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Abstract—The growing penetration of photovoltaic (PV) sys-
tems in distribution networks (DNs) highlights the significance
of PV hosting capacity (HC) estimation for system planning and
operation. Compared to traditional model-based methods, data-
driven HC estimation offers superior computational efficiency
and scalability, gaining widespread attention. This paper aims
to address the limitations of previous data-driven approaches for
residential PV HC estimation in DER-rich feeders by proposing a
probabilistic HC estimation framework. The framework first de-
termines transformer pairings using available smart meter (SM)
data and limited network information. Next, an optimization-
based voltage sensitivity estimation model accurately estimates
voltage sensitivity at customer nodes in the target low-voltage
secondary network (SNet). Finally, a Gaussian mixture density
network characterizes the head bus voltage of each SNet and
derives the distribution of the HC at customer nodes. Numer-
ical results and method comparisons on the EPRI Ck5 circuit
validate the effectiveness of the proposed framework.

Index Terms—Data-driven method, PV system, hosting capac-
ity, voltage sensitivities, smart meter, distribution system.

I. INTRODUCTION

W ITH the increasing penetration of distributed energy
resources (DER), particularly photovoltaic (PV) sys-

tems, in distribution networks (DN), hosting capacity (HC)
estimation has become essential for distribution power sys-
tem design, planning and operation. PV HC is typically de-
fined as the maximum PV capacity that can be reliably inte-
grated into the DN without violating operational constraints,
such as voltage deviation limits. Traditionally, PV HC is esti-
mated by iteratively running power flow on the system elec-
tric model until any constraint is violated. While this model-
based approach provides accurate HC results, its high compu-
tational burden and reliance on a complete and accurate elec-
trical model make it impractical for large DNs. This challenge
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is particularly significant in low-voltage secondary networks
(SNets), where acquiring a detailed electrical model is often
difficult. Given these limitations, data-driven HC estimation
methods have gained significant attention, facilitated by the
advancements in smart meters (SM). In previous studies, [1]
proposed a spatial-temporal LSTM model to achieve online
dynamic HC calculation. However, this approach still requires
an accurate electric model to generate the node HC values
and power flow data needed for offline training. Leveraging
SM data, [2] developed a linear regression model (LRM) for
fast HC estimation in low-voltage SNets. Although this model
effectively estimates voltage sensitivities and HC, it may strug-
gle with DER-rich feeders, where complex power flows and
fluctuating voltages on the primary side of SNets pose more
challenges. To mitigate the impacts of voltage variations in
SNets, [3] designed a physics-inspired neural network for volt-
age estimation using only SM data (validated on partially syn-
thetic SM data with voltage values generated from OpenDSS).
However, this approach can be limited when incomplete SM
coverage or data missing issues exist. Additionally, [4] focused
on voltage-constrained HC by developing a neural network
to capture power flow relationships among customer nodes
within the same low-voltage network. [5] introduced a hybrid
approach that integrates deep learning with nonlinear func-
tions to compute node voltages for HC estimation. However,
this method does not consider low-voltage SNets, where resi-
dential PV systems are typically connected.

As DER penetration increases, feeders become DER-rich,
leading to complex power flows and voltage variations influ-
enced by voltage regulators in the primary DN [6]. These fac-
tors, along with incomplete SM coverage and data quality is-
sues, challenge accurate data-driven HC estimation in SNets.
To fill the gap, a data-driven framework is proposed for res-
idential HC estimation. In the framework, an optimization-
based voltage sensitivity estimation model is developed to ac-
curately estimate voltage sensitivity at customer nodes in the
target SNet. Furthermore, a Gaussian mixture density network
(GMDN) is employed to characterize the head bus voltage of
each SNet and derive the distribution of HC at customer nodes.
The final output includes the confidence interval (CI) of cus-
tomers’ HC, providing reliable estimation results for utilities.

II. DATA-DRIVEN PROBABILISTIC HC ESTIMATION
FRAMEWORK

The paper proposes a comprehensive probabilistic HC
(PHC) estimation framework for DER-rich feeders, as illus-
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Fig. 1. The structure of the proposed probabilistic HC estimation framework

trated in Fig. 1, comprising three main steps.

A. Transformer-Paring Candidate Set Generation

The basic idea that we utilize to mitigate the impacts from
varying voltage in the head bus of SNet is to assume the two
adjacent distribution transformers (DT) approximately share
the primary winding voltage. By jointly estimating the volt-
age sensitivities of two SNets, the influence of head bus volt-
age can be eliminated. Since the electrical model could be
unavailable in data-driven hosting capacity estimation, a rule-
based transformer-pairing (TP) method is designed to identify
the adjacent DTs. The TP is determined based on two crite-
ria: selected geographical distance (dG) and specified electri-
cal distance (dE). Given the lack of a network model, each
DT’s location is approximated using the centroid of its con-
nected end users, while the dE between two DTs is defined as
the average Pearson correlation coefficient between the volt-
age measurements of any two users connected to them. For a
given DT i, the TP candidate set is defined as:

Si =
{
(i, j) | dG(j) ≤ d

(k)
G , dE(j) ≤ d

(u)
E

}
where d

(k)
G and d

(u)
E represent the k-th smallest geographical

distance and the u-th smallest electrical distance, respectively.
This TP candidate set serves as the input for the next steps.

B. Optimization-based Voltage Sensitivity Estimation

The joint estimation of SNet voltage sensitivities is achieved
by the designed optimization model for each TP from Sα,
which represents the set of TP candidates for the target DT α.
The optimization model aims to determine the active power
voltage sensitivity Aα and reactive power voltage sensitivity
Bα of the target SNet and the SNet connecting to the pairing
DT β by minimizing the difference between their primary-
side voltages. In this work, we focus on single-phase SNets, a
common configuration in North America, where voltage sensi-
tivities exhibit properties such as non-positivity and symmetry.
While the current study is limited to single-phase SNets, the
underlying framework is general and can be extended to more

complex low-voltage SNets, including two-phase and three-
phase networks, which is part of our ongoing research. The
constraints incorporate the LinDistFlow model for SNets and
the inherent characteristics of voltage sensitivities [3]. The SM
data collect bus injection loads and voltages at the customer
end. The optimization formulation is as follows:

min
Ax,Bx ∀x∈{α,β}

T∑
t=1

|Φα|,|Φβ |∑
l=1,k=1

∥cαt,l − cβt,k∥2

 /T (1)

subject to

− cαt,l = pα
t,.A

α
.,l + qα

t,.B
α
.,l − vα

t,l, ∀l ∈ Φα (2a)

− cβt,k = pβ
t,.A

β
.,k + qβ

t,.B
β
.,k − vβ

t,k, ∀k ∈ Φβ (2b)

Aα −Aα⊤,Aβ −Aβ⊤
⩽ ξ (2c)

Bα −Bα⊤,Bβ −Bβ⊤
⩽ ξ (2d)

Aα,Aβ ,Bα,Bβ ⩽ 0 (2e)

where (·)α and (·)β denote the variables and parameters re-
lated to the SNets connected to the target DT and pairing DT.
For instance, pα

t,., q
α
t,., and vα

t,. represent the active power, re-
active power, and squared voltage measurements of customers
under the target DT at time t; Φα is the customer set con-
nected to the target DT, and |Φα| denotes the cardinality of
the set; cαt,. and cαt,. are the squared head bus voltages of the
SNets at time t. In this optimization model, the LinDistFlow
model is applied to both SNets to estimate the head bus volt-
ages based on the SM data, as represented by constraints (2a)
and (2b). The objective of the optimization is to minimize the
difference between the primary voltages of the two SNets. To
ensure the estimated voltage sensitivities satisfy non-positivity
and symmetry properties, additional constraints (2c) to (2e) are
introduced. Here, ⩽ denotes element-wise inequality, and ξ is
a small constant. For each pair (α, β) from Sα, the estimated
Aα and Bα are obtained. The estimation results of these pairs
with the smallest optimization loss will be selected as the fi-
nal values for SNet α. Then, the cα will be calculated, serving
as the inputs of the next HC estimation step. This process is
repeated for all DTs that require estimation.

C. Probabilistic HC Estimation

Previous studies on HC estimation have considered vari-
ous uncertainties, such as PV generation and loads [7]. In
contrast, this work specifically addresses uncertainties arising
from voltage variations at the head bus of each SNet, while
retaining the flexibility to incorporate other uncertainties. Volt-
age variations in the primary network can stem from multiple
factors, including rapid DER generation changes, downstream
load fluctuations, voltage regulator operations, and capacitor
bank switching. Additionally, voltage variations can propagate
from the upstream transmission network, further complicating
the analysis. The combined influence of these factors makes
it challenging to implicitly model the voltage. The proposed
approach accounts for the limitations of SM data and par-
tial datasets in accurately modeling complex power flows on
the primary side via data-driven methods. In such cases, PHC
estimation offers more informative insights for utilities than
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Fig. 2. HC estimation results of the proposed method and the comparative LRM for customers 1108 to 1160 are shown in the figure. A deterministic
model-based approach is used as the benchmark. Customers between the two vertical dashed lines are connected to the same SNet. The selected SNets include
between one and six customers, covering a wide range of scenarios.
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Fig. 3. Left diagram shows the DBI definition for three cases (s1, s2, s3),
where the distance is zero if the SHC lies within the interval, positive (du) if
above, and negative (−db) if below. The middle figure displays the number
of customers from EPRI Ckt5 system per case, and the right boxplot presents
the distribution of distances for s1 and s3 (second case in middle figure)

deterministic data-driven approaches. To achieve this, the first
step is modeling the voltage c. Given its potential multimodal
distribution, GMDN model is introduced due to its capabil-
ity to model complex distributions by parameterizing a mix-
ture of Gaussian distributions conditioned on input features.
Unlike traditional parametric models, GMDN leverages neu-
ral networks to learn the mixture parameters, e.g., the weights,
means, and covariances, thereby providing a more flexible tool
to capture the underlying uncertainty and multimodal nature
of c. In our case, the conditional probability distribution of c
given external information x is approximated as a Gaussian
mixture presented below:

p(c | x) ≈ p̂(c | x) =
G∑

g=1

πg(x)N (c | µg(x),Σg(x)) , (3)

where, πg(x) represents the mixing coefficient of the g-th
component, satisfying

∑G
g=1 πg(x) = 1; µg(x) denotes the

mean of the g-th Gaussian component, dependent on x. Σg(x)
is the covariance matrix of the g-th Gaussian component, also
parameterized by x. Given inputs x, the GMDN generates
the mixture parameters {πg(x),µg(x),Σg(x)} as outputs, and
the whole network is trained by minimizing the negative log-
likelihood loss [8]:

L = − log

(
G∑

g=1

πg(x)N (c | µg(x),Σg(x))

)
. (4)

By leveraging the flexibility of GMDN, the conditional prob-
ability distribution of c given x can be effectively captured,
allowing for better handling of multimodal behaviors and im-
proved uncertainty quantification.

Fig. 4. Comparison of voltage sensitivities from the perturb-and-observe
method and the proposed optimization method. Points closer to the dashed
line indicate higher accuracy.

Utilizing the estimated Aα and Bα, the HC of customer z
(z ∈ Φα) given SNet head bus voltage cα, sampled from p̂c|x,
and the voltage constraint vct can be calculated as follows:

κ = min
t
([v2ct − cαt,z − pα

t,.A
α
.,z − qα

t,.B
α
.,z] ·Aα

z,z
−1). (5)

Then, for the computed values of κ across all sampled
voltages, m-th quantile F−1

κ (m) of it can be defined as
inf {z ∈ R : Fκ(z) ≥ m}. The HC CI for the target customer
can then be determined. For example, the 95% CI is given by[
F−1
κ (2.5%), F−1

κ (97.5%)
]
.

III. NUMERICAL RESULTS

To validate the proposed method, the EPRI Ckt5 circuit,
consisting of 591 DTs and 1379 customers, is utilized [2].
A DER-rich scenario is simulated by integrating three utility-
scale PV plants (1.1 MW) and two large EV charging stations
(280 kW). Voltage regulators, e.g., load tap changers and ca-
pacitor banks, are also deployed. One year of hourly partially
synthetic SM data for all customers, with voltage values gen-
erated from OpenDSS, is used as input.

For benchmarking the performance of the voltage sensitivity
estimation model, the perturb-and-observe method is used as
a benchmark, denoted as the “voltage sensitivity benchmark”.
This method estimates voltage sensitivities by perturbing a
system input and observing the corresponding change in bus
voltages [9]. Since self-voltage sensitivities play a key role
in the following HC calculations, the self-sensitivity results
from our method and the benchmarks are shown in Fig. 4.
As shown in the left subfigure, most points lie along the di-
agonal dashed line, indicating small differences between the
estimated values and the benchmark. Although some errors
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in the estimation of reactive power voltage sensitivity (right
subfigure) are more significant than those in active power sen-
sitivity, the overall performance remains strong, demonstrating
the effectiveness of the proposed method. For HC performance
assessment, the LRM from [2] is used for comparison, with
simulation-based HC (SHC) as the benchmark. Parts of the
HC estimation results are shown in Fig. 2. As a deterministic
scenario, the SHC falls within the CI of the proposed proba-
bilistic method for most customers, demonstrating its ability
to capture the potential scenarios. While some estimates fall
outside the 95% interval due to voltage sensitivities estimation
and distribution modeling error, the deviations are minor com-
pared to the significant discrepancies observed with the LRM
for certain customers. To quantify the errors, the distance be-
yond interval (DBI) is introduced, as shown in Fig. 3. The PHC
achieves a mean absolute DBI of 0.87 kW across all customers,
whereas the LRM method exceeds 7.49 kW mean absolute er-
ror, highlighting the superior accuracy of the proposed model
in handling the scenarios. The performance of PHC estimation
can be further improved by optimizing transformer-pairing for
voltage sensitivity, enlarging the historical dataset, and refin-
ing the GMDM structure in future work.

IV. CONCLUSION

This paper addressed the limitations of previous data-driven
approaches for residential PV HC estimation in DER-rich sce-
narios by proposing a probabilistic HC estimation framework.
Numerical results and method comparisons validated its effec-
tiveness. Future work will aim to extend the proposed method
to more complex low-voltage SNets, evaluate its performance
using real feeder models with actual SM data, and analyze
how large-scale data loss affects estimation accuracy.

REFERENCES

[1] J. Wu, J. Yuan, Y. Weng, and R. Ayyanar, “Spatial-temporal deep learning
for hosting capacity analysis in distribution grids,” IEEE Transactions on
Smart Grid, vol. 14, no. 1, pp. 354–364, 2022.

[2] J. A. Azzolini, M. J. Reno, J. Yusuf, S. Talkington, and S. Grijalva,
“Calculating pv hosting capacity in low-voltage secondary networks using
only smart meter data,” in 2023 IEEE Power & Energy Society Innovative
Smart Grid Technologies Conference (ISGT), pp. 1–5, IEEE, 2023.

[3] L. Liu, N. Shi, D. Wang, Z. Ma, Z. Wang, M. J. Reno, and J. A.
Azzolini, “Voltage calculations in secondary distribution networks via
physics-inspired neural network using smart meter data,” IEEE Transac-
tions on Smart Grid, 2024.

[4] V. Bassi, L. F. Ochoa, T. Alpcan, and C. Leckie, “Electrical model-free
voltage calculations using neural networks and smart meter data,” IEEE
Transactions on Smart Grid, vol. 14, no. 4, pp. 3271–3282, 2022.

[5] L. Su, X. Pan, X. Sun, J. Guo, and A. Anvari-Moghaddam, “Research
on pv hosting capacity of distribution networks based on data-driven and
nonlinear sensitivity functions,” IEEE Transactions on Sustainable En-
ergy, 2024.

[6] Z. Wang and J. Wang, “Time-varying stochastic assessment of conserva-
tion voltage reduction based on load modeling,” IEEE Transactions on
Power Systems, vol. 29, no. 5, pp. 2321–2328, 2014.

[7] S. Wang, Y. Dong, L. Wu, and B. Yan, “Interval overvoltage risk based pv
hosting capacity evaluation considering pv and load uncertainties,” IEEE
transactions on smart grid, vol. 11, no. 3, pp. 2709–2721, 2019.

[8] H. Zhang, Y. Liu, J. Yan, S. Han, L. Li, and Q. Long, “Improved deep
mixture density network for regional wind power probabilistic forecast-
ing,” IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2549–2560,
2020.

[9] S. Maharjan, R. Cheng, and Z. Wang, “Generalized analytical estima-
tion of sensitivity matrices in unbalanced distribution networks,” IEEE
Transactions on Power Systems, 2024.


	Introduction
	Data-Driven Probabilistic HC Estimation Framework 
	Transformer-Paring Candidate Set Generation
	Optimization-based Voltage Sensitivity Estimation
	Probabilistic HC Estimation

	Numerical Results
	Conclusion
	References

