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Abstract—Accurate outage location is essential for expediting1

post-outage power restoration, minimizing outage duration, and2

enhancing the resilience of distribution networks. With the3

advent of advanced metering infrastructure, data-driven outage4

location methods have significantly advanced beyond traditional5

approaches that rely on manual inspections. However, existing6

methods still face critical challenges, like reliance on single-source7

data, limited ability to handle partially observable systems or8

difficulties with loop networks. To the best of our knowledge,9

no single approach has comprehensively addressed all of these10

challenges at once. To this end, this paper proposes a comprehen-11

sive multisource data fusion framework for outage locations via12

probabilistic graph networks. The framework consists of three13

key phases. First, a novel method for reconstituting distribution14

networks with loops is developed, transforming looped networks15

into multiple radial subnetworks that retain all outage causalities16

of the original network. Second, Bayesian network (BN) models17

are established for each subnetwork, integrating multiple data18

sources and network structures. Finally, a joint Gibbs sampling19

mechanism, featuring forward and backward information flow, is20

designed to merge data from separate BN models and maximize21

the utilization of limited evidence, ensuring accurate outage22

location identification. The framework was validated on two23

modified public test systems, and comparative studies confirmed24

its effectiveness.25

Index Terms—Distribution system resilience, outage location,26

probabilistic graph model, multisource data fusion.27
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MDF Multisource Data Fusion 40

Obs-Le Levels of Observability 41

PDF Probability Density Function 42
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SM Smart Meter 44

SVM Support Vector Machine 45

Sys-Le System Level 46

Constants 47

α Information entropy-based weight 48

β Fixed weight for distribution mixture 49

�T Information collection time after outage 50

η Set of all evidence types 51

τ Threshold for sampling branch/customer status 52

K JSP iteration number 53

M Minimum number of constructed subnetworks 54

Indices and Sets 55

B Probabilistic graph network set 56

Bseq Ordered BN set 57

Gs Set that collects all the reconstructed subnetworks 58

Li Path set of the node i 59

PN Path sets of all the nodes in the network 60

Variables 61

P̄φ Weighted mixture distribution from fusion opera- 62

tion 63

C Status of customer switches 64

D States of the primary network branches 65

h(·) Information entropy-based metric 66

Y Distribution network topology 67

Z Multisource evidence 68

�(·) Probability fusion module 69
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F−1
x (·) Inverse transform to sample states from distribution76

Gs
σ(m) Subnetwork utilized to build Bσ(M)77

Pa(·) Represents the parent nodes of the target node78

r[i]
e Evidence density ratio of subnetwork i79

zb
i Grid parameters of branch i80

zh
i,j Human-related evidenceof customer j81

zm
i,j Meter-related information of customer j82

zv
i Vegetation data of branch i83

zw
i Weather conditions of branch i84

I. INTRODUCTION85

SEVER power outages caused by recent extreme weather86

events have emphasized the urgent need to improve the87

resilience of distribution power systems [1]. One critical yet88

challenging aspect of strengthening power system resilience is89

the accurate and efficient location of the outages, particularly90

within DNs, where the majority of outage events occur [2], [3].91

Traditionally, outage locations are identified through customer92

trouble calls or manual inspections. However, relying on93

trouble calls alone is unreliable, as it is estimated that only94

one-third of customers report outages within the first hour95

post outage [4]. While manual inspections, combined with96

expert knowledge, can provide acceptable outage locations [5],97

this approach is labor-intensive, costly, and time-consuming,98

making it suboptimal for DSOs.99

The recent development of AMI-based techniques has100

brought promising solutions to the outage location problem.101

Through bidirectional communication, SMs can transmit “last102

gasp” signals to utilities when there is a loss of power [6].103

While some utilities have fully observable systems, meter104

malfunctions and communication delays can render it imprac-105

tical for utilities from relying solely on last gasp signals to106

accurately assess the current state of the system and further107

make informed predictions regarding the location of outages108

in real time. In addition to SMs, other advanced sensors109

with real-time communication abilities (e.g., second-level line110

measurements) have also shown potential for solving outage111

detection issues and have been explored in previous studies112

[7]. However, due to budgetary constraints of utilities, the113

widespread deployment of these advanced devices, particularly114

among smaller utilities, remains limited [8]. Furthermore, the115

growing integration of DERs has added complexity to the116

design and operation of DNs [9], [10], raising concerns about117

the continued effectiveness of traditional outage location meth-118

ods. These challenges highlight the needs for more practical119

and scalable solutions to improve outage location.120

To tackle these challenges, recent studies have increasingly121

focused on data-driven methods for outage detection. Existing122

research in this area can be broadly categorized into two123

groups based on the data sources used: SM data-based and124

non-SM data-based methods.125

Class I - SM data-based methods: These methods primarily126

leverage SM measurements and last gasp signals for out-127

age detection. Reference [11] proposed a classification-based128

outage location model using a multi-label SVM, where the129

SMs’ last gasp signals are used to pinpoint outage branches130

in fully observable networks. In our previous work [2], a131

generative adversarial network-based approach was introduced 132

to detect outage regions, even in partially observable systems, 133

distinguishing it from the method in [11]. Similarly, [12] intro- 134

duced a probabilistic and fuzzy logic algorithm for analyzing 135

outage data using AMI. Reference [13] developed an outage 136

monitoring method leveraging stochastic time series analysis 137

and SM voltage measurements, which showed significant 138

changes post-outage. This method was validated on both 139

radial and looped DNs, which are common in urban settings. 140

Reference [14] proposed a spectral clustering method based 141

on SM outage notifications, which provides accurate outage 142

detection results, but the large outage areas identified instead 143

of branch-level results offer limited information to operators. 144

Class II - non-SM data-based methods: in contrast to Class 145

I methods, Class II approaches leverage information from var- 146

ious external sources to detect outages in distribution systems. 147

Reference [15] utilized social sensors within a probabilistic 148

framework for outage detection, while [16] integrated weather 149

data into an ensemble learning model to identify outages in 150

distribution systems. In [17], an outage location framework 151

tailored for systems with tree structures is proposed. This 152

framework integrates real-time line flow measurements with 153

predicted loads, facilitating both efficient outage detection and 154

optimal sensor placement. Moreover, [7] presents a mixed- 155

integer linear programming model that utilizes line flow 156

measurements and AMI data to identify the topology of the 157

distribution system under various operation conditions, outages 158

and normal situations. Similarly, [18] addresses outage identi- 159

fication, system state estimation, and topology error correction 160

concurrently, through an optimization framework based on 161

mixed-integer quadratic programming. Despite the increas- 162

ing deployment of distribution system line measurements in 163

some utilities, widely equipping such measurements remains 164

impractical due to budget limitations. Rather than relying 165

on new sensor installations, researchers have increasingly 166

focused on leveraging the complementary nature of various 167

data sources to enhance outage detection. In [19], a two-phase 168

knowledge-based system for outage location is proposed, 169

which fuses multiple data sources. This framework integrates 170

traditional escalation to locate outage areas and meter polling 171

to confirm statuses, using data from trouble calls, SCADA 172

systems, and automated meter readings. Further advancing 173

multisource data fusion, [20] proposes a transformer-based 174

deep learning model that fuses operational and meteorolog- 175

ical data to provide power outage warnings. Similarly, [21] 176

utilizes BNs to incorporate multisource evidence and network 177

structures, enabling accurate outage location in partially 178

observable distribution systems. However, due to the inher- 179

ent limitations of BNs, this method is not suitable for 180

looped DNs. 181

Despite extensive research on data-driven outage location 182

methods, several challenges are yet to be unresolved. First, 183

assuming full observability across all distribution systems is 184

impractical, as not all customers have SMs, and SM signal 185

communication failures during extreme events can undermine 186

the model performance. Second, while some methods address 187

partial observability, they lack the granularity needed for 188

branch-level outage detection, as they rely on a single data 189
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source. Third, most methods are designed for radial networks,190

with only a few that can be extended for loop systems.191

However, these methods don’t account for the unique charac-192

teristics of looped systems, resulting in a lack of stability. To193

tackle these challenges, this study introduces a comprehensive194

framework for integrating information from multiple data195

sources to pinpoint outage locations in distribution systems.196

The key contributions are as follows:197

• This research develops a comprehensive MDF framework198

for outage location in distribution systems. By fully199

utilizing the complementary characteristics of multiple200

data sources, the integrated framework accommodates201

varying levels of system observabilities and provides202

stable outage location results.203

• A novel network reconstitution method is developed204

for DNs with loops, which examines the constraints of205

employing BNs in outage location applications, specif-206

ically focusing on the limitations imposed by the use207

of directed acyclic graphs. The method serves as a208

foundational step for the framework, enabling our outage209

location framework to be applied to both radial and210

looped networks.211

• A JGS mechanism is proposed to infer outage locations212

based on the multiple BNs. It addresses the high-213

dimensional challenges posed by multi-source data and214

the application of the framework in large-scale DNs.215

By incorporating both information forward and backward216

phases, the utilization of limited evidence, which is217

common in real scenarios, is optimized.218

The remainder of this paper is organized as follows.219

Section II outlines the problem statement for outage location.220

In Section III, the DN reconstitution method is presented.221

Section IV details the proposed multisource data fusion222

framework. Numerical results are provided in Section V, and223

conclusions are drawn in Section VI.224

II. PROBLEM STATEMENT OF OUTAGE LOCATION225

Outage events inherently result in topological changes226

within the electrical grid, making the identification of outage227

locations dependent on inferring the probabilities of various228

post-event operational topologies [21]. Effective outage loca-229

tion relies on comprehensive outage information. Traditional230

methods, which often rely solely on customer reports, are231

limited in their effectiveness. By contrast, integrating a broader232

spectrum of outage-related data, also referred to as multiple233

data sources or multisource data, such as SM last gasp signals,234

customer reports, and weather information, has the potential235

to significantly enhance both the accuracy and timeliness of236

outage detection [22]. The diverse data sources complement237

one another, addressing issues like low SM coverage or238

limited customer reporting, without the need for additional239

metering devices. Weather information, such as wind speed240

and extreme weather events, is a critical factor in the reliability241

of distribution systems and has been previously incorporated242

into outage location studies [16]. This information is typically243

obtainable from local weather stations and online sources.244

Despite industrial surveys indicating that utilities often under- 245

utilize SM data [23], last gasp signals, which are easily 246

retrieved through direct communication with individual SMs, 247

are already integrated into outage management systems as a 248

critical complement to customer trouble reports. Moreover, 249

technological advancements, particularly in natural language 250

processing, have facilitated the extraction of valuable data 251

from social media platforms such as Facebook and Twitter, 252

which function as social sensors [15]. This data can be system- 253

atically processed and converted into binary evidence, making 254

it suitable for further application in outage detection and 255

analysis. While this study emphasizes specific data sources, it 256

does not imply that these are the only applicable inputs for the 257

proposed outage detection model. With the continued devel- 258

opment of measurement technologies, devices, e.g., micro 259

phasor measurement units [24] and fiber optic sensors [25] also 260

offer significant potential for enhancing outage detection and 261

localization. However, to preserve the model’s general appli- 262

cability across various DSOs, these sources are not extensively 263

discussed in this work. Nonetheless, the proposed method, 264

designed as a general framework, retains the flexibility to 265

incorporate additional data sources as they become available. 266

The data from various sources discussed above can serve as 267

evidence supporting the accurate localization of outages. We 268

utilize Bayes theory to mathematically formulate the outage 269

inference process based on the multisource evidence Z . The 270

conditional PDF of DN topology Y , considering the post- 271

outage evidence Z , is expressed as P(Y = y | Z = z). It 272

is derived from the joint distribution of Y and Z , denoted 273

by PY,Z (g, z) and marginal distribution of Z , i.e., PZ (z). 274

The outage location is identified by determining the most 275

likely candidate topology, which is achieved by maximizing 276

the conditional PDF as follows: 277

y∗ = arg max
y

P(Y = y|Z = z) = PY,Z (y, z)
PZ (z)

, (1) 278

where y∗ represents the most probable DN connection fol- 279

lowing the outage. The variable Y is a multinomial variable 280

that captures the states of the primary network branches D 281

and the status of customer switches C, collectively represented 282

as {D, C}. The variable D ∈ B, where B = {0, 1}, indicates 283

the binary state of the primary network branches. Specifically, 284

di = 1 if di with i ∈ {1, 2, . . . , n} is outaged, and di = 285

0 otherwise. Similarly, C ∈ B for customers, takes the 286

value 1 if the customer is disconnected from the network. 287

The process of maximizing over topology candidates can be 288

achieved by identifying the most probable states of individual 289

branches or customers through their respective conditional 290

PDFs, PDi|Z (di | z) and P
Cj

i |Z (cj
i | z), which are formulated as 291

follows. 292

PDi|Z (di | z) =
∑

{d,c}\di

PD,C|Z (d, c | z) =
∑

{d,c}\di

PD,C,Z (d, c, z)
PZ (z)

293

(2) 294

P
Cj

i |Z
(

cj
i | z

)
=

∑

{d,c}\cj
i

PD,C|Z (d, c | z) =
∑

{d,c}\cj
i

PD,C,Z (d, c, z)
PZ (z)

295

(3) 296

where, A \ B denotes the set of elements in A but not in B. 297
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Generally, the primary objective of the outage location by298

multisource data fusion is to solve (2) and (3) after the outage299

occurs. To accomplish this, an outage location method based300

on a BN is introduced in our previous work [21]. The BN301

approach significantly reduces the computational complexity302

of outage location inference in high-dimensional spaces and303

effectively leverages tree-like features of DNs to facilitate304

outage inference. However, the basic BN model is limited in its305

application to DNs with loops, as it is only suitable for directed306

acyclic graphs. Despite this limitation, the characteristics of307

the BN model offer distinct advantages for outage location,308

particularly in weakly meshed networks, where most of the309

network remains radial. To overcome the limitations of the310

existing model, an integrated outage location framework via311

BN is proposed in this paper, which is designed to handle both312

looped and radial DNs.313

Given the BNs are only applicable to directed acyclic314

graphs, the fundamental and direct strategy for managing315

weakly meshed networks is to reconstitute the complex316

network into multiple radial networks. These radial networks317

must encompass all the outage causalities present in the318

original meshed network. For instance, if the system network319

contains a loop, the target branch within the loop will have320

two potential paths to the power source. These two paths321

represent all the potential routes for energizing the target322

branch. By decomposing the weakly meshed network into323

two radial subnetworks, each containing one of the paths, the324

BN can be utilized to infer the status of the target branch325

based on the evidence from these subnetworks. Consequently,326

the outage inference results for the target branch in the DN327

can be obtained by combining the inference results from328

multiple BNs. This idea is clear, but it raises three essential329

questions: 1) How can we decompose the looped network into330

radial subnetworks that comprehensively capture all potential331

outage scenarios while ensuring the decomposition is optimal?332

2) How can we extend our existing BN model to perform333

inference for each subnetwork? 3) How can we effectively334

integrate the inference results from each subnetwork to derive335

a reliable final outage location?336

In this paper, our proposed integrated outage location337

framework addresses these questions separately. Detailed338

explanations and solutions will be provided in the following339

sections.340

III. DISTRIBUTION NETWORK RECONSTITUTION341

To address the first question, it is essential to design a342

method for decomposing and reconstituting the DN with343

loops. This section proposes a two-step approach, consisting344

of a DFS-based network decomposition model and a network345

reconstruction model using an iterative method, serving as the346

first module of the framework.347

A. DFS-Based Network Decomposition Model348

The problem of ascertaining the energization status of a349

branch or customer can be formulated as identifying feasible350

paths between the concerned branch or customer and power351

supply sources, herein represented by substations. Consider a352

Algorithm 1 DFS-Based Network Decomposition Algorithm
Require: Adjacency matrix of the network A, target node

index i, power source node index s.
1: initialize path set of node i as Li = {}; current directed

path c and its end node ve; visited status as q ∈ R
1×n

2: execute the procedure DFS
3: procedure DFS(A, i, s, q, c)
4: if i == s then
5: Li ← Li ∪ {c}
6: return
7: end if
8: qi ← 1; B← {j|Ai,j > 0}; c← c+ (vi, ve)

9: for k from B do
10: if qk > 0 then
11: DFS (A, k, s, q, c)
12: end if
13: end for
14: qi ← 0
15: return
16: end procedure
17: return Li

DN represented by an undirected graph G = (V, E), where 353

V = {v1, . . . , vn} ∪ {vs} denotes the set of primary bus nodes 354

and E = {(vi, vj) | vi, vj ∈ V} denotes the set of primary 355

network branches. During a system outage, branches that lose 356

power are categorized into the set EF , while those remaining 357

energized constitute the set EN , satisfying E = EN ∪ EF . 358

For each node vi in the network, there exists an ensemble of 359

paths, denoted Li = {l1i , . . . , lbi }, each of which establishes 360

connectivity from vi to the source node vs. A path lbi is 361

classified as “active” if all its constituent edges are members of 362

EN , i.e., ∀ej ∈ li, ej ∈ EN . The aggregation of all active paths 363

of node vi is denoted as La
i . Outage areas within the network 364

can be precisely identified by locating nodes for which the set 365

La
i is empty. Hence, to deduce the status of variable C or D, 366

the initial step is to identify the ensemble set of Li for each 367

node i. This process decomposes the original network into 368

multiple sets of paths. While manual decomposition is feasible 369

for simple networks, it becomes impractical for networks 370

with thousands of buses. Consequently, we introduce a DFS- 371

based model for network decomposition to efficiently handle 372

complex network structures. 373

DFS is an algorithm used for traversing or searching tree 374

or graph data structures. Starting from a root node, it explores 375

each branch as deeply as possible before retracing its steps. 376

Essentially, it dives deep into a graph, visiting a node and 377

proceeding to its adjacent, unvisited nodes sequentially until 378

it reaches a dead-end. Then, it backtracks and explores other 379

unvisited nodes in a similar manner. In our case, for each 380

node vi, we use the DFS method to find all paths from 381

the node vi to vs, i.e., Li, then the path sets of all the 382

nodes form the network path set PN = {Li|i = 1, . . . , n}, 383

which will be the input of second step. The details of the 384

DFS-based network decomposition method are provided in 385

Algorithm 1. 386
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Fig. 1. The flowchart of the network reconstruction via iterative method.

B. Network Reconstruction via Iterative Method387

The status of each path from Li, whether active or inactive,388

can be inferred either directly from multisource information or389

derived from the previous BN-based outage location method390

[21]. However, implementing these ideas presents practical391

challenges. Firstly, the computational feasibility of these392

approaches is compromised by the exponential increase in393

the number of paths within Li, especially in complex meshed394

DNs. Secondly, a high degree of redundancy exists among395

the models, as paths in Li may share a majority of nodes396

or branches, leading to the construction of similar models397

for overlapping paths. Thirdly, treating the status of paths in398

isolation impedes the flow of observable information, such as399

trouble calls, between models, resulting in suboptimal data400

utilization and, ultimately, diminishing the model performance.401

To address these issues, we propose a network reconstruction402

method that employs an iterative method. The reconstructed403

networks, referred to as subnetworks below, enhance the404

efficiency and accuracy of downstream inference models in405

pinpointing outage locations. The flowchart of the method406

is shown in Fig. 1. Based on the network path set PN ,407

the rule-based network reconstruction is performed, with the408

primary rule being the avoidance of looped subnetworks409

during path merging. The objective is to create equivalent410

networks without loops, ensuring they are suitable for BN411

construction. The algorithm proceeds by first selecting one412

of the active paths lbm of node m that has the largest active413

path set Lm to serve as the initial subnetwork Gs
j . This is414

because the number of final subnetworks cannot be smaller415

than the maximum size of any path set, as discussed in more416

detail below. Another active path lqu is randomly selected from417

the set PN \ {Lm, Gs
j }. If merging Gs

j and lqu does not create418

loops, the merge proceeds, and Gs
j is updated accordingly.419

This merging process is repeated until no more paths can be420

combined without creating loops. Once merging is complete421

for Gs
j , it is stored, and the process begins anew with another422

path lb+1
m from Lm. This continues until all active paths from423

Lm are incorporated into subnetworks. If active paths remain424

unprocessed, the algorithm restarts the merging process until425

all paths are considered. The stopping criterion here is based426

on reaching the theoretical minimum number of subnetworks.427

Without this criterion, the random selection of paths during the428

merging process could lead to variations in the composition 429

of Gs and the total number of subnetworks. To minimize the 430

computation burden of subsequent BN modeling and outage 431

inference, it is advantageous to find the Gs with the smallest 432

possible size |Gs|, which has been proven to correspond 433

to the maximum size of the path set Li across all nodes 434

i = 1, 2, . . . , N. The details are outlined in Proposition 1. 435

All the subnetworks Gs
j form the subnetwork set Gs = 436

{Gs
j | j = 1, . . . , M}. The resulting subnetworks capture all 437

outage causalities of the original network, and the proposed 438

method ensures the minimum number of subnetworks, thereby 439

reducing the complexity of the subsequent outage inference 440

models. 441

Proposition 1: The lower bound for the number of con- 442

structed subnetworks, denoted as M, is at least equal to 443

the maximum size of the path set Li across all nodes i = 444

1, 2, . . . , N. Formally, this is expressed as M ≥ max(|Li|). 445

Proof: Assume, for the sake of contradiction, that M < 446

max(|Li|). Let Lk be the path set with the largest number of 447

paths, i.e., k = argmaxi|Li|. In this case, more than one path 448

from Lk would need to be merged into the same subnetwork. 449

Consider any two distinct paths lrk and ltk from Lk. Both 450

paths include the target node vk and the source node vs. 451

Merging these paths into the same subnetwork would result 452

in a loop, violating the network reconstruction rule. Thus, 453

our assumption that M < max(|Li|) leads to a contradiction. 454

Therefore, M ≥ max(|Li|), proving the proposition. 455

C. Discussions on Network Reconstitution 456

Regarding the proposed DN reconstitution method, several 457

points should be further clarified. Firstly, computation effi- 458

ciency is an important consideration for making the method 459

practical. However, since the network reconstruction is con- 460

ducted offline, it has a higher tolerance for computation time 461

compared to online methods. Therefore, computing efficiency 462

is not our primary concern. Additionally, as previous work has 463

shown [26], [27], the looped distribution power system is usu- 464

ally weakly meshed with a small number of cycles, resulting in 465

a lower computational burden. Consequently, the computation 466

cost is not a significant issue for our method. Furthermore, 467

distribution network reconfiguration is common in operational 468

practice. By handling the topology reconfiguration process 469

offline, frequent topology changes do not significantly impact 470

the efficiency of outage location inference. For each topology 471

configuration scenario, a dedicated network reconstitution is 472

performed, and the corresponding subnetwork sets Gs are 473

precomputed and stored. During real-time operations, the 474

appropriate model is selected based on the current topology, 475

enabling efficient and seamless integration into the outage 476

location framework. Additionally, the proposed framework 477

is designed to operate in three-phase systems. The network 478

reconstitution process and the outage detection framework 479

are executed independently for each phase. The results from 480

the three phases are subsequently integrated to determine the 481

final outage location outcomes. For simplicity and ease of 482

demonstration, this paper focuses on single-phase networks to 483

illustrate the performance of the proposed model. 484
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Fig. 2. The structure of the integrated framework of multisource data fusion for outage location.

Fig. 3. Illustration of the BN model structure and four main factors.

IV. PROBABILISTIC GRAPH INFERENCE-BASED OUTAGE485

LOCATION FRAMEWORK486

Based on the DN reconstitution method, subnetworks cap-487

turing all causal information are prepared for outage location.488

A probabilistic graph model, specifically a BN model, is489

applied to each subnetwork. The BN-based approach addresses490

computational complexity and prevents overfitting in outage491

location inference. The key strength of this approach lies492

in its ability to seamlessly integrate diverse data sources by493

exploiting the conditional independencies present in both the494

grid and data. These independencies allow for a scalable and495

efficient graphical representation, improving the accuracy and496

efficiency of outage inference. All BN models are combined497

and inferred through the JGS mechanism. These procedures498

form the outage location framework, as shown in Fig. 2.499

A. Outage Location Based on BN Model500

Specifically, the proposed method decomposes the joint501

PDF PD,C,Z (d, c, z) into a series of smaller, more manageable502

factors. As discussed in Section II, multisource data can503

be collected post-outage to form the evidence set Z . To504

maintain generality, in this work, we select outage evidence505

from the customer side, including trouble calls and social506

media messages gathered within �T after the outage, which507

is categorized as human-related evidence and denoted by zh
i,j.508

The last gasp signals from SMs are classified as meter-related509

information, denoted by zm
i,j. Additionally, weather conditions, 510

vegetation data, and grid parameters are considered, denoted 511

by {zw
i , zv

i , zb
i }, respectively. Then, the construction of the BN, 512

based on the structure of the physical DN and the dependencies 513

between variables and various forms of evidence, is illustrated 514

in Fig. 3. In this BN-based representation, four main factors, 515

encoded in a graph structure and marked in red, compactly 516

break down the original high-dimensional joint PDFs. The 517

factor PDi|Pa(Di)(di | Pa(di)) represents the relationship of 518

branch di with four parent variables, denoted as Pa(di) = 519

{di−1, zw
i , zv

i , zb
i }, which has direct causal influences. Factor 520

P
Cj

i |Pa(Cj
i)
(cj

i | Pa(cj
i)) represents the conditional PDF of the 521

status of customer j given parent variables. The evidence zh
i,j 522

is determined by the two parent variables: customer status 523

and time after the outage. This relationship is captured by 524

the factor PZh
i,j|Pa(Zh

i,j)
(zh

i,j | Pa(zh
i,j)). Considering the SM 525

signals will be delivered to utilities almost instantaneously 526

after the outage, the parent of evidence zm
i,j will be only 527

customer status. Therefore, the final factor is constructed as 528

PZm
i,j|Pa(Zm

i,j)
(zm

i,j | Pa(zm
i,j)). By utilizing this computationally 529

efficient BN-based method, the conditional PDF for the state of 530

each primary branch can be quickly inferred based on the data 531

from multiple sources, enabling rapid identification of outage 532

locations. More details about the BN structure development 533

and parameterization can be found in [21]. 534

Following the above procedure, a BN can be constructed 535

for each subnetwork in Gs. These BNs collectively form the 536

model set B. In the next section, we will present an advanced 537

joint inference method for B, enabling the identification of 538

final outage locations. It is important to note that for the 539

original network, the unknown state variables {D, C} represent 540

the universal set. For each subnetwork, the state variables 541

of the customers and branches will form a subset of this 542

universal set, marked as {D[i], C[i]} for Bi, and (·)[i] represents 543

the relationship with Bi. 544

B. Outage Location Inference Using Joint Gibbs Sampling 545

Through network reconstitution and the construction of the 546

outage inference models, the original outage problem has 547

been significantly simplified. However, directly solving equa- 548

tions (2)-(3) remains impractical due to the computationally 549
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expensive summation operations PZ (z) overall nodes of the550

graph simultaneously, particularly in large-scale DNs [28]. To551

address this issue, the Gibbs sampling (GS) algorithm can552

be introduced to conduct the outage inference over the BN553

model. GS is a Markov Chain Monte Carlo method that sam-554

ples from complex distributions by iteratively using simpler555

conditional distributions [29]. It efficiently handles high-556

dimensional spaces, making it ideal for large-scale BNs [30],557

where exact methods are computationally infeasible. However,558

different from a single BN model for the radial network,559

the probabilistic graph network set B with multiple BNs is560

obtained here to be further inferred. A common approach for561

addressing this challenge is to apply the basic GS algorithm562

to perform inference for each Bi ∈ B,∀i individually, and563

then combine the results to obtain the final outage inference.564

While this approach is theoretically feasible, it has two565

significant limitations. First, the outage inference results from566

different BNs may conflict due to the varying and incomplete567

information received by the different subnetworks, introducing568

challenges in resolving these conflicts. Moreover, while multi-569

source data fusion enhances outage location accuracy, it also570

increases the risk of misinformation from data collection571

errors, such as erroneous “last gasp” signals from smart meters572

or natural language processing inaccuracies in social media573

messages. Separate inference in each subnetwork exacerbates574

these issues, as the misinformation can propagate and lead575

to inconsistent or inaccurate conclusions that are difficult to576

reconcile. Second, in real-world applications, DNs are often577

partially observable, leading to limited information for outage578

location inference [2]. While there may be some overlap579

of customers among subnetworks, separately inferring these580

BN models risks underutilizing the available information,581

particularly in emergency scenarios such as large-scale outages582

caused by severe weather, where communication channels may583

be blocked or damaged [31]. To address these limitations, we584

propose the JGS method as the final step of the framework,585

designed to enhance the accuracy and reliability of outage586

location inference.587

To enable simultaneous inference across the BNs, we588

designed and integrated a two-phase information forward-589

backward mechanism into the basic GS method, achieving590

joint sampling. The core idea of this mechanism is to facilitate591

the transfer of information between different subnetworks dur-592

ing the iterative process, thereby maximizing the utilization of593

limited data and ultimately enhancing inference accuracy. The594

first challenge in implementing this mechanism is determining595

the direction of information flow, specifically how to sequence596

the BNs from B. The information collected from both the597

customer side and the grid side during �T after the outage598

trigger point is converted into evidence and serves as input for599

the outage location inference task. Due to variations among600

customers, the evidence received by each subnetwork may601

differ. Naturally, information should flow from the subnetwork602

with more evidence, and thus more information, to those with603

less. To quantify these differences in information, we define an604

EDR, denoted as re, which represents the level of information605

received by each subnetwork. This ratio can be expressed as606

follows:607

r[i]
e =

∑|C[i]|
κ∈η,j=1 zκ

i,j

|C| · |η| (4) 608

where |C[i]| denotes the total customer number in subnetwork 609

i; η represents the set of all evidence types, such as trouble 610

calls, Twitter posts, and SM last gasp signals; and |η| indicates 611

the number of evidence types. The r[i]
e measures the proportion 612

of evidence collected during the outage event relative to 613

the theoretical maximum amount of evidence. Ideally, if 614

all customers in the subnetwork experience an outage and 615

successfully transmit last gasp signals through their SMs while 616

also reporting the outage via phone and social media, the 617

ratio would be 1. However, in practice, r[i]
e tends to be lower 618

due to the restricted outage area, partial SM coverage and 619

limited customer interaction during the outage. Additionally, 620

r[i]
e will vary across subnetworks, reflecting differences in SM 621

installation and customer feedback. Consequently, the BNs in 622

B can be organized in descending order of r[i]
e , forming a 623

sequence Bseq = (Bσ(1), . . . , Bσ(M)). 624

1) Information Forward Phase: Given the collected evi- 625

dence Z and the ordered BN set Bseq, initial samples are 626

randomly generated across all the unknown state variables 627

{D(0), C(0)}, and the initial state of the samples in each subnet- 628

work can be initiated as {D(0),[i], C(0),[i]}, ∀i ∈ {1, . . . , M}. The 629

sampling process begins with the first BN model, Bσ(m) (where 630

m = 1) in the sequence Bseq, with a randomly chosen state 631

variable d[m]
i designated as the starting point. In the (k+ 1)th 632

iteration of the JGS, based on the structure of the Bσ(m), the 633

designated samples to the parents and children of d[m]
i are fed 634

into the local Bayesian estimator. The conditional PDF of d[m]
i 635

is then approximated based on the latest sample as shown in 636

equation (5): 637

P�

(
di | dK−i

)
638

= PDi|Pa(Di)(di | Pa(di))PCh(Di)|Di(Ch(di) | di)∑
di

PDi|Pa(Di)(di | Pa(di))PCh(Di)|Di(Ch(di) | di)
(5) 639

here, dK−i represents the latest updated sample excluding di, 640

where K denotes the variable script (k), [m] due to space con- 641

straints; Similar to the denotation of Pa(·), Ch(di) represents 642

the child nodes of di; and: 643

PDi|Pa(Di)(di | Pa(di)) = PDi|Di−1,Z{w,v,b}
(

di | dKi−1, zw
i , zv

i , zb
i

)
644

PCh(Di)|Di(Ch(di) | di) 645

= PDi+1|Di,Z{w,v,b}
(

dKi+1 | di, ew
i+1, ev

i+1, eb
i+1

) μi∏

j=1

P
Cj

i |Di

(
cj,K

i | di

)
. 646

Considering the P�(di | d(k),[m]
−i ) represents the PDF over 647

a single random variable d[m]
i , it can be efficiently calculated. 648

The new sample of d(k),[m]
i is then drawn from this PDF using 649

the inverse transform method [28]. This sample is subsequently 650

used to update the current state of Bσ(m+1),1 i.e., d(k),[m+1]
i . 651

The newly generated samples d(k),[m]
i contains the information 652

from the evidence provided by the customers in Bσ(m−), for 653

m− ≤ m. Updating the state of network m + 1 represents 654

1Only the states of common variables between Bσ(m) and Bσ(m+1) are
updated, considering subnetwork differences.
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the flow forwards of data from the previous BNs with higher655

EDR, allowing for a better approximation of the PDF. This656

process of PDF calculation, sample generation, and data flow657

continues until the variable states of the final network Bσ(M)658

are updated, completing the information forward step.659

2) Information Backward Phase: While the forward phase660

facilitates the transfer of information from the first to the last661

ordered BN, it does not support backward information flow.662

This limitation is addressed in the backward phase. During663

the backward phase, information is transferred back to each664

BN by merging the approximated PDFs P[m]
� generated during665

the forward process across all networks. To achieve this PDF666

combination, an information entropy-based merging method667

is employed within the probability fusion module, with its668

specific formulation provided in equation (6):669

P̄� =
M∑

m=1

P[m]
φ

(
1− h

(
D[m]

)

M −∑M
i=1 h

(
D[m]

)α + β

)
(6)670

where, P̄φ denotes the weighted mixture distribution from the671

fusion operation; β represents the fixed weight, constrained by672

β ≤ 1
M , and α = 1−Mβ denotes the dynamic component of673

the weights based on entropy; the h(D[m]) is the entropy-based674

metric shown as:675

h
(
D[m]) = −

|D|∑

i=1

P�

(
di = 1 | dK−i

)
· ln

(
P�

(
di = 1 | dK−i

))
.676

(7)677

In information theory, entropy quantifies the uncertainty or678

randomness within a dataset, measuring the unpredictability679

and information content of a message or data stream. Here, we680

design an entropy-based metric to assign appropriate weights681

to each subnetwork’s results based on their respective levels of682

uncertainty. BNs with lower uncertainties, indicated by higher683

h(D[m]) values, are given greater weight in the probability684

fusion process. The fusion module dynamically assesses the685

reliability of inference results for each BN according to this686

metric. Subsequently, a new sample is drawn from the fused687

distribution P̄�, which is then used as the initial state for Bσ(1)688

in the next iteration. This marks the end of the backward phase,689

initiating another forward phase.690

The information flow of the forward and backward phases691

is illustrated in Fig. 4. This two-phase JSP process is repeated692

until a specific number of random samples, e.g., K, are693

obtained for the unknown variables. The target conditional694

PDFs, PDi|Z (di | z) and P
Cj

i |Z (cj
i | z), can then be approx-695

imated by tallying up the samples produced by the GS696

algorithm, a method that has been theoretically validated [28].697

After completing the JSP iteration, the most probable values698

for each branch and customer state are determined based on the699

estimated conditional PDFs to resolve equations (2) and (3).700

Since the state variables are binary, a threshold value τ is701

applied to determine whether a branch i is energized. Once the702

states of all branches and customers are obtained, the location703

of the outage events can be easily identified. The detailed704

procedure for outage location inference using JGS is presented705

in Algorithm 2.706

Fig. 4. Illustration of the joint Gibbs sampling mechanism, demonstrated
with three subnetworks. Additional networks can be integrated similarly.

Algorithm 2 Joint Gibbs Sampling Algorithm
Require: Networks Gs, BN set B = {Bm | m = 1, . . . M},

iteration number K, evidence set Z , cutoff threshold τ

1: initialize samples x(0) ← {d(0)
i , cj,(0)

i | ∀i, j} randomly
generated from Binomial distribution of order 2; then,
update x(0)← x(0) ∪Z .

2: order the BN set as sequence Bseq = (Bσ(1), . . . , Bσ(M)),
ensuring re(Gs

σ(m−1)) ≤ re(Gs
σ(m)) for all m ≤ M.

3: for k = 0, . . . , K do
4: for m = 1, . . . , M do
5: x(k),[m] ← x(k)

6: execute procedure P[m]
� ← GS(Bσ(m), x(k),[m])

7: draw x(k),[m] from P[m]
� , x(k),[m] ← F−1

x (P[m]
� )

8: end for
9: P̄�← �(P[1]

� , . . . , P[M]
� ) 
 �(·) Prob. fusion module

10: x(k+1)← F−1
x (P̄�) 
 F−1

x (·) Inverse transform
11: end for
12: procedure GS(Bσ(m), x)
13: for i = 1, . . . , |D+ C| do
14: select one random variable xi

15: update x−i ← x \ xi

16: P�← PXi|Pa(Xi)
(xi|Pa(xi))PCh(Xi)|Xi

(Ch(xi)|xi)∑
xi

PXi|Pa(Xi)
(xi|Pa(xi))PCh(Xi)|Xi

(Ch(xi)|xi)

17: end for
18: return
19: end procedure
20: return P�

21: PDi|Z (di = 1 | z)←
∑K

k=0 d(k)
i

K ,∀i
22: P

Cj
i |Z (cj

i = 1 | z)←
∑K

k=0 cj,(k)
i

K ,∀i, j
23: inference state by τ : di ← 1,∀i if PDi|Z (di = 1 | z) ≥ τ ;

τ : cj
i ← 1,∀i, j if P

Cj
i |Z (cj

i = 1 | z) ≥ τ

24: return cj
i, di∀i, j

V. NUMERICAL RESULTS 707

To evaluate the practical performance of the proposed 708

model, a series of numerical case studies are carried out in this 709

section. The two testing systems employed are derived from 710

a widely utilized IEEE 123-bus DN testing system [32], [33] 711

and a real-world 51 bus distribution feeder [34], referred to as 712

the IEEE system and Real system, respectively. Both systems 713
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Fig. 5. Topological information of the testing systems: modified IEEE 123
bus model (left) with two loops and modified real 51 bus system (right) with
two loops.

are publicly available online. To create weakly meshed DNs,714

two loops were added to each testing system, with detailed715

topology information presented in Fig. 5. To simulate partially716

observable scenarios akin to real-world applications, we define717

three levels of observability, i.e., 25%, 50%, and 75%, which718

correspond to the percentage of nodes equipped with SMs.719

A total of 1,000 outage scenarios were generated using the720

Monte Carlo method, with outage locations and SM locations721

selected randomly, making the testing results not influenced722

by any specific scenario setting. Among these scenarios, 500723

involve a single outage block, 300 involve two outage areas,724

and 200 involve more than two outage areas. Typically, one725

or two outage areas occur simultaneously in normal weather,726

covering most scenarios. However, we added the scenarios727

with over two outage areas to account for severe events during728

extreme weather. For each scenario, evidence information was729

generated based on the outage location and system observ-730

ability. Ideally, SMs are designed to transmit last gasp signals731

immediately following an outage. However, considering the732

reliability of AMI devices and the associated communication733

infrastructure, only a portion of these signals is ultimately734

received by utilities for outage localization. Based on historical735

data, we set the signal collection ratio at 82%. Additionally,736

customer trouble calls and social media messages are assumed737

to be collected within �T (e.g., 15 minutes post-outage). In738

the real application, this time can be adjustable according to739

the customer reporting time tallied up from outage reports.740

Following the approach discussed in [21], human-related741

evidence is modeled using an exponential PDF with time742

�T . To prevent information leakage from evidence generation743

to outage inference, parameters substantially different from744

the true values were chosen, reflecting the reality that actual745

parameters are unknown. Furthermore, during real outages,746

customers may report issues unrelated to the outage or request747

other services, resulting in misinformation in trouble calls.748

Errors in natural language processing and communication749

failures may also reduce the accuracy of the evidence. To750

account for these factors, we introduce around 10%, 10%, and751

5% erroneous information into the generated evidence.752

A. Network Reconstitution753

Using the DN reconstitution method, the original looped754

networks are transformed into multiple radial subnetworks.755

Fig. 6. Topology of subnetworks from modified IEEE 123 bus model by
network reconstitution.

Fig. 7. Iteration of joint Gibbs sampling process. This case is illustrated by
the outage in the IEEE system with 75% observability.

For both the IEEE system and Real system, four subnetworks 756

are generated, consistent with max(|Li|) for each system, 757

achieving the minimum number of subnetworks. The topology 758

of the four subnetworks for the IEEE system is illustrated 759

in Fig. 6. As we can see, not all load nodes are included 760

in each subnetwork; Subnetwork 4 contains the most nodes, 761

matching the original network, while Subnetworks 1 to 3 762

include only partial load nodes–107, 65, and 109, respectively. 763

This disparity in node numbers results in varying levels of 764

information. Based on the EDR, the subnetworks are then 765

ranked accordingly for BN construction. 766

B. Performance of the Multisource Data Fusion Framework 767

After constructing BNs for each subnetwork, the obtained 768

B is inferred using the designed JPS method. An example of 769

an iteration process for the JBS method on the IEEE system 770

with 75% observability is illustrated in Fig. 7. As observed, 771

for branches in outage-affected areas (marked in red), the 772

probabilities converge to significantly higher values compared 773

to unaffected branches (marked in blue). By applying the 774

threshold τ , de-energized branches can be identified, allowing 775

for accurate outage location detection. This demonstrates the 776

effectiveness of the proposed framework. To further assess the 777

framework’s performance under different scenarios and vari- 778

ous outage events, four commonly used metrics, i.e., accuracy, 779

precision, recall, and F1-score, are employed to present the 780

branch level (Br-Le) accuracy. Detailed formulations of these 781

metrics can be found in [21]. Besides the four metrics, system 782

level (Sys-Le) accuracy is defined as the ratio between the 783

fully identified case number to the total outage events number, 784

to measure the system level performance. 785
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Fig. 8. Performance of the proposed framework under various evidence
scenarios on the IEEE system.

Fig. 9. Performance of the proposed framework under various evidence
scenarios on the Real system.

Fig. 8 and 9 illustrate the five performance indicators under786

varying levels of observability (Obs-Le) for both testing787

systems. The results indicate that the proposed outage location788

framework delivers exceptional performance, with the four789

primary classification metrics exceeding 98% in all three790

scenarios. Although Sys-Le accuracy is somewhat lower due791

to its more rigorous criteria, the worst-case scenario, with 25%792

observability in the IEEE system, still achieves over 85%.793

These findings showcase that while reduced observability does794

affect accuracy, the framework remains highly effective in low-795

Obs-Le situations, maintaining strong overall performance.796

C. Outage Location Model Comparison797

To further assess the performance of the proposed MDF798

framework, a comparative analysis was conducted against two799

previously established methods: the SVM-based approach [11]800

and the LPM [1]. The SVM-based method applies a multi-801

label SVM (MSVM) classification scheme to identify line802

outages using SM data. The LPM aims to approximate the803

global posterior probability of the line outages by linearly804

combining local posterior probabilities from multiple data805

sources. Consistent with prior work, a Br-Le evaluation was806

used to ensure a fair comparison. The results, displayed in807

Fig. 10, illustrate the performance of the three models across808

various observability levels on two test systems.809

As shown, the proposed framework consistently outper-810

forms the other models in all scenarios, with Sys-Le accuracy811

exhibiting the most significant differences. LPM shows the812

lowest accuracy, as it neglects the dependencies between813

system components, making it vulnerable to misinformation814

and limited evidence. Despite using multiple data sources, its815

Fig. 10. Comparative results of the three models on two testing systems
across various observability levels. The green axis representing system
accuracy follows a different scale, ranging from 0% to 100%.

performance lags behind that of the proposed framework. On 816

the other hand, the MSVM model captures the relationship 817

between branch status and evidence data, but its reliance 818

on single-source meter data poses challenges, especially at 819

low observability levels. This is reflected in the decline 820

in performance metrics as observability level decreases. In 821

contrast, the proposed MDF framework fully accounts for the 822

interdependencies between system components and effectively 823

integrates data from both metered and non-metered sources. 824

This comprehensive approach enables more accurate and 825

stable outage location results, regardless of the system Obs-Le. 826

D. Sensitivity Analysis of Prior Information Bias 827

In field applications of the framework, certain prior 828

information, such as the SM last gasp collection ratio and 829

customer trouble call report ratio, can not be directly available. 830

While estimated values can be derived from historical data, 831

errors are inevitable. To evaluate the impact of deviations 832

in prior information, a sensitivity analysis was conducted to 833

assess the model’s performance under varying levels of param- 834

eter bias. Using the previously described outage scenarios, 835

prior probabilities were perturbed with error levels of 10%, 836

20%, and 30%. The resulting outage location accuracy across 837

different observabilities and testing systems is summarized in 838

Fig. 11. The results indicate that while system-level accuracies 839

decrease with increasing error levels, the overall accuracy 840
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Fig. 11. Results of the sensitivity analysis on the BNs’ prior information
bias. The Sys-Le Acc. for two testing systems under different observabilities
is presented. Br-Le accuracies are not displayed due to space limitations but
remain consistently above 90%.

remains within an acceptable range. At the 30% error level, the841

Sys-Le Acc. experiences a more prominent decline than the842

10% error level due to the inconsistency of the prior param-843

eters. However, other Br-Le accuracy metrics remain above844

90%, showcasing satisfactory performance. It is important to845

note that, although the case study intentionally introduced846

significant error levels, the accuracy of prior information is847

expected to improve over time as utilities accumulate more848

outage records and related information. This enhancement in849

prior information will ensure the framework’s reliability in850

practical applications.851

E. Framework Computational Complexity852

A standard PC equipped with an Intel Xeon E-2224 CPU853

(3.40 GHz) and 16.0 GB of RAM was used to perform a854

comprehensive computational complexity analysis. Both the855

IEEE system and a real-world system were analyzed to eval-856

uate performance. For the distribution network reconstitution857

task, the average computation time across 20 repetitions was858

0.765 seconds for the real-world system and 2.174 seconds859

for the IEEE system, indicating slightly higher computational860

requirements for the latter. In the outage location inference861

step, the average computation times were 74.53 seconds and862

107.67 seconds for the real-world and IEEE systems, respec-863

tively. Notably, as the proposed outage location framework864

operates the feeder-wise application, parallel computation of865

different feeders can mitigate the computational impact of866

large feeder numbers, enhancing its practicality for real-world867

distribution networks.868

VI. CONCLUSION869

This paper proposed an integrated multisource data fusion870

framework for outage location detection using a probabilistic871

graph network. Specifically, a DN reconstitution method was872

developed to manage DNs with loops by converting the873

original looped networks into multiple subnetworks. These874

subnetworks capture all outage causalities in the original875

network and serve as a foundational step. By embedding876

multiple sources of evidence and subnetwork structures, BN877

models were established for each subnetwork. To maximize878

the use of limited evidence, the JGP mechanism was designed 879

to enable interactive inference among the BN models, ulti- 880

mately producing the outage location results. The framework 881

was validated through simulations on two testing systems, 882

and a comparative study with prior works confirmed its 883

effectiveness in identifying outage locations in DNs with 884

loops. In future work, we plan to explore and integrate a 885

physics-embedded module that incorporates system protection 886

mechanisms into the framework to enhance its accuracy and 887

efficiency. Additionally, leveraging the proposed framework, 888

we aim to investigate methods for simultaneously addressing 889

outage location and network configuration challenges in radial 890

distribution systems. 891
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