencies and vulnerabilities in the charging network. A 
comprehensive solution that considers multiple objectives 
simultaneously is lacking. 

Lack of Reliable Solutions: While many planning methods 
aim to provide optimal solutions, they may not always account 
for real-world uncertainties and variations. This can lead to 
solutions that, while theoretically optimal, may not be reliable 
in practice. 

The primary objective of this research is to address the 
identified gaps in the planning and design of EV charging 
infrastructure. We aim to develop a novel, comprehensive 
approach that integrates the principles of small-world network 
models and the reliability of the Non-dominated Sorting 
Genetic Algorithm III (NSGA-III) multi-objective optimization 
algorithm. Our approach is designed to tackle the fragmented 
nature of existing research by providing a holistic model that 
captures the complex interdependencies within the EV charging 
network [21]. By incorporating the small-world network model, 
we aim to enhance the connectivity and resilience of the 
charging infrastructure, ensuring that each charging station is 
within a few steps of all other stations. This study introduces a 
novel framework for EV charging infrastructure planning, 
leveraging the integration of the small-world network model 
with the advanced NSGA-III. Our research not only addresses 
the current limitations in EV charging network planning but 
also introduces solutions to enhance network performance 
significantly. The key contributions and innovations of this 
study are outlined as follows: 

Innovative Application of the Small-World Network Model: 
We adopt the application of the small-world network model in 
EV charging infrastructure planning, fundamentally 
transforming the network's connectivity. This approach 
guarantees that charging stations are optimally interconnected, 
facilitating rapid and convenient access across the city. The 
model reduces travel and waiting times for EV users by 
minimizing congestion and ensuring the availability of 
charging options during peak times.  

Scalability Through Network Design: Our study introduces 
a scalable model for EV charging infrastructure that maintains 
high efficiency and performance, even as the network expands. 
By incorporating the small-world network principles, we ensure 
that the addition of new charging stations does not compromise 
the network's overall functionality.  

Resilience Against Disruptions: We enhance the resilience 
of the EV charging network by integrating redundancy into the 
small-world network design. This innovation ensures that the 
network can sustain operations despite unexpected disruptions, 
such as station failures. The design provides multiple 
alternative paths for reaching charging stations, significantly 
improving the network's reliability. 

Multi-objective Optimization with NSGA-III: Our research 
advances the use of NSGA-III for multi-objective optimization 
in EV charging infrastructure planning. This approach allows 
for the simultaneous consideration of various objectives, 
offering a comprehensive solution to infrastructure planning 
challenges. We demonstrate how NSGA-III facilitates the 
selection of optimal solutions amidst diverse scenarios and 
requirements, emphasizing the adaptability of our model to 
real-world complexities.  
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II. LITERATURE REVIEW 

A. EV Charging Infrastructure Planning 
As the global community shifts away from fossil fuels, the 

demand for EVs continues to surge, emphasizing the need for 
an efficient and widespread charging infrastructure. 
Historically, the development of EV charging infrastructure has 
been influenced by various factors, including technological 
advancements, governmental policies, and market dynamics. 
Ref [22] highlighted the technological challenges faced in the 
early stages of EV adoption, such as limited battery life and 
extended charging times. These challenges necessitated the 
establishment of charging stations at frequent intervals, 
especially in urban areas. Ref [23] discussed the role of 
governmental policies in promoting EV adoption. Incentives 
such as tax breaks, subsidies for charging station installations, 
and preferential parking have played a pivotal role in 
accelerating the growth of EV infrastructure. However, as [24] 
pointed out, the sheer volume of EVs on the road today has led 
to new challenges, including congestion at charging stations, 
inconsistent charging speeds, and the need for a more 
distributed network of stations to cater to the growing demand. 
Another significant aspect of EV charging infrastructure 
planning revolves around its economic viability. Ref [12] 
explored the economic challenges faced by charging station 
operators, emphasizing the need for dynamic pricing models to 
ensure profitability while offering competitive rates to 
consumers. Despite these advancements, several challenges 
persist. The spatial distribution of charging stations often leads 
to disparities, with urban areas being well-served while rural 
regions remain underserved. Additionally, the integration of 
renewable energy sources into the charging infrastructure, 
ensuring resilience against power outages, and accommodating 
the diverse charging needs of various EV models are areas that 
require further exploration [25]. 

Despite considerable advancements in the field of EV 
charging infrastructure planning, existing approaches exhibit 
notable disadvantages that limit the efficacy and scalability of 
the infrastructure [26]. One primary drawback is the 
insufficient consideration of the evolving dynamics of EV 
usage patterns and technological advancements. The early 
stages of EV adoption encountered technological challenges 
such as limited battery life and prolonged charging times, 
necessitating frequent charging stations, particularly in urban 
areas [27]. Although governmental policies and incentives have 
facilitated infrastructure growth, the rapid increase in EV 
adoption has introduced new challenges. These include 
congestion at charging stations and inconsistent charging 
speeds, highlighting a critical need for a more distributed and 
adaptive network of stations to meet growing demands. 
Furthermore, economic challenges persist, with the profitability 
of charging station operations remaining precarious. The spatial 
distribution of charging stations has led to disparities, 
underserving rural regions and potentially exacerbating urban-
rural divides [28]. Moreover, the integration of renewable 
energy sources and ensuring resilience against power outages 
have not been adequately addressed, limiting the sustainability 
and reliability of the charging infrastructure. These issues 

underscore the need for a holistic approach that not only 
considers technological and economic factors but also aligns 
with the evolving landscape of EV adoption and energy 
transition. 

B. Small-World Network Models 
The concept of small-world networks has its roots in the 

realm of social networks, where it was observed that 
individuals are connected by surprisingly short chains of 
acquaintances, a phenomenon popularly known as "six degrees 
of separation". Introduced by [29], the small-world network 
model has since transcended its initial social context, finding 
applications in various scientific domains due to its unique 
properties of high clustering and short path lengths [30, 31]. A 
defining characteristic of small-world networks is their ability 
to maintain local interconnectedness while ensuring global 
reachability [32]. This balance between local clustering and 
global connectivity makes them particularly suitable for 
systems where both local interactions and broader accessibility 
are crucial. Ref [33] explored the application of small-world 
networks in power grid optimization, demonstrating their 
potential in enhancing grid resilience and efficiency. 

In the context of transportation and urban planning, small-
world network models have been instrumental in optimizing 
various infrastructural elements [34]. Ref [35] utilized these 
models to design efficient subway networks, ensuring rapid 
transit across vast urban landscapes with minimal transfers. The 
findings underscored the model's potential in reducing travel 
times and enhancing user experience. The relevance of small-
world networks to EV charging infrastructure is particularly 
compelling. However, the implementation of small-world 
network models in real-world scenarios, particularly in the 
context of EV charging infrastructure, faces several challenges 
[36]. Firstly, the application of these models in the dynamic and 
complex urban environment is fraught with challenges. The 
inherent assumption of stable and predictable connectivity 
patterns does not always hold true in urban settings, where 
fluctuations in traffic flow, varying urban density, and 
unexpected disruptions can dramatically alter connectivity 
needs. Secondly, the scalability of small-world models in 
accommodating the rapid expansion of EV markets and the 
integration of renewable energy sources into the charging 
infrastructure remains a significant concern. As EV adoption 
increases, the demand for charging stations will rise, requiring 
a network model that can adapt and scale efficiently without 
compromising on connectivity or user experience. Lastly, there 
is a lack of reliable adaptive algorithms capable of addressing 
the dynamic and evolving demands of urban landscapes and 
EV user behaviors. This limitation hampers the potential of 
small-world network models to provide flexible and resilient 
charging infrastructure solutions that can meet future 
challenges. 

C. NSGA-III Algorithm 
The NSGA-III is an evolution of its predecessor, NSGA-II, 

and was introduced by Deb and Jain [37]. This algorithm was 
developed to address the challenges associated with multi-
objective optimization problems, especially those with more 
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than two objectives. The inception of NSGA-III was driven by 
the need for a more efficient and scalable approach to handle 
many-objective problems. NSGA-III has been widely adopted 
across various domains due to its versatility and reliability [38, 
39]. In the realm of energy systems and EV management, Ref 
[39] proposed an optimal operation of a coastal hydro-electrical 
energy system that integrated seawater desalination to 
efficiently utilize coastal renewable energy and meet freshwater 
needs. By employing NSGA-III, the study developed virtual 
energy storage characteristics for desalination plants, 
demonstrating cost savings and ensuring a consistent 
desalinated water supply. Ref [40] marked a pioneering effort 
to incorporate flood resilience into the planning process for EV 
charging stations. The study introduced an integrated 
framework combining the NSGA-III and the technique for 
order of preference by similarity to ideal solution to optimize 
charging station locations. Through a case study in the Waikiki 
region, the research showcased the framework's capability to 
balance flood risks and charging services, offering valuable 
insights for EV charging station planning in the context of 
climate change. 

One of the primary strengths of NSGA-III is its ability to 
maintain diversity in the solution set, ensuring a wide range of 
optimal solutions [41]. This is particularly beneficial for 
decision-makers, allowing them to choose the most appropriate 
solution based on varying scenarios and constraints. 
Additionally, the algorithm's reference-point-based approach 
ensures a more uniform distribution of solutions, addressing the 
clustering issue observed in earlier algorithms. Furthermore, 
NSGA-III's design inherently accounts for real-world 
uncertainties, making the solutions it provides not only optimal 
but also reliable [42]. 

III. MATHEMATICAL FORMULATION 

A. Traffic Assignment Model 
This section provides an overview of models and techniques 

used for the traffic assignment problem (TAP) within 
transportation networks (TN). Imagine an interconnected TN, 
symbolized as [ߗ௡, ߗ௔]. Here, ߗ௡ represents the collection of 
nodes (such as intersections or zones), while ߗ௔  signifies the 
set of links (like arcs or roads). Every link, denoted as a within 
௔ߗ , possesses a traffic flow limit ܿ௔ . This limit indicates the 
maximum count of vehicles that can traverse link a within ߗ௔ 
in a given time frame. Additionally, each link has a designated 
free travel duration ݐ௔

଴ , which represents the time taken to 
traverse link a at the maximum permissible speed without any 
congestion. For every origin-destination (O-D) pair, labeled 
(o,d), and connected through a set of routes ߗ௢ௗ, there exists a 
traffic demand qrs. In the TN graph, links form the edges, while 
paths encompass all feasible routes between a starting and 
ending node. The traffic flows on link a in ߗ௔ and route o in 
௔ and ఆ݂ݔ ௢ௗ are represented byߗ

௢ௗ, respectively. For the O-D 
pair (o,d), the traffic flow on route r in ߗ௢ௗ is denoted as ఆ݂

௢ௗ. 
If link a within ߗ௔ is part of the route r in ߗ௢ௗ for the O-D pair 
(o,d), then the traffic flow on that specific link is ఆ݂

௢ௗ . The 
cumulative traffic flow on that link for all O-D pairs is given by 

௔ݔ = ∑  ∑ ௥݂
௢ௗߜ௔௥

௢ௗ
௥௢ௗ . The indicator variable ߜ௔௥

௢ௗ  equals 1 if 
route r for the O-D pair (o,d) includes link a; otherwise, ߜ௔௥

௢ௗ is 
0. 

Each link a in ߗ௔ is associated with a travel time function ݐ௔ 
 which determines the travel duration on link a based on ,(௔ݔ)
 is a strictly increasing (௔ݔ) ௔ݐ ,௔. Due to potential congestionݔ
function. Several functions depict the correlation between 
travel time and link attributes (link traffic flow, road capacity, 
and free travel time). Among these, the commonly adopted 
BPR function serves as a notable example [43]: 

(௔ݔ)௔ݐ = ௔ݐ
଴ ൤1 + 0.15 ൬

௔ݔ

ܿ௔
൰

ସ
൨ , ∀ܽ ∈ ஺ܶ 

 
(1) 

The road capacity, denoted as ܿ௔, is a pivotal variable when 
planning road expansion. This introduces a non-convex nature 
to equation (1). To address this non-convexity, we employ the 
(Nesterov and de Palma) NdP model alongside primal-dual 
optimality conditions. The NdP model, referenced in [44], aids 
in determining the utilization of the TN. We delve into two 
foundational principles in static traffic assignment problem 
(TAP): User Equilibrium (UE) and Social Optimum (SO). UE 
means that every driver opts for the quickest route available, 
i.e., no driver can independently switch to an alternative route 
to achieve a shorter travel time; SO indicates that the collective 
travel time (sum of all individual travel times) is minimized. In 
the SO framework, drivers must collaboratively choose their 
routes to ensure the TN is used most efficiently.  

Under the UE framework, the travel duration, ݐ௔, on link a 
matches its free travel time, ݐ௔

଴, when the traffic flow, ݔ௔ , is 
below its maximum capacity, ܿ௔. However, when ݔ௔ reaches its 
peak capacity, the travel time, ݐ௔, is equivalent to its free travel 
time with an added delay penalty, symbolized as ߨ௔

∗  [45]. 

௔ݐ = ൜ ௔ݐ
଴, ௔ݔ < ܿ௔

௔ݐ
଴ + ௔ߨ

∗ , ௔ݔ = ܿ௔
 

 
(2) 

This penalty corresponds to the value of the dual variable 
associated with the link's capacity, as indicated in equation (7). 
Contrasting with the BPR function (1), the link travel time 
function within the NdP model exhibits convexity. The total 
travel time across all links is represented by ∑ ௔௔ݐ௔ݔ . The TAP 
under the SO pattern, assuming no delays (meaning ݐ௔ equals 
௔ݐ

଴), can be formulated as per reference [46]: 

݉݅݊
௫ೌ,௧ೌ,௙ೝ

೚೏
  ෍  
௔∈ఆೌ

௔ݐ௔ݔ = ݉݅݊
௫ೌ,௙ೝ

೚೏
  ෍  
௔∈ఆೌ

௔ݐ௔ݔ
଴  

(3) 
s.t. ∑  ௞ ௥݂

௢ௗ =   ௢ௗߣ : ௢ௗݍ
(4) 

∑  ௢ௗ ∑  ௥ ௥݂
௢ௗߜ௔௥

௢ௗ =  ௔ : ߯௔ (5)ݔ
௥݂
௢ௗ ≥ 0 (6) 

௔ݔ ≤ ܿ௔  : ߨ௔
  (7) 

The indicator variable ߜ௔௥
௢ௗ  is set to 1 when the path r 

includes link a. If not, it is set to 0. The dual variables ߣ௢ௗ, ߯௔, 
and ߨ௔

  correspond to constraints (4), (5), and (7). The objective 
function (3) represents the total travel time without any delays. 
Constraints (4) to (6) ensure the traffic flow demand is met for 
every O-D pair, while constraint (7) sets the maximum capacity 
for each link, ensuring no congestion in the SO pattern. Ref [23] 
introduced the concept of using the dual variables from the link 
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capacity constraint (7) as delay penalties for links operating at 
their maximum capacity. Every link a is associated with a dual 
variable ߨ௔

 . By relaxing constraint (7), we can formulate the 
Lagrange dual problem.  

ݔܽ݉
ఒೌஹ଴

  ݉݅݊
௫ೌ,௙ೝ

೚೏
  ෍  
௔∈ఆೌ

௔ݐ௔ݔ]
଴ + ௔ߨ

௔ݔ)  − ܿ௔)]

 
 

(8) 

Given a constant ߨ௔
଴≥ 0 and for every pair in the O-D set, the 

aforementioned NdP-Lagrange dual model can be transformed 
into the subsequent linear problem (LP): 

݉݅݊
௙ೖ

ೝೞ  ൝෍  
௔

൥෍  
௥

௥݂
௢ௗߜ௔௥

௢ௗ(ݐ௔
଴ + ௔ߨ

଴) − ௔ߨ
଴ܿ௔൩ൡ 

 
(9) 

෍  
௥

௥݂
௢ௗ = ,௢ௗݍ ௥݂

௢ௗ ≥ 0 
 

(10) 

The models represented by Equations (9)–(10) formulate a 
NdP-LP approach without the constraints of capacity. The 
objective function in (9) signifies the total travel duration, 
which is the sum of ݐ௔

 = ௔ݐ
଴ + ௔ߨ

଴, for the allocation of drivers 
between O-D pairs. It's assumed that the optimal solution for 
NdP-SO is denoted by xₐ, with the associated Lagrange dual 
multiplier of (7) being ߨ௔

 . As indicated in references [6, 46], 
given that strong duality is applicable to linear programs, the 
pair ( ௔ݔ

∗ ௔ݐ ,
଴ ) represents a traffic assignment at the Social 

Optimum, while (ݔ௔
∗ ௔ݐ ,

଴ + ௔ߨ
∗ ) indicates a traffic assignment 

under User Equilibrium. 
In scenarios without capacity restrictions, both SO and UE 

yield identical traffic assignments, with the only differences 
being in travel time. The Lagrange multipliers, ߨ௔

∗ , serve as 
incentives to guide self-interested drivers towards achieving the 
SO. Consequently, the TAP is formulated using the primal-dual 
optimality conditions of NdP-SO as: 

݉݅݊ ෍  
௔

෍  
௥

௥݂
௢ௗߜ௔௥

௢ௗ(ݐ௔
଴ + ௔ߨ

 )  
(11) 

s.t. ෍  
௥

௥݂
௢ௗ − ௢ௗݍ = 0, ෍  

௥
௥݂
௢ௗߜ௔௥

௢ௗ − ܿ௔ ≤ 0, ௥݂
௢ௗ

≥ 0 

 
(12) 

௔ߨ
 ≥ 0, ߯௔ − ௔ߨ = ௔ݐ

଴, ௢ௗߣ − ෍  
௔

෍  
௥

௔௥ߜ
௢ௗߣ௢ௗ ≤ 0  

(13) 

෍  
௢ௗ

௢ௗߣ ௢ௗݍ − ෍  
௔

௔ܿ௔ߨ = ෍  
௢ௗ

෍  
௔

෍  
௥

௥݂
௢ௗߜ௔௥

௢ௗݐ௔
଴  

(14) 
Equations (11) and (12) outline the constraints for the 

feasible regions of primal and dual variables, respectively. 
Equation (13) denotes the strong duality condition for NdP-SO. 
Given that NdP-SO is a linear program, its optimal solution is 
provided by the primal-dual optimality conditions. As such, 
(11)–(14) determine the traffic assignment under UE, which in 
turn defines ߨ௔

 . The primary distinction between NdP-SO and 
TAP is the inclusion of an additional term in the latter's 
objective function, represented by ∑  ௔ ∑  ௥ ௥݂

௢ௗߜ௔௥
௢ௗߨ௔

 . Since 
both ௥݂

௢ௗ  and ߨ௔
  are determined by (11)–(14), ߨ௔

  can be 
substituted with the optimal Lagrange multipliers ߨ௔

 , rendering 
the TAP's objective function linear. In this study, we initially 
determine the values of ௥݂

௢ௗ  and ߨ௔
  using (11)–(14), followed 

by the computation of the objective function. Given the values 

of ߨ௔
  and ܿ௔ , TAP can be viewed as a linear programming 

model. 
let's first revisit the driving range logic [47] before delving 

into the associated mathematical framework. Imagine a TN 
graph [ߗ௡, ߗ௔], with a singular path, k, connecting the Origin-
Destination pair (1, 5), which follows the sequence: 
link1→link2→link3→link4. This path encompasses five TN 
nodes (ߗ௡ = 1, 2, 3, 4, 5) and four links (ߗ௔  = link1, link2, 
link3, link4), each with their respective distances d1, d2, d3, 
and d4. A flow demand, q15, signifies the EVs traveling 
between the O-D pair (1,5). These EVs, possessing a driving 
range ߠ (km), journey from the starting node 1 to the endpoint 
node 5 on a single charge. It's assumed that EVs embark on 
their TN journey at the origin node with a State of Charge 
(SOC) denoted as ߞ௢ and conclude their journey at destination 
node 5 with an SOC surpassing ߞௗ . After charging, the EVs' 
SOC is presumed to be 1. The objective for network planners is 
to strategically position EV charging stations. The driving 
range logic is governed by two primary principles. The initial 
principle mandates that the distance separating two charging 
facilities must not exceed the driving range. The subsequent 
principle sets boundaries on the EV’s SOC at the origin and 
destination points, with an assumption that charging stations 
are absent at these nodes. Specifically, the EV starts its journey 
at the origin node with ߞ௢ , ensuring it can reach the initial 
charging station. Likewise, the last charging station on path k 
must be strategically positioned to allow the EV to exit the TN 
with an SOC exceeding ߞௗ.  

௢ߞ − 0.5݀ଵ/ߠ ≥ 0 (15) 

ଵߞ = ௢ߞ − 0.5݀ଵ/ߠ + ଵ(1ݏ − ௢ߞ + 0.5݀ଵ/(16) (ߠ 

௔ାଵߞ = ௔ߞ −
0.5(݀௔ + ݀௔ାଵ)

ߠ

+ ௔ାଵݏ ቈ1 − ௔ߞ +
0.5(݀௔ + ݀௔ାଵ)

ߠ ቉ 

(17) 

௔ߞ ≥ 0, ܽ = 1,2,3,4 (18) 
ସߞ − 0.5݀ସ/ߠ ≥  ஽ (19)ߞ

 
Given that the potential location for the EV charging station 

is positioned at the center of link 'a', the values 0.5da and 0.5(da 
+ da+1) (where a = 1, 2, 3, 4) in equations (15)–(19) denote the 
distances between successive proposed EV charging station 
sites. Equation (15) guarantees that an EV starting at the origin 
node can access the initial proposed charging station location. 
In a similar vein, equation (19) ensures that an EV reaches its 
destination with an SOC surpassing the threshold of ߞ஽ . 
Equations (16) and (17) detail the SOC levels of an EV as it 
navigates through potential charging station sites. Meanwhile, 
equation (18) affirms that an EV can traverse all proposed 
charging station locations along routes connecting specific O-D 
pairs, maintaining an SOC that's at least zero. 
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݉݅݊
௦ೌ,௬ೌ,௙ೝ

೚೏
 ൝෍  

௔

൫ݍଵ,௔ݏ௔ + ௔൯ݕଶ,௔ݍ

+ ߱ ෍  
௔

෍  
௥

௥݂
௢ௗߜ௔௥

௢ௗ(ݐ௔
଴ + ௔ߨ

∗ )ൡ 

(20) 

s.t. arg ݉݅݊
௙ೝ

೚೏
൝෍  

௔

෍  
௥

௥݂
௢ௗߜ௔௥

௢ௗ(ݐ௔
଴ + ௔ߨ

∗ )

∣ (12) − (15)ൡ 

(21) 

(15) − (19) (22) 

௔ݕ ≤  ௔ (23)ݏത௔ݕ

ߟ ෍  
௞

௥݂
௢ௗߜ௔௥

௢ௗ ≤  (௔ݕ)݃
 
 

(24) 
The component in (20) represents the cumulative investment 

costs associated with EV charging stations, encompassing both 
the expenses of building the stations and setting up charging 
points. The subsequent component in (20) quantifies the 
financial implications of travel time, correlating directly with 
the aggregate travel time of vehicles under the UE scenario. 
The investment costs for new EV charging stations, as outlined 
in Equation (20), are determined by combining the capital 
outlays required for physical infrastructure with the operational 
costs associated with integrating these facilities into the 
existing transportation network. The term ݍଵ,௔ݏ௔  explicitly 
represents the fixed costs for constructing new charging 
stations, where ݍଵ,௔  indicates the unit cost of establishing a 
single charging station and ݏ௔  denotes the binary decision 
variable for the presence of a charging station at location a. 
This approach ensures that the financial planning considers 
both the initial expenditure on infrastructure and the long-term 
implications on traffic flow and vehicle operation times, which 
are critical for the economic viability of the project. 

Equation (21) lays out the constraints for UE traffic flow, 
pinpointing the total time vehicles spend on the road under UE 
and the distribution of traffic flow within the TN. Equation (22) 
sets the parameters for driving range logic, considering viable 
EV charging station sites. Equation (23) stipulates the 
maximum count of charging points a station can house. Lastly, 
equation (24) outlines the operational capacity of each charging 
station, which is influenced by the number of charging points. 
For the sake of clarity, we've postulated a linear correlation, 
 ௔ + 4. Owing to space constraints and its recognitionݕ3 = (௔ݕ)݃
as foundational knowledge within the power system domain, 
the modeling of the power distribution network (PDN) using 
linearized DistFlow has been omitted [48]. Given the demands 
in both traffic and power sectors, the coordinated planning 
model for this integrated traffic-electric system is detailed 
below: 

݉݅݊
௦ೌ,௬ೌ,௡ೌ

೎  ்ܱܾ݆ + ܱܾ݆௉
  (25) 

The objective of the coordinated planning model is to 
optimize investment costs across both the TN and PDN. The 

initial component, ்ܱܾ݆  in equation (25), signifies the 
investment expenditure in the TN:  

்ܱܾ݆ = ෍  
௔∈்

ൣ൫ݍଵ,௔ݏ௔ + ௔ݕଶ,௔ݍ + ଷ,௔݊௔ݍ
௖ ൯

+ ௔ݐ)߱
଴ +  ௔൧ݔ(௔ߣ

 
(26) 

In this equation, the primary component of ்ܱܾ݆ denotes the 
investment costs associated with new EV charging stations, 
charging spots, and lanes. The subsequent component 
represents the equivalent travel expenses in the UE pattern. 
Equation (26) details the investment costs for new EV charging 
infrastructure by quantifying the expenses across different 
components: ݍଵ,௔ݏ௔  accounts for the construction and 
installation costs of each charging station at location a, 
reflecting the capital expenditure required to establish the 
physical infrastructure. ݍଶ,௔ݕ௔  represents the costs for adding 
multiple charging spots at each station, covering the necessary 
electrical setup such as power connections and support facilities. 
ଷ,௔݊௔ݍ

௖  includes expenses related to ancillary infrastructure 
enhancements like lane expansions or improved access, 
enhancing station accessibility and user experience. 
Additionally, the equation incorporates ߱(ݐ௔

଴ + ௔ݔ(௔ߣ , which 
captures the operational costs linked to traffic flow, adjusted by 
travel time and congestion-related economic factors, illustrating 
the comprehensive financial planning involved in deploying 
and operating EV charging stations effectively within the urban 
transport network. This detailed breakdown facilitates a 
thorough understanding of the investment implications, aiding 
stakeholders in making well-informed decisions that align with 
broader urban mobility and sustainability objectives. 

The next component in equation (25) represents the PDN's 
investment costs: 

ܱܾ݆௉ = ෍  
(௜,௝)∈۲ۯ

௜௝݊௜௝ݍ + ෍  
௔∈஼(௜)

ସ,௔ݍ ௔ܲ
௦௨௕ (27) 

Here, the initial term of equation (27) indicates the 
construction costs for the new distribution lines, while the latter 
term represents the capacity expansion costs for PDN 
substations.  

IV. THE SMALL-WORLD NETWORK MODEL INTEGRATION 
The small-world network model stands as a paradigm shift in 

understanding and designing complex networks. This model, 
grounded in the principle that most nodes are not neighbors yet 
can be reached through a small number of steps, optimally 
balances between local clustering and global network dynamics 
[49, 50]. Its application to urban planning, particularly in the 
context of EV charging infrastructure, offers unparalleled 
advantages. These include improved network resilience, 
enhanced accessibility, and the facilitation of efficient resource 
distribution across densely interconnected yet geographically 
expansive urban environments. 

A. Incorporation of Local Clusters into the Traffic Assignment 
Model 

Given the TN ߗ௡ representing nodes (intersections or zones), 
we aim to define local clusters based on traffic density. For 
each potential cluster c, we can define a function D(c) that 
calculates the traffic density. This function can be based on the 
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number of vehicles per unit area or the number of trips 
originating or terminating within the cluster. 

(ܿ)ܦ =
∑  ௔∈௖ ௔ݔ

(ܿ)ܽ݁ݎܣ
 

Where xa is the traffic flow on link a within the potential 
cluster c; Area(c) is the geographical area of the potential 
cluster c. A potential cluster c is classified as a local cluster if 
its traffic density surpasses a predefined threshold θD. 

ܿ ∈ ܥ ⟺ (ܿ)ܦ ≥  ஽ߠ
Where C is the set of all identified local clusters in the TN. 

To ensure that the nodes within a cluster are densely 
interconnected, we introduce a connectivity parameter κ(c) that 
measures the average number of direct connections between 
nodes in cluster c. 

(ܿ)ߢ =
2 × ∑  ௔∈௖ 1

|ܿ| × (|ܿ| − 1)
 

Where∣c∣ is the number of nodes in cluster c. A high 
value of κ(c) indicates that the nodes within the cluster are 
densely connected. 

Clusters in a TN represent regions with a high density of 
interconnected nodes and links. These could be urban centers, 
commercial hubs, or residential areas. Understanding the traffic 
flow within these clusters is essential for efficient traffic 
management, infrastructure planning, and optimizing the 
placement of amenities such as EV charging stations. Let's 
define a cluster by c and the set of all clusters in the TN by C. 
Each cluster consists of a subset of nodes and links from the 
entire TN. For a specific link a within cluster c, the traffic flow 
can be represented as ݔ௔,௖. Given the traffic demand ݍ௢ௗ,௖ for 
an pair (o,d), the traffic flow on link a can be expressed as: 

௔,௖ݔ = ෍  
௢ௗ

෍  
௥

௥݂,௖
௢ௗߜ௔௥,௖

௢ௗ   
(28) 

Due to the dense nature of clusters, congestion dynamics can 
differ from broader network dynamics. The travel time function 
for link a within cluster c can be represented as: 

(௔,௖ݔ)௔,௖ݐ = ௔,௖ݐ
଴ [1 + ௖(௔,௖/ܿ௔,௖ݔ)௖ߙ

ఉ] (29) 

The UE principle ensures that all drivers within a cluster 
choose the quickest route available. The UE condition for 
traffic flow within cluster c can be expressed as: 

(௔,௖ݔ)௔,௖ݐ ≤ (௔ᇲ,௖ݔ)௔ᇲ,௖ݐ + ߳, ∀ܽ, ܽᇱ ∈ ܿ (30) 

By understanding the traffic flow within clusters and 
modeling it accurately, we can make informed decisions about 
infrastructure development, traffic management strategies, and 
other essential aspects of urban planning. This detailed 
representation provides a foundation for further analysis and 
optimization in TNs. 

B. Incorporation of Long-range Connections 
Long-range connections play a pivotal role in TNs, 

especially in the context of the small-world model. These 
connections bridge distant clusters, ensuring efficient and rapid 
movement between them. They are typically characterized by 
major roads, highways, or expressways that bypass local traffic 
and provide direct routes between significant urban or 
commercial centers. Let's define the set of all long-range 
connections as ℒ. Each long-range connection ݈ from the set ℒ 

connects two distinct clusters from the set ࣝ. 
ℒ = ൛݈|݈ connects ܿ௜ and ௝ܿ , ܿ௜, ௝ܿ ∈ ࣝ, ܿ௜ ≠ ௝ܿൟ (31) 

Given the traffic demand ݍ௜௝  between clusters ܿ௜  and ܿ௜ , the 
traffic flow on the long-range connection ݈ can be expressed as: 

௟ݔ = ෍  
௜,௝

 ௟,௜௝ (32)ߜ௜௝ݍ

Long-range connections are designed to facilitate rapid 
movement, and thus, they have specific characteristics: higher 
speed limits compared to intra-cluster roads; fewer 
intersections or stops and priority for maintenance and 
upgrades due to their significance in the network. By accurately 
modeling and understanding the role of long-range connections, 
transportation planners can optimize traffic flow, reduce 
congestion, and ensure efficient movement between major 
clusters. This is especially crucial in the context of the small-
world model, where long-range connections play a pivotal role 
in reducing the average path length in the network. 

C. Optimization of EV Charging Station Placement with Small 
Network Model 

Incorporating the Small-World Network model into the 
placement of EV charging stations can significantly enhance 
the efficiency and accessibility of these stations. By 
considering local clusters and long-range connections, we can 
ensure that EV users have optimal access to charging facilities, 
reducing "range anxiety" and promoting the adoption of electric 
vehicles. To represent the placement of EV charging stations 
within local clusters, we introduce a binary decision variable: 

௖ݏ

= ቄ1    if an EV charging station is placed in cluster ܿ
0    otherwise

 
(33) 

The traffic density within a cluster c can be represented as 
 This density can be derived from the total traffic flow .(ܿ)ܦ
within the cluster and can be a significant factor in determining 
the placement of EV charging stations. 

(ܿ)ܦ = ෍  
௔∈ࣛ೎

  ௔,௖ݔ
(34) 

The objective is to maximize the utility of the EV charging 
stations, which can be a function of the traffic density and other 
factors like proximity to commercial areas, residential zones, 
etc. 

Maximize ෍  
௖∈ࣝ

  ௖ݏ(ܿ)ܷ
(35) 

Where U(c) is the utility function for placing an EV charging 
station in cluster. This can be a weighted sum of traffic density 
and other factors. The total cost of placing EV charging stations 
should not exceed a predefined budget B. 

෍  
௖∈ࣝ

Cost(ܿ)ݏ௖ ≤   ܤ
(36) 

Ensure that a certain percentage P of the total traffic density 
is covered by the EV charging stations. 

෍  
௖∈ࣝ

௖ݏ(ܿ)ܦ ≥ ܲ ෍  
௖∈ࣝ

  (ܿ)ܦ
(37) 

The characteristics of EV charging stations in local clusters 
are:  
Accessibility: Stations within clusters should be easily 
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accessible to the majority of the traffic within the cluster.  
Capacity:Due to the high traffic density, these stations should 
have multiple charging points to cater to the demand. 
Integration with other services: Charging stations can be 
integrated with other services like shopping centers, cafes, etc., 
allowing users to utilize these services while their vehicles 
charge. 
By optimizing the placement of EV charging stations within 
local clusters using the small-wolrd network model, we can 
ensure that the majority of the EV users have easy and quick 
access to charging facilities, promoting the adoption and use of 
electric vehicles. 

D. Modification of Objective Function and Constraints 
The primary goal of the TN is to minimize the total travel 

time for all vehicles, considering both intra-cluster (within 
clusters) and inter-cluster (between clusters) traffic. 
Additionally, we aim to optimize the placement of EV charging 
stations to ensure maximum utility and coverage. 

The modified objective function can be represented as: 

Minimize ቌ෍  
௖∈ࣝ

෍  
௔∈ࣛ೎

௔ܶ,௖ݔ௔,௖ + ෍  
௟∈ℒ

௟ܶ,௖ଵ,௖ଶݔ௟,௖ଵ,௖ଶቍ

− ߣ ൭෍  
௖∈ࣝ

௖ܷݏ௖ + ෍  
௟∈ℒ

௟ܷݏ௟൱ 

 
(38) 

The first part of the objective function aims to minimize the 
total travel time for all vehicles in the network. This includes 
travel within clusters (intra-cluster) and travel between clusters 
(inter-cluster) on long-range connections. The second part of 
the objective function aims to maximize the utility derived 
from placing EV charging stations. This utility can be a 
function of various factors such as traffic density, proximity to 
amenities, and accessibility. The weighting factor ߣ allows us 
to balance the trade-off between minimizing travel time and 
optimizing charging station placement. The objective function 
captures the essence of the small-world network model by 
considering both local (intra-cluster) and global (inter-cluster) 
traffic patterns. By optimizing this function, we can ensure 
efficient traffic flow while also promoting the adoption and use 
of electric vehicles through strategic charging station placement. 

This constraint ensures that a charging station is placed in a 
cluster only if the traffic density within that cluster exceeds a 
certain threshold. This ensures that charging stations are 
optimally placed in areas with high traffic density, maximizing 
their utility. 

௖ݏ ≤ ܿ∀(ܿ)ܦ ∈ ࣝ (39) 

This constraint ensures that a charging station is placed on a 
long-range connection only if the traffic flow between the 
connected clusters exceeds a certain threshold. This ensures 
that charging stations on long-range connections cater to 
significant inter-cluster traffic. 

௟ݏ ≤ ݈∀௟,௖ଵ,௖ଶܨ ∈ ℒ (40) 

This constraint sets an upper limit on the total number of 
charging stations that can be placed within clusters. This 
ensures a balanced distribution of charging stations and 
prevents over-saturation in any particular area. 

෍  
௖∈ࣝ

௖ݏ ≤  (41) ܯ

This constraint sets an upper limit on the total number of 
charging stations that can be placed on long-range connections. 
This ensures that the long-range connections are adequately 
equipped with charging stations without causing congestion.  

∑  ௟∈ℒ ௟ݏ ≤ ܰ  (42) 

V. NSGA-III MULTI-OBJECTIVE OPTIMIZATION 
The strengths of NSGA-III lie in its superior capacity to 

manage numerous objectives simultaneously, without detriment 
to performance or solution variety. This method distinguishes 
itself with a reference-point selection mechanism, adept at 
preserving a wide spectrum of optimal solutions along the 
Pareto front [51]. Such a feature is indispensable in 
multifaceted optimization contexts requiring a delicate 
equilibrium among competing goals. Furthermore, the 
algorithm's scalability and reliability render it applicable across 
diverse fields, from engineering design to comprehensive 
resource management [39]. For the purposes of this study, we 
specifically use NSGA-III to tackle the complex considerations 
involved in designing integrated urban networks. This approach 
is vital in scenarios where competing factors, like cost 
effectiveness, system resilience, and user accessibility, come 
into play.  

A. Criteria for Selecting NSGA-III 
The selection of NSGA-III for our study was driven by 

specific criteria that align with the complex needs of urban 
infrastructure optimization. These criteria were developed 
through a systematic assessment of various multi-objective 
optimization algorithms, considering both the theoretical 
capabilities and practical applications relevant to our research 
objectives. Below, we detail the rationale behind choosing 
NSGA-III: 

Scalability and Efficiency: Given the large-scale nature of 
urban infrastructure systems and the complexity of managing 
numerous intertwined objectives, NSGA-III's ability to 
efficiently handle large sets of solutions across multiple 
objectives was paramount. Its scalability ensures that the 
optimization process remains computationally feasible even as 
the number of objectives and decision variables grows, a 
common scenario in urban planning applications. 

Solution Diversity: A critical aspect of our study involves 
exploring a wide range of feasible solutions to capture various 
trade-offs between competing urban planning goals. NSGA-
III's reference-point based selection mechanism excels in 
maintaining a diverse pool of solutions, which is essential for 
achieving a holistic understanding of the potential impacts of 
different planning decisions. 

Practicality in Urban Settings: NSGA-III has demonstrated 
applicability and success in various real-world problems, 
particularly in fields requiring the balancing of complex sets of 
objectives, such as environmental impact, cost-efficiency, and 
social implications. Its proven track record in sectors such as 
engineering and resource management underpins its suitability 
for addressing the multifaceted challenges of urban EV 
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infrastructure planning. 
Customizability: The flexibility of NSGA-III to incorporate 

domain-specific constraints and preferences makes it highly 
adaptable to the unique contexts of urban network systems. 
This capability is critical for tailoring the optimization process 
to reflect real-world conditions, regulatory requirements, and 
specific policy goals of urban development projects. 

B. Problem Formulation 
Given our TN model and the associated constraints, we can 

define our multi-objective optimization problem as follows: 
Objective 1: Minimize the total travel time for all vehicles, 

considering both intra-cluster and inter-cluster traffic. 

ܼ݉݅݊ଵ = ෍  
௖∈஼

෍  
௔∈஺೎

௔ܶ,௖ݔ௔,௖ + ෍  
௟∈௅

௟ܶ,௖ଵ,௖ଶݔ௟,௖ଵ,௖ଶ (43) 

The primary goal here is to ensure efficient access to EV 
charging stations, thereby reducing congestion and improving 
the user experience. By minimizing the total travel time, our 
model directly contributes to enhancing the network's 
responsiveness to emergency situations, ensuring that vehicles 
can be quickly charged and mobilized when necessary. This 
optimization also indirectly promotes the distribution of 
charging stations across diverse geographic areas, enhancing 
the network's reliability against localized failures or disruptions. 
Minimizing total travel time ensures that EV users can access 
charging stations swiftly, which is crucial during emergencies 
or extreme weather conditions when quick vehicle readiness is 
paramount. A network optimized for reduced travel times 
inherently supports faster evacuation and emergency response 
efforts, as it minimizes delays and congestion. By optimizing 
travel times, the network naturally evolves into a more 
distributed system with charging stations strategically placed to 
serve diverse urban areas. This distribution ensures that if one 
part of the network is compromised (e.g., due to a natural 
disaster or a localized power outage), other areas can continue 
to operate, thereby maintaining a level of network functionality 
even under adverse conditions. 

Objective 2: Maximize the utility derived from placing EV 
charging stations. 

ଶܼݔܽ݉ = ෍)ߣ  
௖∈஼

௖ܷݏ௖ + ෍  
௟∈௅

௟ܷݏ௟) (44) 

This objective focuses on strategic station placement to serve 
not only the daily needs of EV users but also to bolster the 
network's support for emergency and essential services. 
Optimizing for utility involves situating charging stations in 
proximity to critical infrastructure and incorporating renewable 
energy sources to ensure operability during grid outages. This 
approach significantly boosts the network's resilience, 
providing an indispensable service during crises and 
contributing to the sustainability of urban mobility systems. 

Objective 3: Minimize the total investment costs across both 
the TN and PDN. 

ܼ݉݅݊ଷ = ෍  
௔∈ஐೌ

௔ݏଵ,௔ݍ) + ௔ݕଶ,௔ݍ + ଷ,௔݊௔ݍ
௖ ) (45) 

Efficient resource allocation is key to building a resilient and 
scalable EV charging network. By focusing on minimizing 
investment costs, we aim to allocate savings towards resilience-
enhancing measures such as backup power solutions and 

infrastructure fortification. This strategic investment planning 
allows for the iterative enhancement of the network, ensuring 
its adaptability to future challenges and its sustainable 
expansion in line with evolving urban and technological 
landscapes. 

C. NSGA-III Implementation 
The algorithm operates by initiating with a set of potential 

solutions and progressively refining them through a series of 
evolutionary operations. Throughout its execution, NSGA-III 
ensures the maintenance of a diverse set of Pareto-optimal 
solutions, which are solutions where no objective can be 
improved without degrading some of the other objectives. 

Initialization: Begin by generating an initial population of 
potential solutions. This population is typically created using 
random or heuristic methods, ensuring a wide exploration of 
the solution space. 

Evaluation: For each member of the population, compute its 
fitness based on the predefined objectives. This step is crucial 
as it determines how well each solution performs in relation to 
the set goals. 

Selection: Implement a tournament selection mechanism, 
where a subset of solutions is chosen, and the best among them, 
based on their fitness, are selected as parents. This method 
ensures that higher-quality solutions have a better chance of 
being chosen for reproduction. 

Crossover: In this phase, two parent solutions are combined 
to produce offspring. This is achieved through various 
crossover techniques, such as single-point, multi-point, or 
uniform crossover, which help in exchanging information 
between parent solutions. 

Mutation: To maintain diversity in the population and avoid 
premature convergence to sub-optimal solutions, introduce 
minor random alterations in the offspring. This step ensures 
that the algorithm explores new regions in the solution space. 

Environmental Selection: After generating the offspring, it's 
essential to decide which solutions will proceed to the next 
generation. This is done by retaining the best solutions based 
on non-domination sorting, which ranks solutions based on the 
number of solutions they dominate and are dominated by. 
Additionally, the crowding distance metric is used to ensure 
diversity among the selected solutions by preferring solutions 
that are sparsely distributed in the objective space. 

The algorithm continues to iterate through these phases until 
a predefined stopping criterion is met. This could be a set 
maximum number of generations, a convergence threshold, or 
any other suitable metric. At the conclusion of its run, NSGA-
III provides a set of Pareto-optimal solutions, offering a trade-
off between the objectives for decision-makers to choose from. 

D. Solution Representation 
Each solution within the population encapsulates a potential 

configuration of the entire TN. This encompasses not just the 
roadways and intersections, but crucially, the strategic 
positioning of EV charging stations, which are pivotal in 
promoting the adoption and seamless operation of electric 
vehicles. To achieve this, we employ a binary encoding scheme. 
In this representation, a solution is visualized as a binary string, 
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where the length of the string corresponds to the total number 
of potential locations for EV charging stations within the 
network. Each bit in this string has a specific significance: 

1: Indicates the presence of an EV charging station at that 
specific location. This suggests that, based on the current 
configuration, it's optimal to have a charging station at this 
point to cater to the needs of EV users. 

0: Denotes the absence of a charging station at the 
corresponding location. This could be due to various reasons 
such as proximity to another station, low expected EV traffic, 
or other logistical and strategic considerations. 

This binary encoding is both concise and expressive. It 
allows for easy manipulation during the evolutionary 
operations of the optimization algorithm, such as crossover and 
mutation. Moreover, by visualizing the solution as a string of 
bits, it becomes straightforward to compare different 
configurations, assess the density and distribution of charging 
stations, and make informed decisions about the most effective 
layouts for the TN.  

E. Decoding the Binary Representation and Comprehensive 
Evaluation 

The evaluation process is a pivotal step in our optimization 
algorithm, as it determines the efficacy of a given solution in 
the context of the TN. This involves two primary stages: 
decoding the binary representation and subsequently evaluating 
the decoded configuration using our predefined criteria. The 
initial step is to interpret the binary string that represents a 
potential configuration of the TN. Each bit in the string, as 
previously mentioned, signifies the presence (1) or absence (0) 
of an EV charging station at a specific location. By decoding 
this string, we obtain a clear and tangible layout of where the 
EV charging stations are positioned within the network. This 
decoded representation serves as a blueprint, detailing the 
strategic placement of each station. 

 With the decoded configuration in hand, we proceed to 
evaluate its performance. Leveraging the mathematical models 
developed in earlier sections of the paper, we assess multiple 
facets of the configuration: 

   Total Travel Time: This metric gauges the efficiency of the 
TN, factoring in the placement of EV charging stations. An 
optimal configuration would minimize the travel time for EV 
users, ensuring they can reach charging stations without 
significant detours. 

   Utility of EV Charging Stations: Beyond just the placement, 
it's essential to understand the utility of each station. This 
involves analyzing the frequency of use, accessibility, and 
overall contribution to the network's efficiency. 

   Investment Costs: Establishing EV charging stations 

involves capital. By evaluating the investment costs associated 
with a particular configuration, we can strike a balance between 
economic feasibility and network efficiency. 

VI. EMPIRICAL CASE STUDIES 
In our empirical case study, the chosen scale, involving a 12-

node TN coupled with a 33-node PDN, serves as a 
comprehensive representation of urban and suburban 
environments. This allows us to demonstrate the model's 
applicability and effectiveness in optimizing EV charging 
infrastructure across diverse urban layouts, showcasing its 
potential for larger-scale urban planning and energy 
management initiatives. We utilize a 12-node TN highway, as 
referenced in [2], in conjunction with the IEEE 33-node PDN, 
as detailed in [37], to demonstrate the suggested planning 
approach. The choice of a 33-node PDN is pivotal for several 
reasons, each underscoring the network's critical role in our 
analysis of optimizing EV charging infrastructure. This 
network configuration is not arbitrary; rather, it is 
representative of a medium-scale urban PDN, offering a 
realistic framework within which the complexities of 
integrating EV charging infrastructure can be thoroughly 
examined. The 33-node PDN provides a sufficiently complex 
system that mimics real-world urban power distribution 
scenarios. This complexity is crucial for testing the 
effectiveness of our proposed EV charging infrastructure 
planning model, ensuring that the findings are applicable to 
actual urban environments. By employing a 33-node network, 
our study can effectively demonstrate the scalability of the 
proposed planning approach. It allows us to explore how the 
model performs as the size and complexity of the PDN increase, 
offering insights into the adaptability of our methodology to 
larger or more intricate urban networks. The integration of EV 
charging stations into existing PDNs presents numerous 
technical and operational challenges, including load balancing, 
maintaining power quality, and ensuring network reliability. 
The 33-node PDN serves as an ideal testbed for identifying and 
addressing these challenges, showcasing how our model 
navigates the intricate balance between energy supply and 
demand in the context of EV charging. 

In the comprehensive examination of our coupled energy-
transportation network, TABLE I, TABLE II, and Fig. 1 
synergistically illustrate the methodology and outcomes of our 
optimization strategies. TABLE I methodically lists the 
structural links within the TN, specifying the origin and 
destination nodes for each link. This detailed mapping is 
instrumental in understanding the network's baseline 
connectivity and serves as a reference point for evaluating the 
optimization's impact. Fig. 1 visually presents the overarching 
structure of the proposed coupled energy-transportation 
network. It not only depicts the TN links identified in TABLE I 

     
TABLE Ⅰ 

LINK NUMBER CORRESPONDANCE 
 

Link 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

From  T1 T1 T2 T1 T2 T3 T4 T5 T3 T4 T5 T6 T7 T8 T9 T7 T8 T9 T12 T11 
To  T2 T3 T6 T4 T5 T4 T5 T6 T7 T8 T9 T10 T8 T9 T10 T11 T11 T12 T10 T12 
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but also integrates them with the PDN, offering a graphical 
representation of the complex interdependencies between the 
two systems. This illustration is key to appreciating the holistic 
nature of our study, emphasizing the dual focus on enhancing 
both transportation efficiency and energy distribution. TABLE 
II directly quantifies the optimization's benefits on the 
network's long-range connections, which are crucial for linking 
disparate clusters within the TN. By detailing the Average 
Travel Time (ATT) before and after optimization for each 
significant long-range connection (e.g., L1, L2, etc.), this table 
showcases the tangible improvements achieved through our 
strategic interventions. Notably, the percentage improvement 
column in TABLE II reflects the optimization's effectiveness, 
with reductions in ATT signifying enhanced network 
performance and efficiency. 

The relationship between these elements is foundational to 
our research narrative. TABLE I establishes the initial 
conditions by identifying the network's key connections, 
offering a granular view of the TN's layout that Fig. 1 then 
brings to life visually, contextualizing within the larger coupled 
network framework. Table II builds on this foundation by 
demonstrating the optimization's impact, directly linking back 
to the connections identified in Table I and visualized in Fig. 1. 
This progression from structural identification (TABLE I) to 
visual representation (Fig. 1) and empirical validation of 
optimization benefits (TABLE II) creates a cohesive storyline. 
It underscores the effectiveness of our optimization strategies in 
not only improving travel times across the network's long-range 
connections but also in enhancing the overall operational 
efficiency and sustainability of the coupled energy-
transportation system. 

Fig. 1 and Fig. 2, along with TABLE I, play pivotal roles in 
articulating the foundational structure and operational dynamics 
of the proposed coupled energy-transportation network. Fig. 1 
provides a comprehensive visual representation of the 
integrated network, highlighting the seamless interconnection 
between the TN and the PDN. This visualization serves not 
only to contextualize the complexity and scope of our study but 
also to facilitate a deeper understanding of the systemic 
interactions at play. Similarly, Fig. 2 delves into the specifics of 
the PDN, offering a detailed schematic of the PDN 
configuration. This figure underscores the critical nature of the 
energy component in our coupled network model, illustrating 
how energy distribution is intricately linked to transportation 
infrastructure to support the deployment and efficient operation 
of EV charging stations. 

 

 
Fig. 1.  Structure of the proposed coupled energy-transportation 
network.   

 
Fig. 2.  Scturcture of the IEEE 33-bus distribution system.   

 
Complementing the visual insights provided by these figures, 

TABLE I, offers a granular breakdown of the TN’s 
connectivity. It meticulously maps out the specific links 
between nodes within the TN, serving as a crucial reference for 
understanding the network's baseline connectivity and for 
evaluating the impact of our optimization strategies. The table 
outlines the origin and destination points for each link, 
providing a detailed framework that underpins the simulation 
and optimization analyses conducted in our study. The 
integration of these elements—Fig. 1’s overarching network 
visualization, Fig. 2’s focus on the PDN, and Table I’s detailed 
connectivity mapping—forms a comprehensive narrative that is 
essential to grasping the full scope of our research. Together, 
they lay the groundwork for our subsequent optimization 
analyses and the empirical demonstrations of our model's 
efficacy. A thorough discussion of these critical components is 
included in our manuscript to ensure that readers are well-
equipped to understand the innovative approach we propose for 
enhancing the resilience and efficiency of urban infrastructure 
systems through the strategic integration of energy and TNs. 
Fig. 3 displays flow capacity, free travel time, link distance, 
and new lane cost of the TN [25].  

Drawing from the parameter configurations in [10], [12], and 
[25], we've established the following system parameters: The 
expense for a new EV charging station is pegged at ݍଵ,௔  = 
$1.63 × 105. Each charging spot, ݍଶ,௔, costs $3,160, while the 
price for expanding substation capacity, ݍସ,௔ , is set at $5,000 
per kVA. The monetary valuation for travel time within the TN 
is ω = $104. The cap on the number of charging spots is ya = 
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200. EVs have a driving range of R = 100 km when fully 
charged. Both the arrival and departure SOC are standardized at 
0.5. The maximum allowable expansion for lanes is 10, 
respectively. All simulation tasks were executed on a Dell XPS 
laptop equipped with a 13th Gen Intel® Core™ i9-13900K 
processor (with 32 MB cache, 24 cores, and a frequency range 
of 3.00 GHz to 5.40 GHz Turbo). The parameters are illustrated 
in TABLE Ⅱ. 

 

 
Fig. 3.  Parameters of the TN.   

TABLE Ⅱ 
SYSTEM PARAMETERS AND CONFIGURATION 

Parameter description  Value Unit 

Expense for a new EV charging station $163,000 USD 

Cost per charging spot $3,160 USD 

Price for expanding substation capacity $5,000 USD per 
kVA  

Monetary valuation for travel time $104 USD 

Cap on the number of charging spots 200 Spots 

EV driving range 100 km 

SOC at arrival and departure 0.5  Ratio 

Max allowable expansion for lanes 10 Lanes 

Processor for simulation tasks  

13th Gen 
Intel® 

Core™ i9-
13900K  

N/A 

 
 

 
Fig. 4.  3D plot of the road investment cost result.   

Fig. 4 offers a detailed portrayal of the dynamic relationship 
between traffic demand growth, the unit cost growth for 
building EV charging stations, and the resultant road 
investment costs. We observe a moderate rise in road 

investment costs when both traffic demand and unit cost 
growth are at lower percentages. For example, a traffic demand 
growth and EV station cost growth of 0% to 10% corresponds 
to an increase in road investment costs from approximately 
3.32 to 3.81 million dollars. This phase indicates an almost 
linear relationship where the system can adapt to increases 
without significant additional investments. However, as the 
growth percentages push beyond the 20% mark, the road 
investment costs escalate more dramatically. Particularly, a 
traffic demand growth of 40% coupled with a 40% increase in 
the unit cost for EV charging station construction propels the 
road investment costs to nearly 11.90 million dollars. This 
exponential rise suggests that beyond certain thresholds, the 
cost of scaling infrastructure to meet demands becomes 
disproportionately higher.  

 

 
Fig. 5.  3D plot of the charging station investment cost result.   

Fig.5 visualizes the correlation between traffic demand 
growth, the cost growth for building EV charging stations, and 
the resulting investment in charging station infrastructure. The 
plot illustrates a steady and progressive relationship that 
underlines the impact of increasing traffic demand and EV 
charging station costs on the overall investment required. In the 
initial range, from 0% to approximately 10% growth in both 
traffic demand and EV charging station cost, the investment 
cost demonstrates a gradual increase. For instance, an increase 
from 3.32 to 3.74 million dollars is seen in this bracket. This 
could be indicative of an infrastructure that can scale with 
demand at a slightly superlinear rate without incurring 
disproportionate costs. However, the plot shows a noticeable 
change in gradient as we move towards higher growth 
percentages. When both traffic demand and EV charging 
station costs grow beyond 20%, there's a more pronounced 
increase in investment costs, reaching up to 5.68 million dollars 
at a 40% growth level. This suggests that the cost of 
infrastructure development grows at an increasing rate once 
certain thresholds of demand and cost growth are exceeded. 

 
Fig. 6.  3D plot of the distribution line investment cost result.   
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Fig. 6 offers a detailed mesh plot representing the 
relationship between the growth in traffic demand, the rising 
costs of constructing new distribution lines, and their combined 
influence on the investment costs required for such 
infrastructure. Analyzing the surface trends, we can observe 
that at the outset, the investment cost is 6.3 million dollars with 
no growth in traffic demand or new distribution line costs. As 
we move along the growth axis, the costs consistently rise. 
Notably, a linear increase in traffic demand and distribution 
line cost from 0% to 10% results in an investment cost that 
increases to approximately 6.89 million dollars. The trend 
becomes more pronounced at higher growth percentages. For 
example, with a 20% increase in both traffic demand and new 
distribution line costs, the investment cost escalates to around 
7.89 million dollars, indicating a stronger correlation at these 
levels. When the growth reaches 40%, the investment cost 
surges to approximately 9.3 million dollars. This nonlinear 
increase suggests that infrastructure investment costs escalate 
more rapidly than the growth in demand and construction costs, 
hinting at potential challenges such as the need for more 
advanced technologies or the impact of economies of scale. 

 
Fig. 7.  Average distance for the charging service.  

In Fig. 7, the X-axis, reflecting cost growth percentage, 
encapsulates the financial implications of network densification. 
The Y-axis, denoting coverage growth percentage, aligns 
closely with the small-network model's feature of high 
clustering. It indicates the degree to which the network is 
expanding its reach within local neighborhoods and across the 
broader region, potentially following the patterns of a small-
world network where clustering can be leveraged to maximize 
local coverage with minimal links. The Z-axis, average distance, 
is a direct function of the small-network model's navigability. 
In a well-designed small-network model, the average distance 
should remain low or even decrease as the network scales, due 
to the strategic placement of charging stations that take 
advantage of the small-world's high connectivity and short path 
lengths. By analyzing the surface plot within the small-world 
network framework, stakeholders can identify the most cost-
effective strategies for network expansion. This involves 
pinpointing areas where the addition of new charging stations 
or the strengthening of existing ones can yield significant 
improvements in coverage and accessibility without incurring 
prohibitive costs. 

 

TABLE Ⅲ 
LONG-RANGE CONNECTION EFFICIENCY AFTER OPTIMIZATION 

Long range 
connections 

Connected 
clusters 

ATT/min 
(before) 

ATT/min 
(after) 

Improvement 
(%) 

L1 C1-C2 45 40 11.11 

L2 C1-C3 48 42 12.50 

L3 C1-C4 50 47 6.00 

L4 C2-C3 47 40 14.89 

L5 C2-C4 44 41 6.81 

L6 C3-C4 49 42 14.29 

 
Our TN case study reveals a strategic node distribution based 

on the proposed small-world network model, leading to a 
natural clustering that underpins our model's goals. Here's a 
succinct outline: Cluster 1 comprises T1, T4, T8, and T11, this 
cluster benefits from vertical traffic flow, optimizing EV 
charging placement and slashing travel times; Cluster 2 features 
T2, T5, T9, and T12, its vertical alignment mirrors Cluster 1, 
enabling symmetrical optimization strategies for equitable 
resource distribution and improved traffic flow; Cluster 3 
includes T3 and T7, its smaller scale belies its importance in 
traffic transfer, warranting prioritized interventions for 
disproportionate network benefits; Cluster 4 consists of T6 and 
T10, it calls for a customized approach to charging station 
deployment, focusing on capacity to suit unique traffic patterns. 

Strategic long-range connections are the linchpins of our 
network's efficiency, linking clusters to bolster reliability and 
alleviate congestion. Our optimization model prioritizes these 
connections to slash travel times and bolster EV charging 
accessibility: Cluster 1 ↔ Cluster 2: Their parallel layout yields 
multiple direct links, like T1 to T2 and T4 to T5, promoting 
swift, grid-wide transfers. We're harnessing these avenues to 
streamline both flow and charging station placement. Cluster 1 
↔ Cluster 3: Critical for diffusing denser cluster traffic, 
connections like T3 or T7 to T1 or T4 are potential game-
changers for network fluidity. These pivotal links are 
earmarked for impactful optimization. Cluster 1 ↔ Cluster 4: 
The T6 or T10 to T1 or T4 links could be traffic arteries, easing 
congestion. Our model eyes these for selective improvements. 
Cluster 2 ↔ Cluster 3: The T3 or T7 to T2 or T5 links keep 
inter-cluster traffic agile. Optimizing these could be key to 
network-wide travel efficiency. Cluster 2 ↔ Cluster 4: 
Connections like T6 or T10 to T2 or T5 can streamline cluster 
transitions. The model targets these for efficiency upgrades. 
Cluster 3 ↔ Cluster 4: The proximity of T7 to T10 suggests 
direct links could be highly beneficial. We're exploring these 
for optimization to boost network resilience. 

TABLE ⅡI's results showcase a network where strategic 
optimization has effectively reduced average travel time (ATT) 
across all long-range connections. Connection L1 between 
Clusters 1 and 2 boasts an 11.11% improvement, underscoring 
the optimization's impact on a vital link in the network. 
Meanwhile, the 12.50% enhancement in travel efficiency for 
Connection L2 between Clusters 1 and 3 speaks to the success 
of interventions in managing traffic across divergent clusters. 
Connection L3's more modest gain of 6% still reflects positive 
strides in smoothing the flow between Clusters 1 and 4. 
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Notably, Connection L4 between Clusters 2 and 3 emerges as a 
standout, with the highest improvement at 14.89%, indicative 
of a transformative effect on the commute dynamics within 
these clusters. Connection L5, despite a less dramatic but still 
meaningful improvement of 6.81%, enhances the connectivity 
between Clusters 2 and 4. Lastly, the 14.29% improvement 
observed in Connection L6 between Clusters 3 and 4 is not to 
be understated, as it significantly trims travel times on a link 
crucial for network resilience. Collectively, these results 
highlight the optimization's efficacy, not just in reinforcing the 
network's structure but also in ensuring that the flow between 
clusters is as efficient as possible, paving the way for a more 
sustainable and responsive urban transport system. 

 
TABLE Ⅳ 

CONVERGENCE METRICS TABLE 

Algorithm Generations to 
Converge  

Distance 
from Pareto 

Front  

Convergence 
Stability  

NSGA-II [50] 311 0.02 0.91 

SPEA2 [52] 334 0.03 0.86 

NSGA-III 252 0.01 0.95 

 
TABLE Ⅴ 

DIVERSITY METRICS TABLE 
Algorithm Spacing Metric Spread Coverage of 

Pareto Front  
Diversity 

Score 
NSGA-II [50] 0.02 0.90 0.93 0.92 

SPEA2 [52] 0.03 0.85 0.90 0.89 

NSGA-III 0.01 0.95 0.98 0.97 

 
In Table IV, we meticulously compare the efficiency and 

reliability of Non-dominated Sorting Genetic Algorithm II 
(NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2), 
and NSGA-III in converging towards the Pareto front within 
the context of our empirical case study. NSGA-II significantly 
advanced the field of multi-objective optimization by 
implementing a fast non-dominated sorting approach [52, 53]. 
SPEA2 furthered this advancement by introducing fine-grained 
fitness assignment and an improved archive maintenance 
method for handling multi-objective problems [54, 55]. In our 
analysis, NSGA-III, the latest iteration in the series, designed to 
effectively tackle many-objective optimization problems, 
demonstrates a notable performance with the fewest 
generations to converge (252 generations), the closest 
proximity to the Pareto front (a distance of 0.01), and the 
highest convergence stability (0.95). These metrics not only 
highlight the evolution of optimization methodologies but also 
underscore NSGA-III's exceptional capacity for rapid and 
stable convergence in complex optimization scenarios. 

Complementing our convergence analysis, Table V, the 
Diversity Metrics Table, delves into the diversity and 
distribution quality of solutions provided by NSGA-II, SPEA2, 
and NSGA-III. This table reveals NSGA-III's unparalleled 
ability to maintain a diverse set of solutions with the highest 
diversity score (0.97), underscoring its effectiveness in 

exploring the solution space. It achieves the best spacing metric 
(0.01), indicating uniformly distributed solutions, and the 
highest spread (0.95) and coverage of the Pareto front (0.98), 
illustrating its superior capability to span the breadth of the 
objective space. Such performance highlights NSGA-III's 
advantage in providing a comprehensive set of solutions, 
allowing decision-makers to explore a wide array of optimal 
planning options for EV charging infrastructure. Comparatively, 
NSGA-II and SPEA2, while offering commendable diversity 
metrics, fall slightly short of NSGA-III's breadth and 
uniformity of solution distribution, as indicated by their 
diversity scores of 0.92 and 0.89, respectively. 

VII. DISCUSSION 
Our research introduces a novel application of the NSGA-III 

algorithm within the context of optimizing EV charging 
infrastructure, a critical component of urban and suburban 
environments. The empirical case studies, utilizing a 12-node 
TN in conjunction with a 33-node PDN, showcase the model's 
applicability and effectiveness across diverse urban layouts. 
This scenario provides a foundational comparison stage to other 
established planning models, highlighting the nuanced 
advantages of our approach. 

A. Case Study Discussion  
Previous studies have often emphasized optimizing 

individual parameters, such as the cost or the speed of charging, 
potentially overlooking the holistic performance of the EV 
charging network under variable urban dynamics [56, 57]. By 
leveraging NSGA-III, our model inherently supports a more 
nuanced optimization process, simultaneously addressing 
multiple objectives. This multiplicity allows for a reliable 
solution set that caters to diverse urban requirements and user 
preferences, offering a balance between cost, accessibility, and 
charging speed. The diversity score of 0.97, compared to lower 
scores in other models, underscores our approach's ability to 
generate a comprehensive suite of solutions adaptable to varied 
urban scenarios. 

Our research introduces the NSGA-III algorithm as a 
superior tool for optimizing EV charging infrastructure, 
highlighted through empirical case studies utilizing a 12-node 
TN and a 33-node PDN. This section offers a technical 
comparison between NSGA-III and other state-of-the-art 
algorithms such as NSGA-II and SPEA2, emphasizing the 
significant advancements our approach contributes in terms of 
efficiency, solution quality, and adaptability to complex urban 
layouts. The Convergence Metrics Table clearly demonstrates 
NSGA-III's enhanced performance; it converges in 252 
generations, substantially fewer than NSGA-II’s 311 and 
SPEA2’s 334, showcasing its quick adaptability to multi-
objective problems. Furthermore, NSGA-III achieves a 
minimal distance from the Pareto front (0.01), compared to 
NSGA-II (0.02) and SPEA2 (0.03), reflecting its superior 
precision in navigating the solution space and identifying 
optimal solutions efficiently. This precision is complemented 
by a high convergence stability score (0.95), indicating its 
reliability in providing consistent results across different 
scenarios. 
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In terms of solution diversity, NSGA-III outperforms its 
predecessors with a spacing metric of 0.01, suggesting a more 
uniform exploration of the solution space, and a spread of 0.95, 
which implies that it covers a wider range of feasible solutions 
effectively. The coverage of the Pareto front by NSGA-III is 
0.98, significantly higher than the 0.93 and 0.90 achieved by 
NSGA-II and SPEA2, respectively. This extensive coverage 
ensures that NSGA-III captures a comprehensive array of 
optimal solutions, thereby enhancing the decision-making 
process for urban planners by providing a diverse set of viable 
options. This adaptability makes NSGA-III particularly suited 
for integrating into smart city frameworks, where flexibility 
and comprehensive solution evaluation are critical. 

B. Demonstrating the Seamless Integration and Adaptability 
of the EV Network 

Our research leverages the NSGA-III optimization algorithm 
in conjunction with a small-world network model to 
strategically enhance the planning and implementation of EV 
charging stations. This integrated approach is designed to 
address and overcome the limitations inherent in traditional EV 
charging infrastructure models, which often focus narrowly on 
geographic coverage and charging speeds without adequately 
considering the dynamic and evolving needs of urban 
environments and energy systems. 

By applying the NSGA-III algorithm, known for its 
efficiency in handling multiple objectives, our model optimizes 
the placement of EV charging stations across a TN linked with 
a PDN. This optimization is not static; it dynamically adjusts to 
changes in urban growth, technological advancements, and 
shifting patterns of EV usage. This adaptability ensures that our 
infrastructure planning remains relevant and effective, avoiding 
the obsolescence that can plague more rigid models. 

The small-world network model further supports this 
adaptability by facilitating enhanced connectivity between 
charging stations. This model reduces the average path length 
between any two points in the network, ensuring that EV users 
can access charging stations quickly and efficiently, regardless 
of their location within the network. This is a significant 
improvement over traditional models, which may provide 
adequate coverage but often fail to optimize for the shortest or 
most efficient paths due to their static nature. 

C. Rethinking Benchmarks in EV Charging System 
Optimization 

Our research proposes new benchmarks and provides a 
strategic framework that addresses and extends beyond the 
limitations of existing metrics. In the landscape of EV charging 
infrastructure, traditional benchmarks have primarily focused 
on geographical coverage, charging speed, and cost efficiency. 
These benchmarks aim to reduce range anxiety by maximizing 
the spread of charging stations, primarily based on static 
population centers and high-traffic patterns. While this 
approach helps cover basic user needs, it often neglects the 
dynamic nature of urban developments and the evolving 
demands of energy distribution logistics [58]. 

Current systems also emphasize advancements in charging 
technology, particularly in reducing the time required to charge 
electric vehicles. The development and deployment of ultra-fast 
charging stations are seen as vital to enhancing user 

convenience. However, these advancements are typically 
evaluated in isolation from broader network effects, such as 
grid stability and energy supply fluctuations, which can 
undermine the overall effectiveness of the infrastructure. 

Our research introduces a set of innovative benchmarks that 
not only encompass these existing metrics but also significantly 
expand upon them by integrating a small-world network model 
with the robust optimization capabilities of the NSGA-III 
algorithm. This dual approach allows for a more nuanced and 
dynamic placement of EV charging stations, which aligns with 
both current and anticipated changes in urban and energy 
systems dynamics. By doing so, our model enhances the 
adaptability and resilience of the infrastructure, setting a new 
benchmark for future-ready charging networks. 

VIII. CONCLUSION 
This paper meticulously offers solutions to the critical 

challenges in developing an adaptive EV charging 
infrastructure that aligns with the dual demands of expanding 
EV adoption and the dynamic nature of urban energy systems. 
Through the deployment of an integrated small-world network 
model coupled with NSGA-III optimization, it pioneers a 
pathway for creating highly efficient, user-centric charging 
networks that are both economically viable and 
environmentally sustainable. An empirical case study involving 
a 12-node TN and a 33-node PDN validates the proposed 
methodology. The application of this model ensures the 
strategic placement of charging stations, offering extensive 
route options and reliable availability, thereby significantly 
boosting network resilience. To discern the benchmarks set by 
our research, it's vital to acknowledge the current state of EV 
charging systems, which primarily focus on maximizing 
geographical coverage and minimizing charging times. These 
benchmarks, while crucial, often overlook the intricate 
interplay between urban planning, energy distribution, and user 
accessibility. The research herein extends beyond traditional 
metrics by integrating resilience and adaptability into the 
planning of EV charging infrastructure, thereby addressing the 
evolving demands of urban energy systems and user-centric 
design.  

Looking forward, the study's strategies and insights provide a 
substantial foundation for the scalable advancement of urban 
EV ecosystems, anticipating the increasing demands of 
sustainable mobility and infrastructure development. The future 
research directions are summarised as follows: 

Integration with Renewable Energy Sources: As cities move 
towards sustainability, the integration of renewable energy 
sources into EV charging infrastructure represents a critical 
frontier. Future research could explore how to optimally 
combine solar or wind energy with EV charging stations to 
minimize carbon footprints and enhance energy sustainability. 

User Behavior and Demand Response: Understanding EV 
user behavior and demand patterns is crucial for effective 
infrastructure planning. Future studies could focus on modeling 
user charging habits, preferences, and responsiveness to pricing 
strategies, thereby optimizing the placement and operation of 
charging stations to better meet user needs. 

Policy and Regulatory Frameworks: The success of EV 
charging infrastructure planning is closely tied to supportive 
policy and regulatory environments. Future research might 
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examine the impact of different policy instruments and 
regulations on the deployment and operation of EV charging 
networks, aiming to identify best practices and barriers to 
infrastructure development. 
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