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Abstract—Extreme events can interrupt both electricity and
gas supply in an integrated electric-gas distribution system
(IEGDS). This work proposes a two-stage resilient preparation
and restoration strategy to efficiently restore both electric and
gas load services in IEGDS after extreme events considering
the utilization of mobile energy storage (MES). To minimize
the load loss under the damage uncertainty and limited MES
resources, a unified MES assigning and dispatching strategy is
proposed to optimally coordinate the numbers and locations
of pre-event and post-event MES dispatching. To address the
MES assigning and pre-event dispatching problems under the
damage uncertainty, a two-stage stochastic optimization model
is developed, which is efficiently solved by a proposed selective
progressive hedging (PH) algorithm. The out-of-sample analysis
indicates that the proposed methods can achieve a 53.10% re-
duction in average load loss compared to scenarios without MES.
In addition, the proposed unified MES assigning and dispatching
strategy outperforms the preparation-only and restoration-only
MES dispatching strategies by reducing 2.65% and 7.13% of
average load loss, respectively. Moreover, the proposed selective
algorithm can reduce 7.23% to 30.53% of the computational
burden compared to the conventional PH algorithm.

Index Terms—IEGDS, MES, unified MES assigning and dis-
patching strategy, distributed solution method

I. INTRODUCTION

The secured and consistent energy supply through electricity
and natural gas distribution networks is being threatened by
increasingly frequent extreme events, leading to more and
more concerns about the resilience of integrated electric-gas
distribution systems (IEGDSs) [1]. In IEGDSs, the interde-
pendence of electricity and gas supply networks significantly
increases the operational complexity and makes the energy
supply more vulnerable to damages, which introduces new
challenges to ensuring the resilience of IEGDSs [2]–[4].

Considering the interdependence between electric and gas
networks within IEGDSs, pioneering works have proposed
efficient resilient operation strategies and models to mitigate
the impacts of extreme events on IEGDS resilience [3]–[13].
In [5]–[7], optimal restoration strategies for IEGDS have been
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developed by taking into account the coupling between power
and gas networks through gas-fired distributed generators
and gas compressors. Moreover, restoration strategies have
been proposed to integrate the repair crew routing problem
into the restoration process, enabling more efficient energy
supply restoration in IEGDS [3], [8]–[10]. In addition, to
handle the damage uncertainty after extreme events, robust
and stochastic optimization models are developed in [12] and
[13], respectively. By optimally operating and coordinating
resilience resources, existing resilient operation strategies for
IEGDS can realize highly efficient solutions as validated in
the literature.

Meanwhile, with the advances in high-density and high-
energy battery energy storage techniques, the application of
utility-scale mobile energy storage (MES) has attracted addi-
tional attention [14]. Regarding distribution system resilience,
MESs are recognized as spatially flexible energy resources that
can be flexibly deployed to enhance system resilience [15].
In [15], [16], MESs are used together with other distributed
energy resources in the distribution power system to enhance
restoration performance. Some work [17], [18] also considered
using MES to form microgrids within the distribution system
and accelerate the restoration efficiency. Besides, the resilience
enhancement-oriented MES investment strategy is also pro-
posed in [19]. As demonstrated in prior studies [15]–[20], the
application of MESs in distribution systems can significantly
improve load restoration performances and mitigate the im-
pacts of extreme events on distribution system resilience.

Motivated by antecedent works, this work proposes a re-
silient operation strategy for IEGDSs considering the utiliza-
tion of MESs. The objective of the proposed strategy is to
efficiently restore electric and gas loads by optimally utilizing
and coordinating MESs with other resilience resources. In
particular, although the majority of existing IEGDS resilient
operation strategies focus on the post-event restoration stage,
the pre-event preparation can also improve system prepared-
ness against extreme events [21], [22]. In [23], [24], stochastic
preparation strategies are proposed for distribution systems to
develop preparation plans against extreme events. In addition
to developing preparation plans, in [25], a two-stage pre-
and post-disaster energy management model is developed
to enhance the system preparedness against the tornado by
increasing the energy stored in electric vehicles and natural
gas storage. In [26], a multi-stage preparation and restoration
model is proposed considering the spatiotemporal coupling
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relationship between different stages to assist DS operators
in making resilient operation decisions against extreme events.
Recognizing the significance of both pre-event preparation and
post-event restoration, the proposed resilient operation strategy
considers unifying both stages to minimize load loss.

In the proposed resilient operation strategy, efficient uti-
lization of MESs is critical to the restoration performance.
Because MESs are dispatched from the depot to desired
locations through the transportation network (TN), the re-
quired transportation time of post-event dispatched MES could
undermine the benefit of MESs and reduce the restoration
efficiency, especially under degraded road conditions after
extreme events. Pre-event dispatched MES can avoid such
transportation time and start power injection immediately after
the restoration begins. However, pre-event MES dispatching
solutions may not be as accurate as post-event dispatching
solutions due to the damage uncertainty. Hence, there is a
trade-off between MES dispatching time and accuracy for
both stages. To balance this trade-off, this work proposes a
unified MES assigning and dispatching strategy considering
the damage uncertainty and MES transportation time. In the
proposed MES assigning and dispatching strategy, a portion of
the MESs are assigned for pre-event dispatching to the most
vulnerable parts of the system under the damage uncertainty.
Then, after the damage information is revealed at the post-
event stage, the rest MESs are accurately dispatched to assist
in the system restoration.

In this context, how to make MES assigning and dispatching
decisions under the damage uncertainty and limited MES
resources is a key challenge for achieving efficient MES
utilization and load restoration. To tackle this challenge, a
two-stage stochastic mixed-integer programming problem is
developed in this work. Because the formulated stochastic op-
timization model generates one set of operational variables and
constraints for each scenario, the computational cost becomes
extremely high as the simulated number of scenarios increases.
To efficiently solve the formulated problem while ensuring
the solution quality by considering a reasonable number of
scenarios, a distributed solution method is devised based on
the progressive hedging (PH) algorithm [27]. To accelerate the
convergence of the developed distributed solution method, a
selective PH algorithm is further proposed.

To distinguish the strategy proposed in this work from
existing relevant studies, a comparative summary is presented
in Table. I. As shown in the table, compared to existing works,
this proposed innovative framework integrates pre-event prepa-
ration and post-event restoration problems to develop a unified
resilient operation strategy for IEGDS considering the utiliza-
tion of MES under damage uncertainties.

The key contributions of this work can be summarized as
follows:

• An integrated preparation and restoration strategy is pro-
posed for IEGDSs to enable joint decision-making across
stages considering the efficient utilization of MES un-
der damage uncertainties. Moreover, a two-stage mixed-
integer stochastic optimization model is formulated for
making optimal preparation and restoration decisions.

TABLE I: Literature Comparison

Reference

Coupled
Gas and
Power

Networks

Integrated
Preparation

and
Restoration

Use of
Mobile
Energy

Resource

Repair
Crew

Routing

Damage
Uncertainty

[1]
[5]–[7] ✓ ✗ ✗ ✗ ✗

[3]
[8]–[10] ✓ ✗ ✗ ✓ ✗

[4], [12] ✓ ✗ ✗ ✗ ✓
[13] ✓ ✗ ✗ ✓ ✓
[15] ✗ ✗ ✓ ✓ ✗

[16], [17] ✗ ✗ ✓ ✗ ✗
[18], [28] ✗ ✗ ✓ ✓ ✓
[19], [29] ✗ ✗ ✓ ✗ ✓
[23], [24] ✗ ✗ ✗ ✓ ✓

[25] ✗ ✓ ✗ ✗ ✓
[26] ✗ ✓ ✓ ✗ ✗

Proposed ✓ ✓ ✓ ✓ ✓

• A unified MES assigning and dispatching strategy is pro-
posed to balance the trade-off between MES transporta-
tion time and dispatching accuracy under the damage
uncertainty by enabling more flexible MES dispatching
decision-making.

• An efficient distributed solution method is developed
based on the proposed selective PH algorithm to solve
the formulated stochastic optimization model.

The rest of this paper is organized as follows: Section II
describes the IEGDS resilient operation problem. Section III
presents detailed problem formulations. The solution method
is provided in Section IV. Section V gives experiment results
and discussions. Section VI concludes this paper.

II. PROBLEM DESCRIPTION

This section provides an overview of the resilient operation
problem for IEGDSs considering MES.

A. System Structure Overview

A representative structure of considered IEGDSs is shown in
Fig.1. In the IEGDS, electricity and natural gas are distributed
through the power distribution network (PDN) and the natural
gas network (GN), respectively. The MES and repair crew are
dispatched through the TN, in which the MESs and repair crew
dispatching is modeled using travel time that depends on the
mutual distance between two TN nodes.

In the GN, there is a gas well serving the gas loads and the
fuel consumption of gas-fired distributed generators (DGs). It
is assumed that the GN is radial so that the gas flow in all gas
pipes is unidirectional. Gas pipes in the GN are classified as
active and inactive pipes, depending on whether a gas pump
is present, as shown in Fig. 1. In active pipes, the gas flow
is driven by the gas pump operation that requires access to
electricity. In inactive pipes, gas flows through the pipes due
to nodal pressure differences. In the PDN, there are some gas-
fired DGs in the network. Besides, the PDN also provides
electricity to gas pumps in the GN.

In the IEGDS, the fuel consumption of gas-fired DGs in the
PDN is modeled as gas demands in GN. Moreover, the gas
pump energy consumption for driving gas flow in the GN is
modeled as electricity demands in the PDN. Hence, the PDN
and GN in this work are coupled through the gas-fired DGs
and gas pumps, as indicated by the dashed arrows in Fig. 1.
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In this work, the proposed resilient operation strategy aims
to minimize the total load loss in the PDN and GN after
extreme events by optimally operating and coordinating the
resilient resources including tie-lines, repair crew, gas-fired
DGs, and MES. As both pre-event preparation and post-event
restoration are important for minimizing load loss, both stages
are considered in the proposed resilient operation strategy.

Fig. 1: System structure overview

B. Pre-Event Preparation

In the pre-event stage, flexible resources should be optimally
dispatched to maximize the load restoration efficiency. In this
work, MESs are considered flexible resources that can be
dispatched to PDN nodes at the pre-event stage to facilitate
efficient restoration actions after the extreme event.

At this stage, the damage information is unknown, and
extreme event predictions should be made to generate fault
scenarios based on the fragility model of the system [23],
[24]. Besides, since natural gas pipes are usually buried un-
derground [30], it is assumed that the gas pipes in the GN will
not be damaged, and faults can only occur in the PDN. Based
on the fault scenarios, optimal restoration can be performed by
utilizing and coordinating MES with other resilience resources.
In this work, multiple fault scenarios are generated at the pre-
event stage to ensure the solution quality. Because the optimal
MES dispatching solution is fault scenario dependent, the MES
dispatching at the pre-event preparation stage should consider
coordinating the MES dispatching solutions of different fault
scenarios. The coordinated MES dispatching result may not
be consistent with the optimal MES dispatching solutions
for individual fault scenarios. Hence, the pre-event MES
dispatching solution suffers from the accuracy problem.

C. Post-Event Restoration

At the post-event stage, the damage information becomes
known parameters and the restoration problem aims to mini-

mize the total load loss in the PDN and GN. The restoration
process includes PDN reconfiguration, dispatching the repair
crew to fix damaged components, scheduling DGs and MES
to provide operational support for serving the loads, and
scheduling gas pumps to drive gas flows in the GN.

In the restoration process, it is assumed that DGs and tie-
lines can be remotely controlled. Besides, the repair crew and
MES are dispatched from the depot to the desired locations
to fix damaged components and provide grid support, respec-
tively. At the post-event stage, since the damage information is
revealed, the MESs can be accurately dispatched to provide the
most efficient grid support and minimize load loss. However,
accurately dispatching MES after damage information is re-
vealed requires transportation time, especially under degraded
road conditions after extreme events. The transportation time
can reduce the benefit of MES because MES cannot imme-
diately inject power into the PDN as the restoration begins.
Hence, the post-event MES dispatching solution faces the
transportation time problem.

D. Unified MES Assigning and Dispatching Strategy

As a key resilience resource in this work, the efficient
utilization of MES is critical to restoration efficiency. As
discussed, the pre-event MES dispatching is less accurate
than the post-event MES dispatching, but the post-event MES
dispatching costs additional transportation time compared to
pre-event MES dispatching. To balance the trade-off between
MES transportation time and dispatching accuracy, this work
proposes a unified MES assigning and dispatching strategy.
The proposed strategy not only optimizes the MES dispatching
locations in both the preparation and restoration stages but
also coordinates the number of MES being dispatched in each
phase. Hence, the proposed strategy unifies the MES assigning
and dispatching problems to coordinate the pre-event and post-
event MES dispatching solutions. The optimal MES assigning
and dispatching solutions is achieved by solving both the pre-
event preparation and the post-event restoration problems.

At the pre-event stage, the optimal preparation problem
identifies the most favorable MES dispatching locations that
would minimize the expected load loss considering all the
generated fault scenarios and their probabilities. In addition to
MES dispatching locations, determining the number of MES
to be dispatched at the pre-event stage and the number of
MES reserved for more accurate post-event dispatching is also
important because the total number of MES is limited. Hence,
the preparation problem also needs to optimally combine
the pre-event and post-event MES dispatching solutions to
determine the optimal number of MES being dispatched in
each stage. By solving the optimal preparation problem, the
MES assigning problem is addressed, and the optimal pre-
event MES dispatching solution is also obtained.

Notably, only the pre-event MES dispatching solution is
implemented by solving the pre-event preparation problem.
Although a restoration problem is solved and a post-event
MES dispatching solution can be obtained for each fault sce-
nario generated in the preparation stage, the post-event MES
dispatching decisions obtained for different fault scenarios in
the preparation problem may or may not be implemented.
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At the post-event stage, the damage information is revealed,
and part of the MESs are already dispatched at the pre-
event stage. The post-event restoration problem optimally
dispatches the rest MESs and coordinates all resilient resources
to minimize the load loss based on the damage information
and pre-event MES dispatching results. By solving the post-
event restoration problem with actual damage information, the
post-event MES dispatching problem in the proposed strategy
is also addressed.

III. PROBLEM FORMULATION

This section first presents the formulation of the two-stage
stochastic mixed-integer preparation problem, then gives the
deterministic post-event restoration problem formulation.

A. Pre-Event Optimal Preparation

To handle damage uncertainties following extreme events,
an efficient approach is to model uncertain damages using
representative fault scenarios generated from power system
fragility models [23], [24]. Using the generated representative
fault scenarios and corresponding probabilities, a two-stage
stochastic optimization model is formulated to minimize the
expected load loss against damage uncertainty. In the pre-event
stage, the two-stage stochastic preparation problem optimizes
the operation of resilience resources, especially the combina-
tion of pre-event and post-event MES dispatching solutions, to
minimize the expected load loss considering all the generated
fault scenarios s ∈ S.

min
Xj ,Ys,j ,us,j,t,Ze

s,t,Z
g
s,t,Rs

∑
s∈S

πs

[∑
t∈T

∑
j∈J

we
jP

loss
s,j,t∆t

+
∑
t∈T

∑
m∈M

wgGloss
s,m,t∆t+ wft

∑
d∈D

FTs,d

]
(1)

In the objective function, the first-stage decision variables
are pre-event MES dispatching decisions Xj . For each PDN
node j, a binary variable Xj is used to indicate if an MES
is dispatched to node j at the pre-event stage, and Xj = 1
means that an MES is dispatched to PDN node j at the pre-
event stage. The second-stage decision variables are scenario-
dependent variables, which include the post-event MES dis-
patching decisions Ys,j , the MES availability indicator us,j,t,
the power system operation decisions Ze

s,t, the gas system
operation decisions Zg

s,t, and repair crew dispatching decisions
Rs for each damage scenario s. In the second stage, the binary
post-event MES dispatching decision Ys,j = 1 means that
an MES is dispatched to node j at the post-event stage of
scenario s. Due to the limitation of MES transportation time,
the availability of pre-event and post-event dispatched MES is
different. To address this issue, an auxiliary variable us,j,t,
which depends on both the pre-event and post-event MES
dispatching decisions, is introduced to indicate when MES
is available at node j in scenario s. The second-stage PDN
operation variables Ze

s,t include the activation status of PDN
nodes, switching of distribution lines, gas-fired DG generation,
MES discharging, and gas pump operation. The second-stage
GN operation variables Zg

s,t include gas procurement, gas
consumption, DG gas fuel supply, gas network nodal pressure,
and gas flow in gas pipelines. The repair crew dispatching

decision variables Rs include the crew routing decisions and
fault repair times.

The probability of each generated fault scenario s is denoted
by πs. For each PDN node j ∈ J , the electric load loss in
scenario s at time t is given by P loss

s,j,t . Similarly, for each GN
node m ∈ M , the gas load loss in scenario s at time t is
given by Gloss

s,m,t. For the restoration process, the optimization
horizon is given by T , and the problem optimization resolution
is given by ∆t. The weights for electric loads and gas loads are
given by we

j and wg , respectively. There are critical and non-
critical electric loads, but gas demands are considered equally
important. The fixing time of each damaged component d ∈ D
in scenario s is denoted by FTs,d, and the weight for fixing
the damaged components is given by wft.

The first and second terms in the objective function rep-
resent the load loss in the PDN and GN, respectively. The
third term is added to ensure that all the damaged components
will be fixed as soon as possible. Notably, to ensure that
minimizing the fixing time will not reduce load restoration
efficiency, the weight wft should take a small enough value
compared to the weights of electric and gas load loss.

1) Power System Constraints

The PDN nodal power balance constraints are as follows:

P dg
s,j,t +

∑
i∈φ(j)

Ps,ij,t + Pm
s,j,t = P l

s,j,t + P gp
s,j,t +

∑
i∈ϕ(j)

Ps,ji,t

(2)

Qdg
s,j,t +

∑
i∈φ(j)

Qs,ij,t +Qm
s,j,t = Ql

s,j,t +Qgp
s,j,t +

∑
i∈ϕ(j)

Qs,ji,t

(3)

P l
s,j,t = us,j,tP

l′

j,t (4)

P loss
s,j,t = P l′

j,t − P l
s,j,t (5)

The real and reactive power generations of gas-fired DGs
are represented by P dg

s,j,t and Qdg
s,j,t, respectively. The real and

reactive power flow from node i to j are denoted by Ps,ij,t

and Qs,ij,t, respectively. Sets φ(j) and ϕ(j) denote the parent
nodes and child nodes of node j, respectively. The electric load
is given by P l

s,j,t and Ql
s,j,t, and the real and reactive MES

power injections are denoted by Pm
s,j,t and Qm

s,j,t. The real
and reactive gas pump power are given by P gp

s,j,t and Qgp
s,j,t,

respectively. The load for node j at time t without interruption
is denoted by P l′

j,t, which is an input value in the problem.
The binary variable us,j,t represents the energization status of
node j at time t in scenario s. Constraints (2) and (3) are
the real and reactive nodal power balance constraints for PDN
nodes, respectively. Notably, demand response is not available
in this work. Hence, the load of node j at time t in scenario
s is only dependent on its energization status us,j,t and the
uninterrupted load P l′

j,t, as shown in constraint (4). The electric
load loss is calculated using 5.
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The power flow constraints [31] are as follows:

vs,i,t − vs,j,t ≤ 2 (rijPs,ij,t + xijQs,ij,t) +M (1− as,ij,t)
(6)

vs,i,t − vs,j,t ≥ 2 (rijPs,ij,t + xijQs,ij,t)−M (1− as,ij,t)
(7)

vminus,j,t ≤ vs,j,t ≤ vmaxus,j,t (8)

vs,1,t = 1 (9)

The resistance and reactance of power distribution lines
are denoted by rij and xij , respectively. vs,j,t is the square
of nodal voltage. The binary variable as,ij,t denotes the
connection status of line ij, and as,ij,t = 1 means that line
ij is connected. M is a large enough constant. The square
of lower and upper voltage limits are denoted by vmin and
vmax, respectively. Constraints (6) and (7) describe the voltage
difference between two end nodes of each connected line.
Constraint (8) ensures that the nodal voltages of energized
nodes are within the safe range. Constraint (9) ensures that
the substation always maintains its voltage at 1 p.u.

Notably, unbalanced power flow is not considered in this
work. If the three-phase unbalanced power flow needs to
be accommodated, the power flow constraints (6) and (7)
should be modified. Specifically, when calculating the voltage
differences between connected nodes, the line impedance
would need to be replaced with the (3× 3) impedance matrix
of the branches [32]. In addition, if three-phase synchronous
generators are involved, generator current unbalanced factors
need to be constrained to prevent generator tripping [33].

Because operating tie-lines can change the topology of the
PDN, the radiality constraints [34] are needed to ensure the
radial PDN topology during the reconfiguration process.

bs,ij,t + bs,ji,t = as,ij,t,∀ij ∈ E (10)

bs,ij,t = 0,∀i ∈ R (11)∑
i:ji∈E

bs,ji,t = us,j,t,∀j ∈ J \ R (12)

|Ps,ij,t| ≤ as,ij,tM,∀ij ∈ E (13)

The auxiliary variables bs,ij,t and bs,ji,t are associated with
line ij to indicate the parent-child relationship between nodes i
and j. In particular, if node j is the parent node of i, bs,ij,t = 1,
otherwise, bs,ij,t = 0. The set of all power lines is denoted by
E , and R denotes the set of root nodes.

Constraint (10) suggests that if line ij is connected, either
node i or node j is the parent node. Constraints (11) and
(12) indicate that the root node has no parent node, and
each energized non-root node has exactly one parent node.
Constraint (13) ensures that disconnected lines have no power
flow.

In this problem, constraints (10) to (13) cannot eliminate
the situation of pseudo root formation if some nodes can form
local loops without violating the power balance constraint.

The formation of pseudo roots can lead to non-radial network
topology. To address this issue, a small value (such as 0.00001
p.u) is added to the original load demand P l

s,j,t to create
fictitious demands P fl

s,j,t that introduce errors in the original
results. The nodal power balance constraint becomes:

P dg
s,j,t +

∑
i∈φ(j)

Ps,ij,t + Pm
s,j,t = P fl

s,j,t + P gp
s,j,t +

∑
i∈ϕ(j)

Ps,ji,t

(14)

By adding a small positive value to the original load,
it is guaranteed that all load nodes have positive demand.
Thus, all load nodes must be connected to the root nodes
through at least one power distribution path to supply their
fictitious demands, thus, eliminating the possibility of pseudo-
root formation. Together, constraints (10) to (14) can ensure
the network radiality during the reconfiguration process.

The operation of gas-fired DGs is constrained by DG
technical constraints (15) to (17):

P dg
min ≤ P dg

s,j,t ≤ P dg
max (15)

Qdg
min ≤ Qdg

s,j,t ≤ Qdg
max (16)

RD ≤ P dg
s,j,t+1 − P dg

s,j,t ≤ RU (17)

Constraints (15) and (16) give the gas-fired DG power
limits. The ramping capability of DGs is constrained by (17),
in which RD and RU denote the ramp-down and ramp-up
limits of DGs.

2) Natural Gas System Constraints

In this work, the steady-state operation of a radial GN is
modeled, and the gas well is the only gas source, as shown
in Fig. 1. The nodal gas balance constraints for gas nodes
m ∈ M in the GN are as follows:

Gw
s,m,t =

∑
n∈ϑ(m)

(
F act
s,mn,t + F ina

s,mn,t

)
,∀m ∈ W (18)

Gl
s,m,t +Gdg

s,m,t =
∑

n∈θ(m)

(
F act
s,nm,t + F ina

s,nm,t

)
−

∑
n∈ϑ(m)

(
F act
s,mn,t + F ina

s,mn,t

)
,∀m ∈ B (19)

The gas load, gas-fired DG fuel consumption, and gas well
supply are denoted by Gl

s,m,t, G
dg
s,m,t and Gw

s,m,t, respectively.
The gas flows in active and inactive pipes are denoted by
F act
s,mn,t and F ina

s,mn,t, respectively. The sets of source nodes
and non-source nodes are given by W and B, respectively.
The parent and child node sets of node m are denoted as
θ(m) and ϑ(m), respectively. Constraints (18) and (19) are
the nodal gas balance constraints for the source node and the
non-source nodes, respectively.

The gas load loss is calculated using (20):

Gloss
s,m,t = Gl′

m,t −Gl
s,m,t (20)



6

where Gl′

m,t represents the uninterrupted gas load for gas node
m at time t.

In the GN, active gas pipes can drive gas flow and elevate
the nodal pressure at the downstream node by operating the gas
pumps. It is assumed that gas pumps are installed at necessary
locations, and disruption in gas pump electricity supply will
lead to gas load outages at downstream GN nodes.

0 ≤ F act
s,mn,t ≤ us,j,tF

act
max,mn (21)

us,j,tςs,m,t ≤ ςs,n,t ≤ us,j,tβςs,m,t (22)

The maximum gas flow in an active pipe mn is denoted
by F act

max,mn, and the binary variable us,j,t is the activation
status of the PDN node j that supplies electricity to the gas
pump in pipe mn. The nodal pressures at the upstream and
downstream nodes of the gas pipe mn are denoted as ςs,m,t

and ςs,n,t, respectively. β is the maximum nodal pressure
elevation capability of the gas pump.

Constraint (21) indicates that in active pipes, the gas flow
can range between 0 and its maximum value as long as the
gas pump has access to electricity. Constraint (22) is the nodal
pressure elevation capability constraint of active pipes.

For inactive gas pipes, the gas flow depends on the nodal
pressure difference between the end nodes. Since a radial GN
is considered in this work, the gas flow is unidirectional. The
gas flow in an inactive pipe mn can be modeled as:

(F ina
s,mn,t)

2 = γ
(
ς2s,m,t − ς2s,n,t

)
(23)

0 ≤ F ina
s,mn,t ≤ F ina

max,mn (24)

where γ is the parameter for describing the relationship
between gas flow and nodal pressure difference, and F ina

max,mn

denotes the maximum gas flow in the inactive pipe mn.

3) Coupling Constraints

The interdependence between the PDN and the GN stems
from the electricity consumption of gas pumps to drive gas
flow in the GN, and the fuel consumption of gas-fired DGs to
generate electricity in the PDN:

Gdg
s,m,t =

(
c1,jP

dg
s,j,t + c2,j

)
us,j,t (25)

P gp
s,j,t = ζmnF

act
s,mn,t (26)

Qgp
s,j,t = ϱP gp

s,j,t (27)

where c1,j and c2,j are fuel consumption coefficients of
the gas-fired DGs. Binary variables us,j,t are the activation
status of the PDN node j with gas-fired DGs. The gas pump
electricity consumption coefficient is given by ζmn. Coefficient
ϱ is related to the power factor of gas pumps.

The coupling constraint (25) relates the gas-fired DG elec-
tricity generation P dg

s,j,t with the DG gas consumption Gdg
s,m,t.

Constraints (26) and (27) relate the active pipe gas flow
F act
s,mn,t with the gas pump electricity consumption.

4) Repair Crew Dispatching

A repair crew can travel through the TN to fix the damaged
components after extreme events. In the restoration problem,
the repair crew dispatching problem can be modeled as a
vehicle routing problem that optimally routes the repair crew
to visit and fix the faults d ∈ D. The repair crew routing
problem can be modeled:∑

h∈D

V s
h,d = 1 (28)∑

d∈D

V s
h,d = 1 (29)

V s
d,d = 0 (30)

V s
h,d + V s

d,h ≤ 1 (31)

where the binary variable V s
h,d denotes the routing decision

from fault h to fault d in scenario s, and V s
h,d = 1 means that

the repair crew chooses to move from fault h to fault d.
Constraints (28) and (29) restrict the number of times the

repair crew flows into and out from each fault location, re-
spectively. Together, constraints (28) and (29) ensure that each
fault will be visited exactly once. Constraint (30) prohibits
self-travels, and constraint (31) avoids sub-tours.

After the repair crew fixes the faults, the damaged compo-
nents become available again. Hence, the fixing time FTs,d

of fault d in scenario s should be modeled into the restoration
problem to indicate the availability of damaged components.

ATs,d ≥ ATs,h + V s
h,dtth,d + V s

h,drth − (1− V s
h,d)M (32)

FTs,d = ATs,d + rtd (33)

ATs,1 = 0 (34)∑
t∈T

us,d,t ≤ T − FTs,d (35)

us,d,t ≤ us,d,t+1 (36)

The arrival time at fault d is given by ATs,d. The repair
time of fault d is given by rtd, and the travel time from fault
h to fault d is denoted by tth,d. Notably, ATs,d and FTs,d are
decision variables of the repair crew routing problem, tth,d
and rtd are input parameters. The availability status of fault
d is given by binary variables us,d,t.

Constraint (32) relates the arrival time ATs,d of fault d to
the arrival time ATs,h of fault h that is visited right before d.
Constraint (33) calculates the fixing time of fault d based on
its arrival time ATs,d and required repair time rtd. Constraint
(34) indicates that the travel of the repair crew starts from the
depot, which provides a boundary condition for calculating the
fixing time of each fault. Constraints (35) and (36) restrict the
availability of fault d until it is repaired.

5) Two-Stage MES Assigning and Dispatching

The MESs can be dispatched at both the pre-event and
post-event stages through the TN, and pre-event dispatched
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MESs can inject real and reactive power immediately after
the restoration begins.∑

j∈J

Xj +
∑
j∈J

Ys,j ≤ Nm (37)

Xj + Ys,j ≤ 1 (38)

um
s,j,tP

m
min ≤ Pm

s,j,t ≤ um
s,j,tP

m
max (39)

um
s,j,tQ

m
min ≤ Qm

s,j,t ≤ um
s,j,tQ

m
max (40)

Em
s,j,t+1 = Em

s,j,t −
Pm
s,j,t

η
∆t (41)

0 ≤ Em
s,j,t ≤ um

s,j,tE
m
max (42)

um
s,j,t ≥ Xj (43)∑

t∈T

um
s,j,t ≤ (T − tt1,j)Ys,j +XjT (44)

um
s,j,t ≤ um

s,j,t+1 (45)

The total number of MES is Nm. The binary variable um
s,j,t

indicates if an MES is available for node j at time t in scenario
s. Pm

min, Pm
max, Qm

min, and Qm
max denote MES power limits.

The MES energy content is denoted by Em
s,j,t, and the full

MES energy capacity is given by Em
max. The MES discharging

efficiency is denoted by η. The transportation time of MES
from the depot to node j is given by tt1,j .

Constraint (37) restricts the total number of MES dispatched
at both the preparation and restoration stages. Constraint (38)
ensures that MES will not be repeatedly dispatched to the
same location. Constraints (39) to (42) are MES power and
energy constraints. The MES availability status is constrained
by constraints (43) to (45). Constraint (43) indicates that if
an MES is dispatched to node j at the pre-event stage, it is
always available at node j. Constraints (44) and (45) ensure
that a post-event dispatched MES can only begin to inject
power after its arrival.

Notably, the dispatching decisions Xj and Ys,j only indi-
cates if an MES is dispatched to node j at the pre-event or
post-event stage. The availability of MES for node j at time t is
represented by us,j,t, which depends on the MES dispatching
decisions (Xj and Ys,j) and the travel time tt1,j from the
depot to node j, as indicated in constraints (43) and (44).
Specifically, if an MES is dispatched to node j at the pre-
event stage (Xj = 1), it can begin to work immediately as the
restoration begins (us,j,t can be set to 1 in the first time slot
of the post-event stage). If an MES is dispatched to node j at
the post-event stage (Ys,j = 1), it can only begin to work after
it travels from the depot to node j (us,j,t cannot be set to one
until the time slot that is larger than the travel time t ≥ tt1,j).
As shown in eqs (37) – (45), the proposed unified preparation
and restoration model not only explicitly incorporates the
MES dispatching and operation constraints at both pre- and
post-event stages but also effectively addresses the coupling

between two stages, which enables unified optimization of
both stages to maximize the load restoration efficiency.

By solving the pre-event preparation problem, the MES
assigning and pre-event dispatching problems are solved, and
the pre-event MES dispatching solution Xj is implemented.

B. Post-Event Optimal Restoration

In the post-event restoration stage, the damage information
becomes known parameters, and the pre-event MES dispatch-
ing has been completed. The post-event restoration problem
optimally coordinates all the resilience resources to minimize
load loss in both the PDN and the GN.

min
Yj ,uj,t,Ze

t ,Z
g
t ,R

[∑
t∈T

∑
j∈J

we
jP

loss
j,t ∆t+

∑
t∈T

∑
m∈M

wgGloss
m,t∆t

+ wft
∑
d∈D

FTd

]
(46)

s.t.

Power System Constraints (47)
Natural Gas System Constraints (48)
Power - Gas Coupling Constraints (49)
Repair Crew Constraints (50)
MES Constraints (51)

IV. SOLUTION METHODOLOGY

To ensure the quality of the preparation decision under the
damage uncertainty, multiple fault scenarios should be simu-
lated at the pre-event stage. However, the two-stage stochastic
optimization model generates one set of decision variables
and constraints for each fault scenario, which significantly
increases the problem dimension. To efficiently solve the for-
mulated optimal preparation problem considering a reasonable
number of fault scenarios, a distributed solution method is
developed in this section based on a proposed selective PH
algorithm.

A. Distributed Solution Method

For a finite number of fault scenarios, the two-stage stochas-
tic problem is a single-stage mixed-integer linear programming
problem, in which a set of decision variables and constraints
are duplicated for each generated scenario. Based on the
PH algorithm, the original problem can be decomposed into
a primary problem and multiple secondary problems. The
primary problem coordinates the results obtained by solving
all secondary problems. Besides, each secondary problem is
responsible for calculating the optimal preparation and restora-
tion solutions for one of the generated scenarios based on the
primary problem coordination result. After the decomposition,
the secondary problems can be written as:

min
Xs

j,τ ,Yj ,uj,t,Ze
t ,Z

g
t ,R

[∑
t∈T

∑
j∈J

we
jP

loss
j,t ∆t+

∑
t∈T

∑
m∈M

wgGloss
m,t∆t

+ wft
∑
d∈D

FTd + λs,τ−1X
s
j,τ +

ρτ
2

∥∥Xs
j,τ −Xp

j,τ−1

∥∥2 ]
(52)
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subject to constraints (2) to (45).
In formulation (52), Xs

j,τ is the optimal pre-event MES
dispatching decision of secondary problems in iteration τ .
The coordinated pre-event MES dispatching result in the
previous iteration is given by Xp

j,τ−1. The penalty coefficient
for coordinating the secondary problems is given by ρτ . The
dual multiplier of the secondary problem for scenario s in
iteration τ is denoted by λs,τ . In this formulation, by adding
the penalty terms, it is ensured that the secondary problems
would account for the deviation from the coordinated pre-event
MES dispatching result Xp

j,τ−1 while making the optimal pre-
event MES dispatching decisions Xs

j,τ .
The primary problem for coordinating the secondary prob-

lem results in iteration τ can be written as:

Xp
j,τ =

∑
s∈S

πsX
s
j,τ (53)

where Xs
j,τ are the optimal pre-event MES dispatching deci-

sions obtained from the secondary problems in iteration τ .
After obtaining the pre-event MES dispatching results from

both the primary and secondary problems, the dual multiplier
for each secondary problem in iteration τ can be updated as:

λs,τ = λs,τ−1 + ρτ
(
Xp

j,τ −Xs
j,τ

)
(54)

The problem is considered converged when the differences
between the pre-event MES dispatching solutions of primary
and secondary problems are smaller than a given threshold ϵ.√∑

s∈S

πs

∥∥Xp
j,τ −Xs

j,τ

∥∥2
2
≤ ϵ (55)

Notably, in the first iteration, the secondary problems would
optimize the MES dispatching without considering the devi-
ation penalty. But for all other iterations, the penalty terms
should be included:

ρτ =

{
0 : τ = 1
ρ : τ ≥ 2

(56)

B. Proposed Selective Progressive Hedging Algorithm

The conventional PH algorithm requires solving all sce-
narios in each iteration to update the first-stage decision.
In addition, some biased scenarios with optimal first-stage
decisions significantly different from the majority require more
iterations to converge. Hence, it is computationally intensive if
all scenarios are treated equally and solved for multiple itera-
tions due to the slow convergence of certain biased scenarios.
Although this additional computational burden does not lead
to additional computational time if the computer has enough
workers and memory to process all the scenarios in parallel,
most computers have limited computational resources. Hence,
scenarios cannot be processed simultaneously, but need to be
divided into batches and solved sequentially. Consequently, ad-
ditional computational time will be needed due to the existence
of biased scenarios. Recognizing that these biased scenarios
are the primary bottlenecks hindering the convergence of the
distributed solution method, this work proposes a selective PH
algorithm to accelerate the convergence by selectively focusing
on solving such biased scenarios to reduce the computational

burden.
The conventional PH algorithm updates the first-stage deci-

sion by solving all scenarios in each iteration τ , which does not
support selectively focusing on biased scenarios. To address
this issue, the conventional PH algorithm is modified such that
in each iteration, only a subset of scenarios χτ ⊆ S need to
be solved to update the first-stage decisions using eq (53).
In addition, to fully utilize the computational resource, the
size of subsets |χτ | in each iteration is set to the number of
workers nw of the computer (assuming adequate memory).
By reducing the number of scenarios solved in each iteration,
the proposed selective PH algorithm provides the flexibility
to enable targeted focus on biased scenarios that require
additional iterations to converge.

To achieve targeted resolution of biased scenarios, a selec-
tive sampling mechanism is developed to prioritize scenarios
with higher bias in each iteration. This is accomplished by
focusing on scenarios that exhibit greater deviations from the
coordinated first-stage decisions when selecting scenarios to
be solved in each iteration τ . These scenarios are typically
more biased and take more iterations to converge. To identify
and sample these biased scenarios for resolution, the deviations
Ds,τ between the first-stage decisions Xs

j,τ of each scenario
s and the coordinated first-stage decision Xp

j,τ are calculated
using (57):

Ds,τ =

√∑
j

(Xs
j,τ −Xp

j,τ )
2 (57)

Based on the deviations of different scenarios, the probabil-
ity Prs,τ of scenario s to be sampled in the scenario subset
in each iteration τ is calculated using eq (58):

Prs,τ =
Ds,τ∑
s∈S Ds,τ

(58)

Following eqs (57) and (58), scenarios with greater bias are
assigned higher probabilities for selection in each iteration.
Subsequently, a total of nw scenarios are sampled from the
scenario set S using the sampling probabilities Prs,τ derived
in eq (58). The selected scenarios are then resolved to update
the first-stage decisions Xs

j,τ in iteration τ Additionally, the
dual multipliers corresponding to the selected scenarios are
updated using equation (54). Notably, to ensure that all sce-
narios are initially solved without penalty terms, the scenario
selection process commences after the first iteration, thereby
guaranteeing an unbiased initial solution.

To this end, the developed distributed solution algorithm can
be summarized as follows:

V. CASE STUDY

In this section, numerical results are presented to evaluate
the benefit of using MES in the restoration process and validate
the performance of the proposed methods.

A. Experiment Setup

The investigated IEGDS consists of a 69-node PDN and a
7-node GN, as shown in Fig. 2. Gas-fired DGs are installed at
PDN nodes 32 and 38, and one active pipe is constructed in the
GN. There are five normally open tie-lines, whose positions
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Algorithm 1 Selective PH algorithm

1: Set τ = 1, ϵ = 10−3, ρ = 1, λs,τ−1 = 0, χ1 = S.
2: For each selected fault scenario s ∈ χτ , solve problem

(52) to derive Xs
j,τ

3: Calculating pre-event MES dispatching coordination result
Xp

j,τ using (53)
4: Verify convergence by checking if (55) is satisfied
5: if (55) is not satisfied then
6: Update the dual multipliers for s ∈ χτ using (54)
7: Calculate the deviations Ds for s ∈ S using (57)
8: Compute sampling probabilities for s ∈ S using (58)
9: Sample nw scenarios from S based on Prs

10: Go back to step (2)
11: else
12: Terminate the iteration
13: Output the pre-event MES dispatching decision Xp

j,τ

14: end if

are indicated in Fig. 2. The depots for the repair crew and
MESs are located close to the substation. The travel time from
the depot to different locations ranges between 0.2 and 2.5
hours. The number of MES is set to 5. The MES power and
energy ratings are 500kW and 1,000kWh, respectively. The
MES discharging efficiency η is set to 0.95. The power limit
of the gas-fired DGs is 1,000kW. The optimization horizon
is 12 hours, and the optimization resolution is 0.5 hour. It is
assumed that only power lines will be damaged, and the repair
time for each damaged line is set to 1 hour. The uninterrupted
electric and gas loads are shown in Fig. 3. The total electricity
demand during the restoration process is 96.426 MWh, and the
total gas demand is 15,164 m3.

Fig. 2: System topology, fault scenario, MES dispatching, and repair
crew routing

Fig. 3: Electricity and gas load curves

B. Numerical Results

An illustrative fault scenario, the pre-event MES dispatch-
ing, and the post-event MES dispatching results are displayed
in Fig. 2. In the pre-event stage, two MESs are dispatched to
nodes 25 and 27, respectively. The pre-event MES dispatching
result can be explained from three aspects. Firstly, because
nodes 25 and 27 are located very far from the depot, it costs
a lot of time for MES to transport from the depot to nodes
25 and 27. Hence, dispatching MES to these nodes is more
efficient in terms of the time-saving advantage of pre-event
MES dispatching. Secondly, the feeder that contains nodes 25
and 27 is the longest feeder in the PDN, making the nodes
on this feeder more likely to experience low-voltage problems
during the restoration process. Therefore, dispatching MES
to the far end of this feeder can improve the restoration
efficiency by providing voltage support to avoid potential
voltage violations. In addition, the feeder containing nodes
25 and 27 is interconnected with other feeders through tie-
lines 15-46 and 27-65. Because these two tie-lines connect
this feeder to the far ends of two other feeders, more severe
voltage drop and line congestion problems can occur if these
tie-lines are closed during the reconfiguration process. To
facilitate potential reconfiguration operations involving these
tie-lines, MESs are strategically dispatched to nodes close to
these tie-lines. As a combined result of these considerations,
the proposed strategy dispatches MES to nodes 25 and 27 at
the preparation stage to enhance system preparedness.

After the fault scenario shown in Fig. 2 is revealed, the
proposed strategy coordinates all the resilience resources to
restore load outages. The fastest operation is closing remotely
controllable tie-lines to swiftly switch the interrupted load to
alternative feeders. In this case, tie-lines 11-43, 27-65, and
50-59 are closed immediately after the restoration begins. By
closing these tie-lines, the energy supply at nodes 21 to 27,
nodes 37 to 46, and nodes 55 to 65 are restored. Because the
electricity of the gas pump is supplied by node 42, the gas
supply in the GN is also restored by operating tie-lines.

Notably, there is a tie-line connecting node 46 to node 15.
However, this tie-line is not closed even if the energy supply
on node 46 has been restored. Tie-line 15-46 is kept open
because the voltage on node 46 is very close to the lower
limit, connecting more loads through tie-line 15-46 will cause
voltage violations. To address this problem, the rest MESs are
dispatched to nodes 44, 45, and 46 to provide voltage support
by injecting power. After post-event dispatched MESs arrive
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at t = 3, tie-line 15-46 is closed at t = 4 and the energy
supply of nodes 12 to 20, 68, and 69 is restored.

Similarly, without the power injection from pre-event dis-
patched MES at nodes 25 and 27, closing tie-line 27-65 would
also lead to voltage violations because the energy supply
for nodes 21 to 27 relies on an extended power distribution
path after reconfiguration. However, the strategic pre-event
deployment of MESs to nodes 25 and 27 enables immediate
power injection upon the commencement of the restoration
process. Consequently, tie-line 27-65 can be closed earlier
than tie-line 15-46. The latter must remain open until power
injection from post-event dispatched MES is available. This
contrast demonstrates the significance of the pre-event MES
dispatching in improving the restoration efficiency.

The power injections of MESs are summarized in Fig.
4(a). Specifically, pre-event dispatched MESs can inject power
immediately after the restoration begins, ensuring a prompt
contribution to the restoration process. For post-event dis-
patched MESs, power injections commence upon their arrival
at designated locations with a higher utilization rate compared
to pre-event dispatched MESs. The pre-event and post-event
dispatched MES power injection features reflect the coordina-
tion within the proposed MES deployment strategy.

Following the fuel supply restoration, gas-fired DGs can
inject power to mitigate voltage drop and line congestion
problems. As illustrated in Fig. 4(b), the DG located at node 38
initiates power injection once tie-line 15-46 is closed. The DG
at node 32 is not injecting power before its feeder is restored
because the islanded operation is unavailable in this work.
After this feeder is restored, the DG at node 38 is still not
injecting power because nodal voltages on this feeder can be
maintained without requiring additional support from the DG.

Fig. 4: (a) MES power injection (b) DG power injection

By operating tie-lines, MESs, and gas-fired DGs, the major-
ity of load outages can be successfully restored. Meanwhile,
the repair crew is dispatched to fix fault lines and restore the
remaining load outages. The repair crew route is visualized in
Fig. 2 using dashed arrows. In this case, the load on nodes
29 to 35 is interrupted because of the fault on line 28-29,
and the energy supply on these nodes can only be restored by
fixing line 28-29. Hence, the repair crew is routed to repair
fault line 28-29 first. By fixing this fault line, nodes 29 to
35 are restored, thereby resolving all load outages. However,
the repair crew proceeds to repair the remaining fault lines,
following the shortest path to minimize the overall fixing time.

The load restoration process is summarized in Table II.
In Table II, nodes 37 to 46, and nodes 55 to 65 can be

restored immediately by closing tie-lines. Besides, following
the restoration of node 42, the gas supply of gas nodes 3 to
7 in the GN is also restored because the electricity supply
to the gas pump is restored. Further, nodes 21 to 27 can be
immediately restored by closing tie-lines thanks to the voltage
support provided by pre-event dispatched MESs. In contrast,
the energy supply of nodes 12 to 20, 68, and 69 remains
interrupted until MESs arrive at nodes 44, 45, and 46 at the
post-event stage. This delay reduces the restoration efficiency
by increasing 1.104 MWh of electric load loss.

TABLE II: Restoration Process Summary

Restored
nodes

Restoration
time Restoration operation

37 to 46, gas
nodes 3 to 7 2 Closing tie-line 11-43

55 to 65 2 Closing tie-line 50-59

21 to 27 2 Closing tie-line 27-65, pre-event
dispatched MES power injection

12 to 20,
68, 69 4

Closing tie-line 15-46, post-event
dispatched MES power injection,

gas-fired DG power injection

29 to 35 4 Repair crew fixing fault line 28-29

The system reconfiguration after the restoration is shown
in Fig. 5. To minimize the load loss, 4 tie-lines are closed,
indicated as green lines in Fig. 5. Meanwhile, 4 damaged
power lines are left open in the reconfigured network, indicated
as dotted blue lines. Notably, for the fault line 28-29, there is
no tie-line capable of switching the load affected by this fault
to alternative feeders. Hence, line 28-29 is reconnected after
the fault is repaired.

Fig. 5: System reconfiguration after the restoration process

To evaluate the benefits of using MES and assess the
performance of the proposed methods, five different strategies



11

are investigated in this work, and their restoration results are
consolidated in Table. III.

Strategy 1: No MES is available in both stages.
Strategy 2: MESs are exclusively dispatched in the pre-event

stage, while other conditions remain unchanged.
Strategy 3: MESs are solely dispatched in the post-event

stage, and the restoration strategy remains unchanged.
Strategy 4: MES are pre-positioned to candidate buses and

rerouted to optimal buses at the post-event stage [35].
Strategy 5: The proposed strategy.
In strategy 1, the absence of MES renders nodes 12 to 20,

68, and 69 unrecoverable using tie-lines. Instead, fault line
11-12 is repaired to restore these nodes. Besides, because of
system reconfiguration, repaired line 11-12 can only be closed
at the last moment of the restoration process, which leads
to a huge loss of electric load. Furthermore, due to voltage
violations, tie-line 27-65 can only be closed at t = 4, further
increasing the electric load loss.

In strategy 2, using the same fault scenarios and solution
method, MESs are dispatched to nodes 22, 24, 25, 26, and
27 at the pre-event stage. Despite the power support from
pre-event dispatched MES is available, tie-line 27-65 is not
immediately closed to restore nodes 21 to 27. Instead, fault
line 20-21 is repaired at t = 9, then closed simultaneously
with tie-line 15-46 at t = 10. Consequently, nodes 12-20, 68,
and 69 are restored together with nodes 21 to 27 at t = 10.
This severe delay results in a substantial electric load loss.

In strategy 3, MESs are dispatched to nodes 41 and 43,
44, 45, and 46 at the post-event stage. In this strategy, the
reconfiguration result is the same as the proposed strategy.
However, because no MES is available to maintain the voltage
of nodes 21 to 27 at the beginning of the restoration, tie-
line 27-65 can only be closed at t = 4 after the post-event
dispatched MESs arrive. As a result, the load loss is increased
by 0.616 MWh compared to the proposed strategy.

In strategy 4, all terminal buses and buses with more than
two child buses (including tie-line buses) are selected as
the candidate buses. In the pre-event stage, MESs are pre-
positioned at buses 11, 27, 65, 67, and 69. In the post-event
stage, the MESs that are pre-positioned at buses 11 and 65 are
rerouted to buses 43 and 46, and other pre-positioned MESs
remain unchanged. Because of the power and energy support
provided by pre-positioned MESs at buses 27, 67, and 69, the
tie-line 27-65 is closed immediately after the restoration begins
to pick up loads. In addition, tie-lines 11-43 and 50-59 are
also immediately closed without violating network constraints.
However, due to the rerouting process of MESs from buses 11
and 65 to buses 43 and 46, tie-line 15-46 is closed at t = 5
after the rerouted MESs arrive, which leads to an additional
electric load loss of 0.328 MWh.

The electric load loss of all strategies is summarized in Fig.
6. Besides, the gas load loss is the same for all strategies
because the energy supply of the gas pump can be restored
by closing the tie-line 11-43 immediately without causing
violations.

In the developed distributed solution method, the penalty
coefficient ρ is set to 0.5. By simulating 50 fault scenarios in
the preparation stage, the problem converges after 6 iterations.

TABLE III: Restoration Results Comparison

Stra-
tegy

Electric
load loss
(MWh)

Gas load
loss

(m3)

Pre-event
MES

dispatching

Post-event
MES

dispatching

Closed
fault-lines

and tie-lines

1 18.449
(100%) 660 / /

11-12,28-29,
11-43,27-65,

50-59

2 10.844
(58.78%) 660 22,24,25,

26,27 /
20-21,28-29,
11-43,15-46,

50-59

3 4.795
(25.99%) 660 / 41,43,44,

45,46

28-29,11-43,
15-46,27-65,

50-59

4 4.5066
(24.42%) 660 11,27,65

67, 69
27,43,46
67, 69

28-29,11-43,
15-46,27-65,

50-59

5 4.179
(22.65%) 660 25,27 44,45,46

28-29,11-43,
15-46,27-65,

50-59

Fig. 6: Electric load loss comparison

The pre-event MES dispatching probability convergence pro-
cess obtained from the developed distributed solution method
is displayed in Fig. 7.

In the first iteration, there is no penalty term accounting for
pre-event MES dispatching deviations in secondary problems,
making all secondary problems prefer to pre-dispatch MES to
maximize the restoration efficiency. This leads to diversified
pre-event MES dispatching solutions due to the diversity of
fault scenarios. However, certain PDN nodes are preferred for
MES dispatching in the first iteration. From Fig. 7, it can
be observed that nodes 11 to 27, nodes 44 to 46, and nodes
56 to 65 are favored MES dispatching locations. Specifically,
there is an increasing trend in MES dispatching probability as
the distance between PDN nodes and the substation increases,
indicating a correlation between the length of the power
distribution path and MES dispatching preference.

As the problem iterates, the pre-event MES dispatching
probabilities of nodes 25 and 27 gradually increase to 1, as
highlighted in Fig. 7. This result suggests that pre-dispatching
MESs to these two nodes offers the optimal trade-off between
MES transportation time and dispatching accuracy. This result
also gives the MES assigning solution, as only nodes 25 and
27 have MES dispatched in the pre-event stage. Conversely,
the pre-event MES dispatching probabilities of other nodes
decrease to 0 as the problem iterates, indicating that the time
saved by pre-dispatching MESs cannot balance the dispatching
accuracy loss for other nodes.

To evaluate the performance of the proposed selective PH
algorithm, different problem sizes are tested for both the
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Fig. 7: Pre-event MES dispatching probability convergence process

proposed selective PH and standard PH algorithms. The tested
problem sizes include 16, 32, 48, and 64 fault scenarios.
Fig.8 shows the convergence process and the solution time
for each secondary problem of both algorithms under different
problem sizes. Compared to the standard PH algorithm, the
proposed selective PH algorithm updates the coordinated first-
stage decision more efficiently and converges by solving
fewer secondary problems across all simulated problem sizes.
Specifically, the standard PH algorithm requires solving 96,
128, 192, and 320 secondary problems to converge for the
respective problem sizes, whereas the proposed selective PH
algorithm requires solving 56, 96, 176, and 280 secondary
problems to converge. Due to the reduced number of solved
secondary problems for convergence, the total solution time is
reduced by 30.53% (from 5191.8s to 3606.9s), 22.23% (from
5563.8s to 4327.2s), 7.23% (from 10394.1s to 9643.4s), and
15.65% (from 16983.6s to 14325.4s) for problem sizes with
16, 32, 48, and 64 scenarios, respectively.

Fig. 8: Convergence of different algorithms under different problem
sizes

C. Out-of-Sample Analysis

To further validate the superiority of the proposed methods,
the out-of-sample analysis is performed by testing 1,000 fault
scenarios for all the discussed strategies. The load loss results
are displayed in Fig. 9. By comparing the results of strategies

1 and 5, the value of utilizing MES for enhancing IEGDS
resilience can be demonstrated by observing an average of
53.10% and 2.85% of electric and gas load loss reductions,
respectively. Besides, as compared to preparation-only and
restoration-only MES dispatching strategies, the average elec-
tric load loss of the unified MES assigning and dispatching
strategy is reduced by 2.65% and 7.13%, respectively. By
comparing the results of strategies 4 and 5, it is observed
that the pre-positioning and rerouting strategy has a similar
performance in restoring the electric load compared to the
proposed strategy. However, the proposed strategy outperforms
the pre-positioning and rerouting strategy for gas load restora-
tion, as shown in Fig. 9(b). Compared to the pre-positioning
and rerouting strategy, the proposed strategy can reduce the
average electric and gas load losses by 0.12% and 1.43%,
respectively.

Fig. 9: (a) Electric load loss details (b) Load loss summary

D. Sensitivity Analysis

In this problem, the fault repair time and travel time are
crucial to the restoration efficiency. Some faults can take a
longer time to repair, which can delay the restoration. Besides,
transportation conditions after extreme events may degrade,
which can hinder the deployment of MES and the repair crew.
To analyze the impacts of these factors on the restoration
efficiency, sensitivity analysis is performed to evaluate the
impacts of different time parameters on the restoration effi-
ciency, as shown in Fig. 10. The load restoration results under
different fault repair times are displayed in Fig. 10(a) using
100 fault scenarios. Because some faults can take a longer
time to repair, the scheduling horizon is extended to 24 hours
in the sensitivity analysis. In Fig. 10(a), the repair time ranges
from 0.5 hours to 4 hours. It can be observed that the load loss
increases with increased repair time. By increasing the fault
repair time from 0.5 hour to 4 hours, the average electric load
loss has been increased by 86.8% (from 3.895 MWh to 7.275
MWh), and the average gas load loss has been increased by
60.2% (from 352.417 m3 to 564.710 m3)

Further, to assess the impact of post-event travel time on
restoration efficiency, different travel times (25% to 200%
of the original post-event travel time) are tested. The pre-
event MES dispatching results are summarized in Table. IV.
When travel time is not significant, no MES is dispatched at
the pre-event stage because MES can be dispatched quickly
and accurately at the post-event stage without affecting the
restoration efficiency. As the travel time increases, the impact
of post-event MES dispatching travel time becomes significant
and the proposed strategy prefers to dispatch more MES at the
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pre-event stage for larger travel time (2 pre-event dispatched
MES when travel time is 50% of the original value to 4
pre-event dispatched MES when travel time is 200% of the
original value). In addition, the pre-event dispatched MESs
are all located on nodes 22 to 27, which are nodes located
at the farthest end of the feeder. The load loss results of
100 damage scenarios under different travel time settings are
summarized in Fig. 10(b). When travel time is minimal, the
load loss remains low even without pre-event deployment of
MES. As the travel time increases, the average electric load
loss surges by 468.3% (from 2.241 Mwh to 12.735 MWh),
and the average gas load loss is increased by 75.5% (from
436.148 m3 to 765.620 m3).

The sensitivity analysis reveals that travel time has a more
profound impact on restoration efficiency compared to fault
repair time. This is attributed to the fact that, in most instances,
interrupted loads can be restored through local generations and
tie-lines, whereas fault repair time primarily affects loads that
rely on specific fault repairs for restoration. Moreover, travel
time not only hinders fault repair efficiency by delaying repair
crews but also influences the deployment of MESs, which
plays a crucial role in providing power support for restoring
interrupted loads in this work.

Fig. 10: Sensitivity analysis for (a) fault repair time (b) travel time

TABLE IV: Pre-Event MES Dispatching Summary

Ratio to the
original travel time

Pre-event MES
Dispatching

Number of
pre-event

dispatched MES
25% / 0
50% 26, 27 2
75% 24, 25, 26 3
100% 25, 27 2
125% 24, 25, 27 3
150% 24, 25, 27 3
175% 22, 24, 25, 27 4
200% 22, 24, 26, 27 4

E. Scalability Analysis

To evaluate the scalability of the proposed restoration strat-
egy, a larger system consisting of 141 PN nodes and 12 GN
nodes is studied, as shown in Fig. 11. In the pre-event stage,
MESs are dispatched to nodes 128, 130, and 141. These nodes
are typically located far from the substation and close to the
tie-line 32-130, which enables them to maximize the utilization
of MES like in the 69-node system. Although there is a gas-
fired DG (at node 140) located very close to the pre-event
MES dispatching nodes, this DG is very likely to experience

fuel supply interruptions if either of the two gas pumps cannot
work properly.

The fault scenarios and repair crew routing are also dis-
played in Fig. 11. After the faults occur, tie-line 32-130 is
closed to restore nodes 22 to 32, 140, and 141 with the power
support of pre-event dispatched MES. Meanwhile, the repair
crew first repairs the fault line 91-101 to restore nodes 101
to 106. Then, the fault line 47-83 is repaired to restore the
critical load on node 83. Further, fault lines 5-35 and 7-111
are sequentially repaired to restore nodes 35 and 111. Line
21-22 is the last repaired fault because the interrupted nodes
due to this fault are already restored by connecting tie-line 32-
130. In addition, the remaining MESs are dispatched to nodes
106 and 129 at the post-event stage to provide power support.

Fig. 11: The 141 node system

The case studies are simulated on Matlab using the Yalmip
toolbox and GUROBI solver. The computer has 16 GB RAM,
and the CPU is AMD R7 5800H with 8 workers solving the
secondary problems in parallel. The solution time for both 69-
node and 141-node cases are summarized in Table.V under
50 fault scenarios. For the 69-node and 141-node systems,
the average solution time per fault scenario in the pre-event
preparation stage is 339.98 s and 760.86 s, respectively.
The total solution time of the 69-node system is 13478.12
s (3.74 hours) and the total solution time of the 141-node
system is 29031.87 s (8.06 hours). Such computation times
are acceptable because the preparation stage usually needs to
start earlier before the extreme events. In addition, the post-
event solution times of the 69-node and 141-node systems are
203.36 s and 394.54 s, respectively.

TABLE V: Computation Time Summary

System Minimum
time (s)

Maximum
time (s)

Average
time (s)

Total solution
time

69-node 112.83 1022.53 339.98 13478.12 s
(3.74 hours)

141-node 282.35 1545.57 760.86 29031.87 s
(8.06 hours)

VI. CONCLUSION

This paper aims to improve the resilience of IEGDSs by
efficiently utilizing MES for both pre-event preparation and
post-event restoration. Employing MES, even with simple
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preparation-only and restoration-only dispatching strategies,
can significantly reduce electric load loss by 50.45% and
45.97%, respectively. Considering the trade-off between MES
transportation time and dispatching accuracy, a unified MES
assigning and dispatching strategy is proposed, which can
further reduce the electric load loss by 2.65% and 7.13%
compared to preparation-only and restoration-only strategies,
respectively. Overall, as compared to the scenario without
MES, the proposed method reduces an average of 53.10%
and 2.85% of electric and gas load loss, respectively. Based
on the methods proposed in this work, one possible future
extension can be optimal planning of MES sizing and numbers.
Besides, properly aggregated electric vehicles can provide
similar functionalities as MES. Hence, efficiently guiding
electric vehicles to enhance system resilience can also be a
future research direction.
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