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Abstract—Self-healing capability is a critical factor for
a resilient distribution system, which requires intelligent
agents to automatically perform service restoration online,
including network reconfiguration and reactive power dis-
patch. The paper proposes the imitation learning framework
for training such an agent, where the agent will interact with
an expert built based on the mixed-integer program to learn
its optimal policy, and therefore significantly improve the
training efficiency compared with exploration-dominant re-
inforcement learning methods. This significantly improved
training efficiency makes the training problem under N − k
scenarios tractable. A hybrid policy network is proposed
to handle tie-line operations and reactive power dispatch
simultaneously to further improve the restoration perfor-
mance. The 33-bus and 119-bus systems with N − k distur-
bances are employed to conduct the training. The results
indicate that the proposed method outperforms traditional
reinforcement learning algorithms such as the deep-Q net-
work.

Index Terms—Service restoration, imitation learning, re-
inforcement learning, mixed-integer program, resilient dis-
tribution system.

NOMENCLATURE

Indices and Sets
t, T , T index, index set, number of steps
h, VP, NP index, index set, number of point of common

coupling
i/j, VB, NB index, index set, number of buses
k, VSC, NSC index, index set, number of shunt capacitors
l, EL, NL index, index set, number index of lines
m, NS, NS index, index set, number (if countable) of states
n, NA, NA index, index set, number (if countable) of actions
Continuous Decision Variables
P PCC
h,t active power injection at point of common cou-

pling h during step t
QPCC
h,t reactive power injection at point of common

coupling h during step t
Vi,t voltage of bus i during step t
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QSC
k,t reactive power output of shunt capacitor k during

step t
Pl,t, Ql,t active, reactive power flow on line l during step

t
∆SC
k,t incremental change of shunt k from t− 1 to t

Discrete Decision Variables
uL
l,t status of line l during step t: 1 closed and 0

otherwise
aT
l,t action decision of tie-line l during step t: 1 to

be closed and 0 otherwise
uSC
k,t status of shunt capacitor k during step t: 1 active

and 0 otherwise
uD
i,t connection status of demand at bus i during step

t: 1 connected and 0 otherwise
uR
i,j,t indication if bus i is the parent bus of j: 1 true

and 0 false
Parameters
PD
i , QD

i active, reactive power demand at bus i
P l, P l min, max active power flow of line l
Q
l
, Ql min, max reactive power flow of line l

QSC
k

, Q
SC
k min, max reactive power output of shunt capac-

itor k
ε allowable voltage deviation from nominal value

I. INTRODUCTION

Natural disasters can cause random line damages in distri-
bution systems. The distribution system restoration (DSR) is
one of the most critical factors to ensure power grid resilience.
The objective of DSR is to search for alternative paths to
re-energize the loads in out-of-service areas through a series
of switching operations. Typical distribution systems have
normally closed sectionalizing switches and normally open
tie switches. When a fault is identified, the restoration plan
will use tie switches to reconfigure the network so that the
disrupted customers can be connected to available feeders [1].

Nowadays, there is an increasing demand to automatize
the decision-making process of network reconfigurations and
DSR, or so-called self-healing. The self-healing capability is
considered as one of the most critical factors for a resilient
distribution system to reduce the customers minute interruption
(CMI) as well as other associated indices like system average
interruption duration index (SAIDI), avoiding high interruption
cost. For example, the self-healing technology IntelliTeam1

developed by S&C Electric Company will result in a zero CMI

1https://www.sandc.com/en/solutions/self-healing-grids/
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and zero SAIDI. While manual restoration usually results in
a 90000-minute CMI and 43-minute SAIDI. Under extreme
events, the outage will occur more frequently, and the self-
healing strategy will have more significant performance in
reducing the interruption cost and the overall decision-making
complexity. The thrust of the DSR automation is the intelligent
agent and the built-in policy mapping from different faulty
scenarios to corresponding optimal restorative actions. The
methods for building such policies can be categorized into
two major types: predefined or reactive.

The reactive policy requires the agent to solve DSR online
once the faulty condition is received. An overview can be
found in [2]. Currently, most methods rely on mathematical
programming (MP). The graph theory was used to search
for alternative topology after a fault in [3]. Two novel MP
formulations were proposed in [4] and [5], respectively, to sec-
tionalize the distribution system into self-sustained microgrids
during blackouts. A two-stage heuristic solution was proposed
in [6] to optimize the path from a microgrid source to the
critical loads. Multiple distributed generators were incorpo-
rated and optimized with a similar objective in [7]. Ref. [8]
employed the particle swarm optimization (PSO) to solve the
shipboard reconfiguration optimization problem. Multi-step
optimization formulation were used for restoration in [9] and
[10]. In [11], network operation and repairing crew dispatch
were co-optimized. A relaxed AC power flow formulation
was proposed for unbalanced system restoration in [12]. A
multi-step reconfiguration model with distributed generators
(DG) start-up sequences [13]. Distributed optimization with
a mixed-integer second-order cone programming problem was
formulated in [14]. The optimization-based multi-agent frame-
work was employed to form self-sustained islands in [15].
Ref. [16] proposed three different types of agents that solve
a multi-objective optimization to facilitate self-healing. Under
similar scopes, a convex optimal power flow model and DGs
were considered in [17] and [18], respectively. However, these
technologies need devices to have sophisticated computation
architectures. Furthermore, the solution time may not be able
to meet the real-time requirement.

The predefined strategy heavily relies on reinforcement
learning (RL) framework to train the policy. The RL frame-
work has been extensively applied into various power system
operation problems, including frequency control [19], voltage
control [20], energy management [21], economic dispatch
[22], distribution system operation cost reduction via reconfig-
uration [23]. While, recent work regarding RL for restoration
is limited. Ref. [24] employed the dynamic programming
algorithm to compute the exact value function, which is
intractable for high dimensional problems. In Ref. [25], the
value function was estimated using the approximate dynamic
programming algorithm. Both algorithms, however, require
the knowledge of the state transition probabilities, which are
difficult to know in advance. The temporal difference learning
methods, such as Q-learning, estimate the empirical state
transition probabilities from observations. In Refs. [26] and
[27], the Q-learning algorithm with the ε-greed policy was
employed to perform offline training such that the agent can
reconfigure the network online. Ref. [28] proposed a mixed

online and offline strategy, in which the online restoration
plan either from the agent or an MP was adopted based on
certain confident metrics. While in offline mode, the agent
was also trained using the Q-learning algorithm. Despite the
innovations, the aforementioned works have not considered
random N − k line outages. This disturbance randomness
hampers the application of exploration-dominant algorithms
like traditional RL, which is known to converge slowly due
to the exploration and exploitation dilemma [29]. In other
words, these works rely on random exploration strategies, such
as ε-greed, to locally improve a policy [30]. With additional
disturbance randomness, the number of interactions required to
learn a policy is enormous, leading to a prohibitive cost. Such
a capability limitation on handling disturbance randomness
significantly impedes the deployment in real-world scenarios.

In a nutshell, the major gap of current research for DSR
automation can be concluded as
• Reactive strategies such as MP-based methods need so-

phisticated computational architectures and have overrun
risk in real-time execution.

• Predefined strategies such as RL-based methods have not
considered random N − k line outages, which jeopar-
dizes the self-healing capability. The underline reason is
that traditional RL is not capable of training the policy
efficiently under random disturbances.

To overcome this limitation, the paper employs the predefined
strategy and proposes the imitation learning (IL) framework
for training the restoration agent. The advantages of IL
methods are the significantly higher training efficiency since
it leverages prior knowledge about a problem in terms of
expert demonstrations and trains the agents to mimic these
demonstrations. With the proposed method, random N − k
disturbances are tractable and considered in this paper to
enhance the self-healing capability under various conditions.
Its fundamental form consists of training a policy to predict
the expert’s actions from states in the demonstration data
using supervised learning. Here, we leverage well-studied
MP-based restoration as the expert. In addition, reconfigured
networks may exhibit longer lines and low voltages. Thus,
tie-line operations and reactive power dispatch are considered
simultaneously to restore more loads. The contribution of this
paper is concluded as follows
• proposing the IL framework to improve training ef-

ficiency and reduce the number of agent-environment
interactions required to train a policy. We show that the IL
algorithms significantly outperform the deep Q-learning
under random N − k contingencies.

• strategically designing MP-based experts and environ-
ments with tailored formulations for IL algorithms

• developing a hybrid policy structure and training algo-
rithms to accommodate the mixed discrete and continuous
action space

Concisely, this paper proposes to use the new IL paradigm
for training DSR policy that is capable of handling training
complexity under random disturbances. The proposed solution
can successfully handle the central technical requirements of
self-healing capability, that is, automatic and optimal. It is



worth mentioning that the IL framework acts as a bridge be-
tween RL-based techniques and MP-based methods and a way
to leverage well-studied MP-based decision-making systems
for RL-based automation. The source code of the implemen-
tation will be available at https://github.com/ANL-CEEESA/
IntelliHealer.

The remainder of this paper is organized as follows. Section
II will frame the DSR problem as the Markov decision process
(MDP). Section III will introduce the IL problem and algo-
rithms. Section IV will introduce the MP-based experts and
environments that IL algorithms are interacting with. Section
V will illustrate the case study, followed by the conclusion in
VI.

II. PROBLEM STATEMENT

Let the distribution system be denoted as a graph G =
(VB, EL), where VB denotes all buses (vertices) and EL denotes
all lines (edges). The bus set is categorized into substation
buses VB,S and non-substation buses VB,NS. The line set is
categorized into non-switchable line set EL,NS and tie-line set
EL,T. The non-switchable lines can not be actively controlled
unless tripped due to external disturbances. The status of
tie-lines can be controlled through tie-switches to adjust the
network configuration.

Assume a NL,NS− k contingency scenario indicating that k
lines from the set EL,NS are tripped. Without loss of generality,
we uniformly sample these k lines from EL,NS in each scenario
(or episode2). Let EF

L,NS be the set of faulty lines and ENF
L,NS be

the set of non-faulty lines. The goal for a well-trained agent
is to control the tie-lines and shunt capacitors to optimally
restore interrupted customers given post-fault line status.

To account for the time-dependent process [13], such as the
saturating delays of tie-switches and shunt capacitors, as well
as reducing transients, we consider a multi-step restoration. In
each step, only one tie-line is allowed to operate. In addition,
closed tie-lines are not allowed to open again. Meanwhile,
all shunt capacitors can be dispatched at each step. Based
on state-of-the-art industrial self-healing productions, such as
IntelliTeam from S&C Electric Company and Distribution
Feeder Automation (SDFA) from Siemens Industry Inc., the
time interval between each step is in the time scale of
seconds. The specific value can vary between systems due
to different topology, power sources and devices. Naturally,
the step number is set to be equal to the number of tie-lines
NL,T in the system, that is, T = [0, 1, · · · , NL,T], where 0
stands for the initial step. A positive integer will be used
to label each tie-line action as shown in Eq. (1). In many
scenarios, not all tie-lines are involved. For a step t ∈ T
where no tie-line action is needed, the action label will be
zero. During the restoration process, the network radiality
must be maintained, and the tie-line operations that violate
the radiality constraint will be denied. We formalize the above
setting using the episodic finite Markov decision process (EF-
MDP) [29]. An EF-MPD M can be described by a six-
tupleM = <S,A,D, p(s′|s, a), r(s, a), T>, where S denotes

2The terms scenario and episode are regarded the same in this paper and
will be used interchangeably.

the state space, A denotes the action space, D denotes the
disturbance space, p(s′|s, a) denotes the state transition prob-
ability, r denotes the real-valued reward function, T denotes
the number of steps in each episode, and s′, s ∈ S, a ∈ A. The
action space is hybrid, consisting of a discrete action space AT
for tie-line operations and a continuous action space AC where

AT = [0, 1, · · · , NL,T] (1)

AC = [QC
1
, Q

C
1 ] ∪ · · · ∪ [QC

NC
, Q

C
NC

] (2)

A trajectory can be denoted as

τ = (s0(d), a1, s1, a2, s2, · · · , aT , sT ) (3)

where s0(d), or s0 for short, is the initial faulty condition due
to disturbance d ∈ D. For actions that violate the radiality
constraint, the corresponding transition probability will be zero
and one otherwise.

III. DEEP IMITATION LEARNING

A. Imitation Learning Problem
The IL training process aims to search for a policy π(a|s)

(a conditional distribution of action a ∈ A given state s ∈ S)
from the class of policies Π to mimic the expert policy
π∗ [31]. The expert policy is assumed to be deterministic.
Without loss of generality, consider a countable state space
S = [s1, s2, · · · , sNS ] with NS number states. Let ρ0 denote
the initial distribution of states and ρ0(sm) denote the proba-
bility of state sm. Let ρπt denote the distribution of states at
time t if the agent executes the policy π from step 1 to t− 1.
The law of ρπt can be computed recursively as follows [31]

ρπt (smt ) =
∑

st−1∈S
ρt−1(st−1)

∑
at∈A

π(at|st−1)p(smt |st−1, at)

(4)

Then, the average distribution of states is defined as ρ̄π(s) =∑T
t=1 ρ

π
t−1(s)/T , which represents the state visitation fre-

quency over T time steps if policy π is employed [32].
The 0-1 loss of executing action a in state s with respect

to (w.r.t) the expert policy π∗ is denoted as follows [33]

e(s, a) = I(a 6= π∗(s)) (5)

where I(•) is the indicator function. Consider an action at. If
this action is different from the action provided by the optimal
policy a∗ = π∗(s), that is, at 6= a∗, then the loss value equals
one. Otherwise, it equals zero. Intuitively, if an agent is able
to act identically as the optimal policy, the loss will be zero.
The expected 0-1 loss of policy π in state s reads as follows

eπ(s) = Ea∼πs [e(s, a)] (6)

The expected T -step loss w.r.t π is

L(π) = Es∼ρπ [eπ(s)] (7)

The goal is to find a policy π̄ that minimize the expected
T -step loss L(π), that is,

π̄ = argmin
π∈Π

L(π) = argmin
π∈Π

Es∼ρπ [eπ(s)] (8)

Note that this objective function is non-convex due to the de-
pendence between the objective parameter ρπ and the decision
space Π.

https://github.com/ANL-CEEESA/IntelliHealer
https://github.com/ANL-CEEESA/IntelliHealer


B. Imitation Learning Algorithm

The most effective form of imitation learning is behavior
cloning (BC). In the BC algorithm summarized, trajectories
are collected under the expert’s policy π∗, and the IL problem
renders to a supervised learning problem, where the states are
the features, and the actions are the labels. The objective of
BC reads as follows

π̄ = argmin
π∈Π

Es∼ρπ∗ [eπ(s)] (9)

which disassociates the dependency between the objective
parameter and the decision space [33].

A framework paradigm and the basic algorithm flowchart
for IL-based DSR agent are illustrated in Fig. 1 (a) and (b),
respectively. Three modules, including agent, environment,
and expert, will be built, as shown in Fig. 1 (a). In each
training step, the agent will use the expert policy to explore
the environment to obtain the optimal trajectory for training.
Then, testing will be conducted under a new disturbance with
the trained policy network, as illustrated in Fig. 1 (b).
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Fig. 1. IL framework and algorithm for training DSR agent. (a) IL
paradigm. (b) IL algorithm flowchart.

The BC algorithm is described in Algorithm 1. Several
major functions are explained as follows.
• Expert: Since we are addressing a multi-period

scheduling problem, it is difficult to directly obtain
an expert mapping π∗. Therefore, a mixed-integer pro-
gram (MIP) is employed to obtain the optimal ac-
tions. This MIP is specified as an expert solver
Expert(st−1, [t, · · · , T ]), which takes the initial state at
t−1 and the scheduling interval [t, · · · , T ], and return the
optimal actions at, · · · , aT . The detailed MIP formulation
is given in Section IV.

• Act: The DSR environment interacts with the policy
through Act. Given a disturbance d, total step T , and
the policy (either the mapping or expert solver), Act
returns a T -step trajectory. More details are described
in Algorithm 2.

• Eval: Eval compares the learned policy-induced tra-
jectory with the optimal one that is provided by the MP-
based method, or the expert, and calculates the ratio r

between restored total energy under the learned policy
and the optimal restored total energy. The ratio is defined
as the performance score of the learned policy in each
iteration.

Algorithm 1: Behavior cloning (BC)
input : expert solver Expert, deep neural net policy

π̄, neural network training function
Train(·, ·, ·), environment interaction
Act(·, ·, ·), disturbance set D, stochastic
sampling function Sample(·), policy
evaluation function Eval(·, ·)

1 X ← ∅ // initialize the input
2 Y ← ∅ // initialize the label
3 P ← ∅ // initialize the performance
4 π̄1 ∈ Π // initialize the policy
5 for i← 1 to N do
6 d← Sample(D)
7 (s0, a1, s1, · · · , aT , sT )← Act(d, T,Expert)
8 X ← X ∪ (s0, · · · , sT−1)
9 Y ← Y ∪ (a1, · · · , aT )

10 π̄i+1 ← Train(X,Y, π̄i)
11 d← Sample(D)
12 r ← Eval(Act(d, T,Expert),Act(d, T, π̄i+1))
13 P ← P ∪ (d, r)
14 end

output: Trained deep neural net π̄, performance scores
P

Algorithm 2 runs either the learned policy or the expert
solver on the DSR environment Env to obtain the trajectory.
The DSR environment Env is built on the standard Open-
AI Gym environment template [34]. There are two major
functions: Env.Reset and Env.Step.
• Env.Reset generates a certain number of line outages,

computes the initial system status under the line outages
using Eq. (23), and updates the system states and actions.

• Env.Step receives a tie-line action, solve the MIP
program Eq. (24) to obtain the new system state, and
updates the system states and actions. If this action
violates the radiality and other technical constraints and
results in infeasibility, the action will be denied and thus
will not be updated. The reward will be computed based
on restored loads. Note that the rewards are specifically
calculated for RL as IL does not need rewards.

C. Hybrid Policy

The training in Algorithm 1 Line 10 is a multi-class classifi-
cation problem, which is not able to handle continuous action
spaces. Thus, Algorithm 1 can only be used for automatic tie-
line operators. To simultaneously coordinate tie-line operations
and reactive power dispatch, we propose a hybrid policy
network, as shown in Fig. 2. The action spaces of the hybrid
neural network are mixed continuous and discrete. At the
higher level, there is a single neural network to predict the
optimal tie-line actions given measured states. Each tie-line



Algorithm 2: Environment interaction Act

input : disturbance d, time step T , policy function or
expert solver f , DSR environment Env

1 s0 ← Env.Reset(d)
2 if f == Expert then

/* run Env under the expert policy

*/
3 (a1, · · · , aT )← Expert(s0, [1, · · · , T ])
4 for t← 1 to T do
5 st ← Env.Step(at)
6 end
7 end
8 if f == π then

/* run Env under learned policy */
9 for t← 1 to T do

10 at ← π(st−1)
11 st ← Env.Step(at)
12 end
13 end

output: T -step trajectory (s0, a1, s1, · · · , aT , sT )

action is associated with a neural network for reactive power
dispatch. The dispatch ranges associated with individual tie-
lines can be a subset or entire continuous action spaces.
Considering the fact that under each tie-line operation, the
system may admit a different power flow pattern, we attach
the entire dispatch spaces in each tie-line action. It is also
worth mentioning that the states for predicting discrete and
continuous actions can be different.
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T  ⋯ 
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T
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Continuous Action 
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Continuous Action 

Policy Network

[ 1 , 1 ] ∪⋯∪ [ , ]   [ 1 , 1 ] ∪⋯∪ [ , ]   [ 1 , 1 ] ∪⋯∪ [ , ]   

Fig. 2. Discrete-continuous hybrid policy network.

The training process for the hybrid policy network is de-
scribed in Algorithm 3. The additional effort from Algorithm
1 is that we will train reactive power dispatchers under each
tie-line action. To do this, we first initialize the dispatcher
training dataset as shown in Line 2. In each episode, we group
the dispatch commands from the expert hExp based on the tie-
line actions as shown in Lines 11 and 12. The final step in each
episode is to train the tie-line operation policy network and
reactive power dispatch policy network, respectively, as shown
in Lines 14 and 15. The hybrid behavior cloning algorithm will
interact with the environment that includes both tie-line and
reactive power dispatch, which is described in Algorithm 4.
Algorithm 4 is similar to Algorithm 2 except that the hybrid
actions are generated using the hybrid policy as shown in Lines
10 and 11, and the DSR environment has hybrid actions. The
MIP formulation of hEnv will be introduced in Section IV.

Algorithm 3: Hybrid behavior cloning (HBC)
input : hybrid action expert solver hExp, tie-line

operation policy π̄, reactive power dispatch
policy under tie-line action k π̄k, tie-line
operation policy network training function
TrainClf(·, ·, ·), reactive power dispatch
policy network training function
TrainReg(·, ·, ·), hybrid action environment
interaction hAct(·, ·, ·), disturbance set D,
stochastic sampling function Sample(·),
policy evaluation function Eval(·, ·)

1 X ← ∅, Y ← ∅
2 Xk ← ∅, Yk ← ∅
3 P ← ∅
4 π̄1 ∈ Π, π̄1

k ∈ Π
5 for i← 1 to N do
6 d← Sample(D)
7 (s0, a

D
1 , a

C
1 , s1, · · · , aD

T , a
C
T , sT )←

hAct(d, T,hExp)
8 X ← X ∪ (s0, · · · , sT−1)
9 Y ← Y ∪ (aD

1 , · · · , aD
T )

10 for t← 1 to T do
11 XaD

t
← XaD

t
∪ st−1

12 YaD
t
← YaD

t
∪ aC

t

13 end
14 π̄i+1 ← TrainClf(X,Y, π̄i)

15 π̄i+1
k ← TrainReg(Xk, Yk, π̄

i
k)

16 d← Sample(D)
17 r ←

Eval(hAct(d, T,hExp),hAct(d, T, (π̄i+1, π̄i+1
k )))

18 P ← P ∪ (d, r)
19 end

output: Trained tie-line operator π̄, trained reactive
power dispatcher π̄k, performance scores P

Algorithm 4: Hybrid action environment interaction
hAct
input : disturbance d, time step T , policy function or

expert solver f , hybrid-action DSR
environment hEnv

1 s0 ← hEnv.Reset(d)
2 if f == hExp then
3 (aD

1 , a
C
1 , · · · , aD

T , a
C
T )← hExp(s0, [1, · · · , T ])

4 for t← 1 to T do
5 st ← hEnv.Step((aD

t , a
C
t ))

6 end
7 end
8 if f == (π, πk) then
9 for t← 1 to T do

10 aD
t ← π(st−1)

11 aC
t ← πaD

t
(st−1)

12 st ← hEnv.Step((aD
t , a

C
t ))

13 end
14 end

output: T -step trajectory
(s0, a

D
1 , a

C
1 , s1, · · · , aD

T , a
C
T , sT )



IV. MATHEMATICAL PROGRAMMING-BASED EXPERT AND
ENVIRONMENT

This section describes the MIP formulation for the ex-
perts and environments. We will first introduce generic con-
straints for the DSR problem. Then, Expert, Env.Reset,
Env.Step, hExp, hEnv.Reset and hEnv.Step are in-
troduced in Eqs. (22), (23), (24), (25), (26), (27), respectively.

Let L(·, i) denote the set of lines for which bus i is the
to-bus, and L(i, ·) denote the set of lines for which bus i is
the from-bus. Let µ(l) and ν(l) map from the index of line
l to the index of its from-bus and to-bus, respectively. The
nature of radiality guarantees that µ(l) and ν(l) are one-to-
one mappings. Let P map from the index of bus i to the
substation index. Without loss of generality, we consider one
active substation and assume Bus 1 is connected to it. Let
C map from the index of bus i to the shunt capacitor. Let
T = [t0, t1, · · · , T ] be the step index and t ∈ T .

Following the convention in [35] and [11], linearized Dis-
tflow equations are employed to represent power flows and
voltages in the network and are described as follows∑

∀l∈L(·,i)

Pl,t +
∑
∀h∈P(i)

P PCC
h,t

=
∑

∀l∈L(i,·)

Pl,t + uD
i,tP

D
i,t ∀i,∀t∑

∀l∈L(·,i)

Ql,t +
∑
∀h∈P(i)

QPCC
h,t +

∑
∀k∈C(i)

QSC
k,t

=
∑

∀l∈L(i,·)

Ql,t + uD
i,tQ

D
i,t ∀i,∀t

(10)

The line flow should respect the limits, which will be enforced
to be zero if it is opened

uL
l,tP l ≤ Pl,t ≤ uL

l,tP l ∀l,∀t
uL
l,tQl ≤ Ql,t ≤ u

L
l,tQl ∀l,∀t

(11)

The shunt capacitor should also respect the limits, which will
be enforced to be zero if it is opened

uSC
k,tQ

SC
k
≤ QSC

k,t ≤ uSC
k,tQ

SC
k ∀l,∀t (12)

The linear relation between voltages and line flow needs to be
enforced when the line l is closed

(uL
l,t − 1)M ≤ Vν(l),t − Vµ(l),t +

RlPl,t +XlQl,t
V1

∀l,∀t

(1− uL
l,t)M ≥ Vν(l),t − Vµ(l),t +

RlPl,t +XlQl,t
V1

∀l,∀t
(13)

The voltages should be maintained within permissible ranges

1− ε ≤ Vi,t ≤ 1 + ε ∀i,∀t (14)

The radiality constraints are expressed as follows [36]

uR
µ(l),ν(l),t + uR

ν(l),µ(l),t = uL
l,t ∀l,∀t

uR
i,j,t = 0 ∀i,∀j ∈ VB,S,∀t∑
i∈NB

uR
i,j,t ≤ 1 ∀j,∀t

(15)

It is worth mentioning that a radial network with several is-
lands will still satisfy Eq. (15) [37]. This could be a severe flaw
during the normal operation. However, since N − k scenarios
are considered in this paper, we may exhibit islands in certain
scenarios, where radiality is enforced in each island, including
the main energized branch. Within all non-switchable lines
EL,NS, the status of faulty lines EF

L,NS is enforced to be zero
and the status of non-faulty lines ENF

L,NS is enforced to be one

uL
l,t = 0 ∀l ∈ EF

L,NS,∀t
uL
l,t = 1 ∀l ∈ ENF

L,NS,∀t
(16)

For a multi-step scenario, the restored loads are not allowed
to be disconnected again

uD
i,t ≥ uD

i,t−1 ∀i,∀t \ {t0} (17)

Similarly, closed tie-lines cannot be opened

uL
l,t ≥ uL

l,t−1 ∀l ∈ EL,T,∀t \ {t0} (18)

In addition, only one tie-line can be operated in one step∑
l∈NL,T

uL
l,t −

∑
l∈EL,T

uL
l,t−1 ≤ 1 ∀t \ {t0} (19)

And all tie-lines are equal to the initial values

uL
l,t0 = ûL

l ∀l ∈ EL,T (20)

In some instances, there will be multiple shunt capacitor
dispatch solutions for an optimal load restoration, and the
shunt dispatch results will jumpy between these solutions in
an episode. This will jeopardize a smooth learning process.
Therefore, a set of constraints is considered to limit the
dispatch frequency

M(1− zk,t) ≤ QSC
k,t −QSC

k,t−1 (21a)

−M(1− zk,t) ≤ ∆SC
k,t − (QSC

k,t −QSC
k,t−1) (21b)

M(1− zk,t) ≥ ∆SC
k,t − (QSC

k,t −QSC
k,t−1) (21c)

−Mzk,t ≤ ∆SC
k,t + (QSC

k,t −QSC
k,t−1) (21d)

Mzk,t ≥ ∆SC
k,t + (QSC

k,t −QSC
k,t−1) (21e)

∀k, ∀t \ {t0} (21f)

where we introduce two slack variables: ∆SC
k,t is a continuous

variable to express the incremental changes of shunt capacitor
k from time t− 1 to t, and zk,t is a binary variable to denote
if there exists incremental changes of shunt capacitor k from
time t− 1 to t. Eq. (21a) enforces zk,t to be one if QSC

k,t and
QSC
k,t−1 are different, where M is a big positive number. Eqs.

(21b)-(21e) ensure that ∆SC
k,t equals to QSC

k,t−QSC
k,t−1 if zk,t is

one, and ∆SC
k,t equals to zero when zk,t is zero. With the set

of constraints, ∆SC
k,t precisely denotes the incremental changes

and can be minimized in the objective function.
The expert solver Expert takes the disturbance d (the set

of faulty lines EF
L,NS), the initial tie-line status ûL

l , where ∀l ∈
EL,T, and the step index T = [t0, t1, · · · , T ] as inputs and
solver the following MIP problem

max
∑
t

∑
i

uD
i,tP

D
i (22a)

subject to (10)− (20) ∀t ∈ T (22b)

uSC
k,t = 0 ∀k, ∀t ∈ T (22c)



where (22c) deactivate shunt capacitors since they will not
be considered in Expert. The solution will provide a series
of tie-line status uL

l,t0
, uL
l,t1
, · · · , uL

l,T for l ∈ EL,T. Then, the
optimal tie-line operating actions can be parsed as aL

t1 , · · · , a
L
T .

The Env.Reset function computes the system initial condi-
tion given a random generated faulty line set EF

L,NS

max
∑
t

∑
i

uD
i,tP

D
i (23a)

subject to (10)− (16) ∀t ∈ [t0] (23b)

uL
l,t0 = 0 ∀l ∈ EL,T (23c)

uSC
k,t0 = 0 ∀k (23d)

where Eq. (23c) ensures no tie-line actions under this initial
stage. The Env.Step aims to restore the maximal load given
the disturbance, a tie-line status and the load status from the
previous step by solving the following problem

max
∑
t

∑
i

uD
i,tP

D
i (24a)

subject to (10)− (16), (20) ∀t ∈ [tτ ] (24b)

uD
tτ ≥ û

D
tτ−1

(24c)

uSC
k,tτ = 0 ∀k, ∀t (24d)

where ûD
tτ−1

is the load status from the previous step, and Eq.
(24c) ensures the restored load will not be disconnected again.

Similarly, hybrid-action expert solver hExp solves the fol-
lowing MIP

max
∑
t

(
∑
i

uD
i,tP

D
i + w

∑
k

∆SC
k,t) (25a)

subject to (10)− (21) ∀t ∈ T (25b)

where w is the weighting factor. The hybrid-action DSR envi-
ronment hEnv also consider the reactive power dispatch. The
hEnv.Reset function computes the system initial condition
given a random generated faulty line set EF

L,NS

max
∑
t

∑
i

uD
i,tP

D
i (26a)

subject to (10)− (16) ∀t ∈ [t0] (26b)

uL
l,t0 = 0 ∀l ∈ EL,T (26c)

QSC
k,t0 = 0 ∀k (26d)

where Eqs. (26c) and (26d) ensure no restorative actions
under this initial stage. The hEnv.Step aims to restore the
maximal load given the disturbance, a tie-line status and the
load status from the previous step by solving the following
problem

max
∑
t

∑
i

uD
i,tP

D
i +

∑
t

∑
k

|eSC
k,tτ | (27a)

subject to (10)− (16), (20) ∀t ∈ [tτ ] (27b)

uD
tτ ≥ û

D
tτ−1

(27c)

eSC
k,tτ = QSC

k,tτ − Q̂
SC ∀k (27d)

where ûD
tτ−1

is the load status from the previous step, and Q̂SC

is the var dispatch command. To avoid dispatch infeasibility
due to the unenergized islands, the absolute error between

the expert signal Q̂SC and the actual var dispatch QSC
k,tτ

is
minimized. Equivalent formulations to remove the absolute
operator are implemented.

V. CASE STUDY

In the numerical experiments, two metrics are considered to
evaluate the learning performance: (1) Restoration ratio: the
ratio between the restored load by the agent and the optimal
restorable load by the expert; (2) Restoration value: total
restored load by the agent in each episode; (3) Success rate:
number of times that the agent achieves optimal restorable
load in N episodes. The optimization is formulated using
Pyomo [38] (National Technology and Engineering Solutions
of Sandia, LLC, U.S.) and solved using IBM ILOG CPLEX
12.8. The deep learning model is built using TensorFlow r1.14.

It is worth mentioning that the scalability of the proposed
method is demonstrated from both disturbance complexity
and system size perspectives. The disturbance complexity
determines the number of randomly tripped lines in each
episode. The agent will encounter larger numbers of different
topologies if more lines are randomly tripped. The system size
verifies if the method can handle considerable sizes of inputs
and larger action space.

A. 33-Bus System

The 33-bus system in [39] will be employed for the first
case study. It is a radial 12.66 kV distribution network, shown
in Fig. 3. Detailed network data can be found in [39]. In this
system, there are five tie-lines, which are assumed to be opened
in the initial phase. Six shunt capacitors are assumed to be
deployed in the gray nodes Fig. 3. The dispatch ranges of all
shunt capacitors are from -0.2 to 0.2 MVar. We assume the
substation voltage is 1.05 p.u., and the voltage deviation limit
is 0.05 p.u.
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Fig. 3. The 33-node system with five tie-lines. The gray nodes are
assumed to be equipped with shunt capacitors.

1) Policy Network and Feature Selection: Based on the
system structure, the policy networks are shown in Fig. 4.
The tie-line operation policy network consists of three hidden
layers. We use the rectifier linear units (relu) as our activa-
tion functions. For the tie-line operation, the connectivity of
the system is essential, and thus the feature inputs are line
status. The shunt capacitor policy network has four hidden
layers. For this network, load status and real-valued power
flow are considered as feature inputs to extract the reactive
power effects on the local voltage and load pick-up. Two types
of activation functions are also compared.
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Fig. 4. Deep neural network based policy networks. (a) Tie-line opera-
tion policy network. (b) Shunt capacitor dispatch policy network.
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Fig. 5. Training performance of imitation learning BC and reinforcement
learning DQN and A2C under the N − 1 scenario. (a) Restoration ratio.
(b) Restoration value.
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Fig. 6. Training performance of imitation learning BC and reinforcement
learning DQN and A2C under the N − 5 scenario. (a) Restoration ratio.
(b) Restoration value.
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Fig. 7. Training performance of BC and HBC under the N − 1 scenario.
(a) Restoration ratio. (b) Restoration value.

2) IL v.s. RL for Network Reconfiguration under N-1 and N-
5 Contingencies: In this subsection, we compare the imitation
learning Algorithms 1 with two RL baseline algorithms, deep
Q-network (DQN) and advanced actor critic (A2C). The DQN
and A2C are implemented based on the reference in [40].
The N − 1 random contingency is considered first. The total
training episodes are 200. The restoration ratio and value
are shown in Fig. 5 (a) and (b), respectively. As shown, the
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Fig. 8. Training performance of BC and HBC under the N − 2 scenario.
(a) Restoration ratio. (b) Restoration value.

BC algorithm is able to optimally restore the system after
75 episodes of training, while DQN and A2C admit only
an averaged 45% restoration ratio over the 200 episodes.
The problem complexity due to the topology switching is
intractable for algorithms that heavily rely on exploration like
traditional RL.

For further verification, the N − 5 random contingency
is applied. Ten thousand training episodes are used. The
restoration ratio and value are shown in Fig. 6 (a) and (b),
respectively. With increasing complexity of the problem, the
advantage of BC compared with DQN is more significant as
BC can achieve more than 90% restoration ratio while DQN
stays at 15%. A2C performs better than DQN in the N − 5
scenario and still underperforms the IL with a 35% restoration
ratio deficit.

3) System Status during Restoration: A particular scenario
of N − 1 contingency is illustrated. In this scenario, Line
3 is damaged and tripped. Once the damage situation is
transmitted, the agent closes Tie-line 33 in the first step and
performs no further actions in the following steps to respect the
radiality constraint. The corresponding load energization status
and voltage profile are shown in Fig. 9 and 10, respectively.
Since Line 3 is upstream of the network, its outage causes de-
energization of 60% load. Fortunately, with the reconfiguration
through Tie-line 33, most of the loads have been picked up
except for Loads 11, 30, and 33. It is because energizing these
loads will violate the voltage security constraint as shown in
Fig. 10, which indicates the necessity of voltage compensation.
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Fig. 9. System load energization status under Line 3 outage.

Another scenario of N − 5 contingency is described, where
Lines 5, 6, 10, 14, and 18 are tripped. In response, the agent
then closes Tie-lines 37, 36, 34, 35, and 33 in sequence. As
shown in Fig. 11, several loads can be energized after each
step. At last, ten loads cannot be picked up due to the voltage
constraint, although all buses are connected through the tie-
lines. The voltage profile is depicted in Fig. 12.
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Fig. 10. System voltage profile under Line 3 outage.
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Fig. 11. System load energization status under Lines 5, 6, 10, 14, and
18 outages.

4) Hybrid Policy for N-1 and N-2 Contingencies: Under the
random N−1 contingency, the hybrid policy network is trained
for 200 episodes. In the var dispatch policy network, two
features are considered: load status and real-valued power flow.
The training performance is illustrated in Fig. 7. All metrics
are averaged within five steps. The BC algorithm has a lower
variation in the restoration ratio since the task only involves
discrete actions and relatively easier. But with var dispatch
capability, the hybrid agent is able to restore approximately 2
MW load in each episode as shown in Fig. 7 (b). As for the
features, real-valued power flow and the load status have the
similar performance.

A more complicated random N − 2 scenario is consid-
ered and train both BC and HBC agents for 2000 episodes.
Similarly, BC has a lower variation in the restoration ratio,
particularly when all algorithms achieve high restoration ratio
at around 400 episodes as shown in Fig. 8. Fig. 8 (b)
shows that the HBC agent can restore 2 MW more in each
episode, indicating that it is critical to have var support in
the resilient setting. The reason lies in the fact that the
reconfigured network may have longer feeders when there
are more line outages. Therefore, the voltage drops along
reconfigured feeders are more significant.

It is worth noting that with increasing numbers of line
damages the usage of shunt capacitors can be reduced since
the designated shunt capacitors may result in one of the
unenergized islands. Frequencies of the reactive power control
from N − 1 to N − 5 are calculated as in Fig. 13. With
increasing number of line outages, the usage of var dispatch
first increases as longer feeder may occur, and then decreases
due to the unenergized islands.

B. 119-Bus System
The second case study is demonstrated on the 119-bus

system. This system is an 11 kV distribution system with
15 tie-lines, which is particularly suitable to study network
reconfiguration and restoration. Detailed data of the system
can be found in [41]. We assume the substation voltage is
1.05 p.u., and the voltage deviation limit is 0.05 p.u. The
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Fig. 12. System voltage profile under Lines 5, 6, 10, 14, and 18 outages.
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Fig. 13. Averaged var dispatch frequencies of all shunt capacitor
dispatchers.

N − 1 random line outage is considered, and the tie-line
operation is considered for restoration. The restoration agent is
trained for 1000 episodes. The results are illustrated in Fig. 14.
The agent is able to achieve an 80% ratio after 400 episodes
and an 80% success rate after 600 episodes. Additionally, the
effect of integer numbers in MP-based expert on the training
performance is studied. The results of the 33-bus are used
for comparison. The episode after which the success rate is
above 80% is considered as a metric, denoted as the confident
episode. The results are summarized below in Table I. The
confident episode of 33-bus is 75, while the one of 119-bus
is 600. The ratio of the confident episode between 33-bus and
119-bus, which is eight, is close to the one of tie-line integer
numbers between these two cases, which is nine. Intuitively,
the integer variables that control the tie-lines should have a
dominant impact on the IL performance.
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Fig. 14. Training performance of BC under the N − 1 scenario. (a)
Restoration ratio. (b) Success rate.

TABLE I
EFFECT OF INTEGER NUMBERS IN MP-BASED EXPERT ON IL

PERFORMANCE

Case Integer number Tie-line integer number Confident episode

33-bus 6960 25 75
119-bus 226800 225 600



VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose the IL framework and HBC
algorithm for training intelligent agents to perform online
service restoration. We strategically design the MP-based
experts, who are able to provide optimal restoration actions for
the agent to imitate, and a series of MP-based environments
that agents can interact with. Agents that are trained under
the proposed framework can master the restoration skills
faster and better compared with RL methods. The agent
can perform optimal tie-line operations to reconfigure the
network and simultaneously dispatch reactive power of shunt
capacitors using the trained policy network. The decision-
making process has negligible computation costs and can be
readily deployed for online applications. Future efforts will
be devoted to feature extraction capability considering unique
power network structure as well as a multi-agent training
paradigm to incorporate distributed energy resources for the
build-up restoration strategy.
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