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H I G H L I G H T S

∙ Early prediction of capacity fade facilitates aging-focused design and manufacturing.

∙ Integrating empirical models with ML enhances accuracy and uncertainty calibration.

∙ Hybrid models achieve <2 % error in-distribution, <4 % error out-of-distribution (OOD).

∙ Probabilistic predictions yield calibrated uncertainty, even for OOD samples.
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A B S T R A C T

Early prediction of battery capacity degradation, including both the end of life and the entire degradation trajec-

tory, can accelerate aging-focused manufacturing and design processes. However, most state-of-the-art research 

on early capacity trajectory prediction focuses on developing purely data-driven approaches to predict the ca-

pacity fade trajectory of cells, which sometimes leads to overconfident models that generalize poorly. This work 

investigates three methods of integrating empirical capacity fade models into a machine learning framework 

to improve the model’s accuracy and uncertainty calibration when generalizing beyond the training dataset. A 

critical element of our framework is the end-to-end optimization problem formulated to simultaneously fit an 

empirical capacity fade model to estimate the capacity trajectory and train a machine learning model to estimate 

the parameters of the empirical model using features from early-life data. The proposed end-to-end learning ap-

proach achieves prediction accuracies of less than 2 % mean absolute error for in-distribution test samples and 

less than 4 % mean absolute error for out-of-distribution samples using standard machine learning algorithms. 

Additionally, the end-to-end framework is extended to enable probabilistic predictions, demonstrating that the 

model uncertainty estimates are appropriately calibrated, even for out-of-distribution samples.

1. Introduction

Capacity-trajectory prediction using capacity fade models is useful 

in all areas of battery design and operation. Examples, where capacity-

trajectory predictions prove useful, include new materials selection, 

manufacturing process optimization, charge/discharge protocol opti-

mization, and remaining useful life (RUL) prediction for predictive 

maintenance and control [1–4]. Predictive maintenance and control are

essential to the safe and reliable deployment of Li-ion batteries operat-

ing in the field. Furthermore, it is even more useful to estimate a battery 

cell’s capacity trajectory before the cell shows any noticeable capacity 

fade. Early capacity-trajectory prediction enables researchers to accel-

erate design and optimization efforts by reducing the time spent testing 

cells to understand their long-term capacity degradation behaviors and 

predict the RUL as early as possible. Additionally, there is growing
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interest in repurposing used electric vehicle (EV) batteries for second-

life storage applications, an application that requires understanding the 

entire capacity trajectory of a cell. Accurately predicting the cycle life of 

a battery cell in its second life requires understanding the entire degra-

dation trajectory of the cell that spans over both its first and second 

lives [5]. Gaining such an understanding using early-life data offers 

new and exciting opportunities, such as materials selection [6] and opti-

mal operation [7] for more reliable, cost-effective, and environmentally 

sustainable battery applications. In summary, early capacity-trajectory 

prediction tools will enable more efficient battery cell design, manufac-

turing process optimization, charge/discharge optimization, predictive 

maintenance, and evaluation for second-life use.

Early work focused on data-driven early prediction of battery life 

[8]. The focus was to investigate the aging spread between cells due 

to slight variations in the cell manufacturing process. The researchers 

cycled 48 lithium nickel manganese cobalt oxide (NMC) cells under the 

same conditions and used a regression model to group the cells with sim-

ilar cycle lives together. Their findings showed that more work needed 

to be done to understand whether it is feasible to determine the cy-

cle life of a cell using only information from its early life. This idea 

that a cell’s cycle life could be estimated using only early-life data came 

up again when researchers cycled 24 lithium cobalt oxide (LCO) pouch 

cells and analyzed the failure statistics [9]. They found a weak corre-

lation between a cell’s capacity at cycle 80 and its future capacity at 

cycle 500. These findings have recently spurred a new area of Li-ion 

battery research, now known as early life prediction. Notable work was 

done by Severson et al. [6], who built a data-driven regression model 

for early prediction of cycle life. This model took, as input, early-life 

statistical features extracted from a cell’s voltage (𝑉 ) vs. discharge ca-

pacity (𝑄) curves in the first 100 cycles and predicted the cell’s cycle life. 

These researchers are the first to demonstrate the concept of early cy-

cle life prediction on cells cycled under various fast-charging protocols. 

Also, their publicly available dataset [6,10], consisting of 169 lithium 

iron phosphate (LFP) cells with varying fast-charging protocols but an 

identical full-depth constant-current discharge protocol, has been widely 

used in the field for various studies. Some follow-up studies [11–14] 

aimed to further improve cycle-life predictive performance by examin-

ing alternative machine/deep learning models and features to the one 

originally proposed [6]. Later, early prediction of battery cycle life has 

been demonstrated in a large dataset consisting of 300 cells with six 

different types of cathode materials but mostly limited to low C-rate 

cycling [15]. More recently, researchers have applied early life predic-

tion using features extracted from periodic reference performance tests 

(RPTs) on a dataset of 225 NMC pouch cells with widely varying charge 

rates, discharge rates, and depths of discharge (DoD) [16]. Other no-

table research in this area has investigated estimating the knee point of 

Li-ion cell capacity fade curves. Researchers created a machine learning 

pipeline to estimate the knee point of Li-ion cells using many differ-

ent combinations of early-life statistical features, derived from capacity, 

current, voltage, and temperature measurements in fashions of both per-

cycle and cycle-to-cycle differences [17]. However, all these methods

were solely concerned with point predictions like cell end of life (EOL) 

or RUL. They did not predict the entire capacity trajectory that possesses 

more information on capacity fade behavior.

One way to tackle the problem of early capacity-trajectory pre-

diction is by building deep learning models based purely on data. 

Implementation of a sequence-to-sequence model with an encoder and 

decoder using four stacked long short-term memory (LSTM) recurrent 

neural networks has been demonstrated to predict both capacity and in-

ternal resistance trajectories for 48 NMC 18650 cells [18,19]. However, 

since the dataset was relatively small and the trajectories to predict were 

similar due to the identical cycling conditions, training a deep learn-

ing model on this small dataset tended to cause overfitting issues, and 

the model’s generalization performance could be poor on a new dataset 

whose input feature distribution differs from the training data distri-

bution. Alternatively, researchers demonstrated in two recent studies 

[20,21] reconstructing the capacity trajectory of a cell by first predict-

ing representative points of the trajectory, such as the knee point, knee 

onset, EOL point, or points with equidistant capacity values. However, 

in these two studies, the reconstruction was either based on a piecewise 

cubic Hermite interpolating polynomial (PCHIP) interpolation [21] or 

a modified cubic spline [20], which lacked interpretability about dif-

ferent degradation trends experienced by cells. Fig. 1 highlights some 

publications in the past five years that solved some unique problems in 

the domain of battery early prediction.

In numerous studies on battery degradation modeling or battery 

prognostics, empirical capacity fade models were shown to capture 

the capacity fade trend for battery cells tested under a wide range of 

cycling conditions. However, these studies only focused on offline ca-

pacity trajectory fitting and did not tackle challenges associated with 

integrating empirical modeling with data-driven machine learning for 

early capacity-trajectory prediction. Hence, there is a gap in our cur-

rent knowledge of how combining empirical capacity fade modeling 

and data-driven machine learning can enable early, high-performance 

prediction of the entire capacity trajectory. Desirable model perfor-

mance includes higher prediction accuracy, reduced computational 

burden, better generalization, earlier prediction, and more accurate 

quantification of predictive uncertainty.

This study aims to fill the knowledge gap by improving data-driven 

machine learning models by augmenting them with the knowledge of 

capacity fade from empirical models. Fig. 2 provides an overview of our 

problem definition, and our contributions to the body of knowledge on 

early life prediction are elaborated in what follows.

• First, we benchmark three different approaches to combining a ma-

chine learning model with an empirical capacity model. A novel ap-

proach proposed in this paper is an end-to-end learning framework, 

which simultaneously fits a selected empirical model to estimate the 

capacity trajectory and trains a machine learning model to estimate 

the parameters of the empirical model using early-life data.

• Second, we implement and examine both deterministic and

probabilistic configurations of the proposed end-to-end learning

Fig. 1. A timeline highlighting some selected key problems solved in the field of battery early prediction during the past five years. This list is by no means exhaustive, 

and there may be other important early prediction problems that have been solved but are not reported in this timeline.
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Fig. 2. An overview of the early trajectory prediction problem studied in this work.

framework and study the importance of uncertainty quantification 

in the context of early capacity-trajectory prediction. We use the 

neural network ensemble approach to quantify the predictive un-

certainty. As a result, the end-to-end learning framework is uniquely 

flexible, allowing for either deterministic or probabilistic prediction 

of a capacity trajectory, in addition to the selection of any commonly 

reported empirical capacity fade model and machine learning model.

The rest of the paper is organized as follows. Section 2 briefly re-

views the background of battery prognostics. Section 3 summarizes the 

battery aging dataset and the empirical capacity model used in this 

study. Section 4 details the methodology enabling the early capacity-

trajectory predictions by coupling machine learning with an empirical 

model. Section 5 compares and discusses the prediction performances 

of different prediction approaches. Section 6 presents two benchmark-

ing studies for the proposed end-to-end learning framework. The paper 

is concluded in Section 7.

2. Background of battery prognostics

Closely related to battery early capacity-trajectory prediction is bat-

tery prognostics. Many studies in this area have been conducted over 

the past decade. These studies attempted capacity-trajectory predic-

tion to estimate a cell’s RUL [22]. Battery prognostic methods can be 

broadly categorized as model-based and data-driven [23,24]. A com-

mon feature shared by model-based methods is that they use either 

a physics-based or an empirical model. Examples include mechanis-

tic models depicting the evolution of degradation mechanisms [25,26], 

empirical half-cell models quantifying degradation modes [4,27–29], 

Arrhenius equation-based temperature-dependent capacity degradation 

models [30], equivalent circuit models depicting electrical performance

[31], or empirical capacity fade models depicting the evolution of ca-

pacity [2,32–35]. Prognostic methods based on mechanistic models 

consider electrochemical processes internal to a cell. Because of this, 

these methods generalize well to new, “unseen” cells that were not used 

to develop the mechanistic models. However, the practical adoption 

of these methods may be limited by high computation costs, signifi-

cant expertise required, and difficulties in identifying model parameters. 

Some prognostic methods based on equivalent circuit models take into 

account, to some extent, aging mechanisms by modeling how a cell’s 

internal resistance grows over time/cycle. However, a typical prereq-

uisite for adopting these methods is having access to specialized, often 

expensive test equipment for electrochemical impedance spectroscopy. 

Researchers in [36] performed small-scale calendar-life tests and fit em-

pirical aging models to predict cell resistance as a function of time. 

Prognostic methods based on empirical models, such as those in [36], 

are popular because they are relatively easy to develop, have shown 

adequate accuracy, and exhibit good generalization performance. The 

most widely used way to implement empirical models is to perform re-

cursive filtering that estimates on the fly the parameters of an empirical 

model using the most recent capacity/resistance measurements from an 

operating cell. Popular recursive filtering algorithms include extended 

Kalman filters [37], unscented Kalman filters [38], and particle filters 

[2,33,39], each with increasing computation cost and estimation capa-

bility. One of the most desired attributes of recursive filtering algorithms 

is their ability to output probabilistic predictions. This attribute allows 

them the ease of integration into a robust decision-making framework. 

However, empirical model-based methods work well only when they 

have access to a large amount of historical aging data (capacity fade or 

resistance increase) from an online cell that has shown noticeable degra-

dation. Such data will allow for an accurate estimation of the cell’s future
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degradation trajectory. This is also a common drawback for most exist-

ing battery prognostics methods: they generally need access to a major 

portion (more than the first 40 %) of the entire capacity trajectory from 

a cell to estimate empirical model parameters [23]. Another drawback is 

their inability to share information from an offline cell that has reached 

its EOL with an online cell whose EOL and RUL are unknown and need 

to be estimated or between online cells. Specifically, the current prac-

tice of updating empirical models cannot incorporate extra information 

about previous best-fit parameters from offline cells or other cells in the 

online fleet. Given the rapidly growing size of modern battery datasets, 

this lack of shared information quickly becomes a major issue, making 

data-driven methods an attractive alternative.

On the other hand, data-driven methods predict the capacity degra-

dation of an online cell based on training data collected from a set 

of offline cells using machine learning techniques. Some examples of 

commonly used machine learning techniques are support vector ma-

chine [40], relevance vector machine [41], Gaussian process regression 

[42], and neural networks [43,44]. Also, deep learning models like 

LSTM models have been widely applied to battery prognostics prob-

lems [45–47]. Recently, the battery prognostics community has placed 

an emphasis on developing prediction models with predictive uncer-

tainty quantification. Gaussian process regression, a classic approach 

to achieving probabilistic predictions, is applied to forecast the state 

of health of cells from different starting points [42]. One recent work 

proposed a Bayesian neural network to learn from battery aging data 

and predict battery RUL with uncertainty quantification [48]. The pro-

posed method was unique in that the Bayesian neural network could be 

trained using data from units that had not yet failed, reducing the over-

all amount of training data required. Another recent work proposed a 

neural network ensemble to predict the entire capacity trajectory using 

only early-life data [47]. For cells with extremely long cycle lives, which 

are considered out-of-distribution samples, the predictive uncertainties 

from this proposed method are noticeably higher than those of short-life 

cells. Furthermore, to provide more reliable uncertainty predictions, re-

searchers proposed and demonstrated a framework to jointly calibrate 

the predictive, aleatory, and epistemic uncertainties while training a 

Bayesian deep network on predicting battery RUL [49].

3. Overview of the dataset and the empirical capacity fade model 

3.1. Battery aging dataset

In this study, the ISU-ILCC battery aging dataset is used to assess 

the performance of the proposed methodology for predicting capacity 

trajectories for cells undergoing varying aging conditions [16,50]. This 

dataset consists of 251 cells cycled under 63 unique combinations of cy-

cling stress factors (charge rate, discharge rate, and DoD). Due to the 

differences in stress factors, especially the differences in DoD, there is 

no available measurement from such data to accurately track cells’ SOH. 

Thus, weekly RPTs were used to provide slow-rate, full-depth measure-

ments for evaluating the SOH of cells and extracting early life features. 

From Fig. 3a, we can observe wide-varying capacity trajectories across 

different cells due to both the cell-to-cell intrinsic variation and the 

difference in aging conditions [16]. Note that, these capacity trajec-

tories are constructed using the remaining discharged capacity values 

measured in the C/5 cycle of RPTs.

3.2. Preprocessing for battery aging data

There are three major steps to preprocess the collected data for em-

pirical model fitting as well as capacity trajectory prediction, which are 

normalization, removal of fast-aging cells, and interpolation of capacity 

trajectory.

The need for interpolating trajectories arises from the fact that differ-

ent cells may have different numbers of RPT data points before reaching 

the EOL. For example, as shown in Fig. 3b, G57C2 – a long-life cell – 

has many more RPT measurements than G30C1 – a short-life cell. Our

goal for interpolation is to transform the capacity trajectory from any 

cell into a vector of length 𝑚, and stacking multiple trajectories of dif-

ferent cells results in a rectangular matrix with no missing value. This 

allows an easier implementation of our methodology for capacity trajec-

tory predictions compared with the raw data with different lengths in 

trajectories.

First, we normalize each cell’s capacity data by dividing each capac-

ity measurement by the value of the first capacity measurement. After 

normalization, the capacity data of each cell started at a normalized 

capacity of 1.0 (or 100 % on a percentage scale). Second, cells are re-

moved if they meet one of the conditions: (1) less than 5 RPTs before 

reaching the end-of-life threshold (80 % remaining capacity) and (2) 

less than 10 RPTs before reaching 70 % remaining capacity. Third, we 

interpolate the capacity measurements using a PCHIP interpolation such 

that the interpolated data points are equidistant for every 1 % capacity 

drop until the cell reaches 80 % remaining capacity (𝑚 = 21). From two 

representative cells shown in Fig. 3c, both G57C2 and G30C1 have the 

same number of data points for the trajectory after interpolation. After 

interpolation, capacity trajectories for multiple cells can be easily repre-

sented by two rectangular matrices, one for capacity and the other one 

for Ah-throughput, which are

𝐐 𝑛×21 =

⎡

⎢

⎢

⎢

⎢ 

⎣

1 0.99 ⋯ 0.81 0.80 

1 0.99 ⋯ 0.81 0.80
⋮ ⋮ ⋱ ⋮ ⋮
1 0.99 ⋯ 0.81 0.80 

⎤

⎥ 

⎥ 

⎥ 

⎥

⎦

,

𝐍 𝑛×21 =

⎡

⎢

⎢

⎢

⎢ 

⎣

0 𝑁 1,2 ⋯ 𝑁 1,20 𝑁 1,21
0 𝑁 2,2 ⋯ 𝑁 2,20 𝑁 2,21
⋮ ⋮ ⋱ ⋮ ⋮
0 𝑁 𝑛,2 ⋯ 𝑁 𝑛,20 𝑁 𝑛,21

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

, (1)

where 𝑛 represents the number of cells to be represented in the matrices, 

and 𝑁 𝑖,𝑗 

is the Ah-throughput corresponding to the element 𝑄 𝑖,𝑗 

in the

normalized capacity matrix 𝐐.
There is a clear rationale behind establishing the aforementioned cri-

teria for removing fast-aging cells. The first condition is imposed because 

early-life features were extracted from the initial and week 3 RPTs (i.e., 

the first and fourth RPTs in the trajectory, or the first and fifth if the 

cells undergo an additional week 0.5 RPT). As a result, performing early 

capacity trajectory predictions on these cells would hold no value be-

cause they would have already reached EOL even before the predictions 

could be made. The second condition ensures a sufficient number of 

data points are available to represent the overall trajectory during the 

interpolation process. When the true measurements on a capacity trajec-

tory are too few, the underlying relationship between charge throughput 

and remaining capacity becomes underrepresented. Including interpo-

lated curves based on such insufficient data could introduce unnecessary 

noises and errors into the modeling process. Additionally, a cell with 

fewer than 10 RPTs before reaching 70 % remaining capacity would hit 

EOL (i.e., 80 % remaining capacity) even earlier. In this case, the early 

prediction point – occurring at the fourth RPT (or fifth if an additional 

week 0.5 RPT is included) – would be too close to, or even beyond, 50 % 

of the cell’s total lifetime. This proximity undermines the validity of the 

prediction as an “early prediction”.

Although removing fast-aging cells might raise concerns about sub-

jective biases, early life prediction is a one-time process, and its practical

relevance increases when made further away from EOL. Thus, removing 

these cells based on the above-outlined criteria is expected to have a 

minimal impact on the generalizability and practical significance of the 

early prediction models.

3.3. Data partition for trajectory prediction

Once the preprocessing is done, cells are partitioned into three sub-

sets based on their associated groups defined by the three stress factors, 

following the methodology of the original study on this aging dataset
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Fig. 3. Overview of the trajectory from cells in the dataset. (a) Capacity trajectories for all cells; (b) the data collected in RPTs for constructing the capacity trajectories 

for a long-life cell (G57C2) and a short-life cell (G30C1); (c) The capacity trajectories for the two cells on (b) constructed by interpolated data points using equidistant 

remaining capacity points; (d) An error histogram of fitting the empirical capacity fade model in Eq. (2) on the entire dataset; (e) An error histogram of fitting the 

empirical capacity fade model in Eq. (2) on the training set.
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Fig. 4. Overview of the dataset partition. (a) Scatter plot of cycling conditions for each group, colored by its assigned subset after partitioning. (b) Group mean 

lifetime (in weeks) against DoD, measured by time on test. (c) Group mean lifetime against DoD, measured by total Ah-throughput. (d–f) Capacity trajectories for 

cells in three different subsets: (d) training set, (e) high-DoD test set, and (f) low-DoD test set.

[16]. Fig. 4a shows the results of this group-based partition. This parti-

tioning approach is designed to simulate a battery modeling workflow, 

starting from the experimental design phase. When we want to collect 

some run-to-EOL aging data to build an early prediction model, the only 

controllable parameters are cycling conditions. The trained model is 

then used to predict aging trajectories under unknown conditions after 

observing the cells for a short duration under these controlled cycling 

conditions. First, the dataset is split into two subsets based on a DoD

threshold of 40 %, and the subset with DoD less than 40 % is desig-

nated as the low-DoD test set. As shown in Fig. 4b, cells in the low-DoD 

region can take up to 50 weeks of cycling to reach EOL at 80 % remain-

ing capacity, while most groups in the high-DoD region reached EOL 

within 25 weeks of cycling. Such a partition strategy simulates an accel-

erated modeling approach where groups reaching EOL faster are used 

for training. This approach can reduce the time and cost of the overall 

modeling process. Also, despite differences in cycling C-rates, groups
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cycled at lower DoDs tend to withstand higher total Ah-throughput 

(or more full equivalent cycles) before reaching EOL, as depicted in 

Fig. 4c. Second, the subset with DoD ≥ 40 % is further divided into a 

training set and a high-DoD test set. The training groups are randomly 

picked to adequately cover the test design space above 40 % DoD, ensur-

ing that the high-DoD test serves as an interpolation test set with respect 

to cycling conditions. After partitioning, the dataset contains 30 groups 

in the training set, 16 groups in the low-DoD test set, and 16 groups in the 

high-DoD test. The capacity trajectories for the valid cells in each subset 

are shown in Fig. 4d–f. By comparing different subsets, we observe that 

capacity trajectories in the training set exhibit patterns similar to those 

of the high-DoD test set, where most cells exhibit a three-stage capacity 

fade behavior. Unlike the training and high-DoD test set, the low-DoD 

test set contains more cells with longer lifetimes, showing only two-stage 

trajectories. This comparison signifies that (1) the high-DoD test set rep-

resents in-distribution test samples and (2) the low-DoD test set serves 

as an out-of-distribution test case, allowing evaluation of the extrapola-

tion capability of different prediction methods. It is important to note 

that the feature engineering and trajectory prediction approaches dis-

cussed later in this work learn exclusively from the training set to avoid 

potential data leakage from test data.

3.4. Empirical capacity fade model

The battery research community has reported several empirical mod-

els with different algebraic expressions that accurately model Li-ion 

battery capacity fade trends at different stages of their lifespan, such 

as the linear term [2,51], the exponential term [2,34,41], the power-

law term [35,41], and the sigmoid term [51,52]. To encode the idea 

that separate terms carry information related to cell degradation modes 

and only cause capacity drops in the empirical capacity fade model, we 

force all parameters to be positive real numbers. In this paper, we con-

sider a hybrid empirical model blending a power-law term and a sigmoid 

term to better capture the three-stage degradation trend in the ISU-ILCC 

battery aging dataset. The empirical model is expressed as

𝑄(𝑁 ; 𝑎, 𝑏 1 

, 𝑏 2 

, 𝑏 3 

) = 1 − 𝑏 1 

𝑁 

𝑎 − 1
1 + exp 𝑏 2−𝑁

 

, (2)

𝑏3

where 𝑁 represents the Ah-throughput of the cell, 𝑎 is the power-law co-

efficient that is fitted to the entire dataset as a global parameter, and 𝑏 1, 

𝑏 2 

, and 𝑏 3 

are local parameters that are fitted to each individual cell. 

The power-law term with 𝑎 < 1 intends to capture the initial rapid 

degradation mainly due to the SEI formation and the following close-

to-linear slow degradation, and the sigmoid term is designed to capture 

the degradation when the “knee point” effect [53] (i.e., the accelerating 

degradation trend after cells age to a certain level) kicks in.

After that, we utilize a multi-level empirical model fitting strategy 

inspired by the work of Gasper et al. [52], in which we first identify 

the best global parameter 𝑎 over the entire dataset and then fit local pa-

rameters (𝑏 1 

, 𝑏 2 

, and 𝑏 3 

) to each cell individually. The fitting error of the 

entire dataset consisting of 205 valid cells is 0.57 % mean absolute error 

(MAE), and Fig. 3d shows the fitting accuracy over the entire dataset. 

Also, to estimate the empirical model parameters for cells in the training 

set, the model is fitted only to the training set of 92 cells, which yields 

a mean fitting MAE of 0.63 %.

One limitation of this empirical model, and its resulting trajectory 

predictions, is that it considers only cyclic aging effects on the cells while 

excluding calendar aging effects. The main reason for excluding calendar 

aging effects is the lack of a well-designed calendar aging test campaign 

for the type of cell used in the cycling aging test. Also, this empirical 

model is not a one-solution-fits-all, particularly in cases where cells do 

not exhibit a knee-point effect or experience a sudden shift in cycling 

conditions in the middle of their lifespan. Although the model can be 

adapted to accommodate different pre-knee aging behaviors by adjust-

ing the exponent of the power-law term – resulting in linear degradation 

if 𝑎 = 1 or continuously accelerating degradation if 𝑎 > 1 – the presence

of the sigmoid term still limits the model’s effectiveness on datasets lack-

ing a distinct knee-point effect. The benchmarking dataset presented in 

Section 6.1, for example, contains cells that mostly do not exhibit an ap-

parent knee-point transition, necessitating the removal of the sigmoid 

term from the empirical model used for that dataset. Furthermore, the 

model does not inherently account for abrupt changes in cycling condi-

tions, which could occur in scenarios such as second-life repurposing. In 

these scenarios, cells may be first subjected to EV duty cycles simulating 

first-life usage before transitioning to grid storage duty cycles simulating 

second-life usage. Such shifts in operating conditions introduce complex 

degradation behaviors that may not be adequately captured by the cur-

rent empirical modeling framework, requiring additional modifications 

or hybrid modeling approaches to improve predictive accuracy.

4. Empirical model-informed trajectory prediction

In this section, we present different approaches to early capacity-

trajectory prediction, with the assistance of an empirical capacity model 

and features extracted from early-life data. First, we discuss the method 

for feature engineering from early-life data and the rationale behind 

choosing it. Following that, we break down the details for capacity-

trajectory prediction by coupling the empirical model with machine 

learning in three distinct ways. In addition, we introduce the ensem-

ble learning approach for the novel end-to-end framework to enable a 

probabilistic prediction of the capacity trajectory.

4.1. Feature engineering from early-life data

In the original study on this dataset [16], the researchers ex-

tracted a set of 29 early-life features derived from cycling conditions, 

discharge capacity values, constant-voltage charging curves, capacity– 

voltage curves, incremental capacity curves, and differential voltage 

curves. A detailed description of all 29 extracted features is included 

in Table A.1. The previous study focused exclusively on predicting the 

EOL, and the complete set of features was down-selected using a step-

wise forward search method, optimizing for prediction performance 

based on a linear regression model. However, in this study, where the 

focus is on predicting the capacity trajectory via three diverging uti-

lizations of empirical capacity models, a supervised feature selection 

method (e.g., ranking using Pearson’s correlation coefficients, a step-

wise forward/backward search) is challenging to implement because 

the input/output pairs are different for each method. Thus, a princi-

pal component analysis (PCA) model is applied to the training dataset 

to perform feature decomposition. The main purpose of PCA is to iden-

tify orthogonal bases that can explain most of the variance in the data 

while reducing the dimensionality. PCA is achieved by performing a lin-

ear transformation on the feature space [54], which can be expressed as

𝐏𝐗 ob 

= 𝐗 pca , (3)

where 𝐏 is the transformation matrix mapping the feature data repre-

sented on the original basis (𝐗 ob 

) to the principal basis (𝐗 pca 

). Since the 

available RPT data is collected at fixed cycling time intervals instead of 

cycle counts, the early-life dataset includes the periodic RPTs from the 

first three weeks of aging. Early-life features are extracted from data col-

lected during the initial RPT at the beginning of life and the RPT after 

three weeks of cycling, following the same methodology as the preced-

ing work [16]. Also, to avoid data leakage, PCA is only applied to the 

training set to obtain the transformation matrix, and only the top 10 

PCA features are selected, which explain over 95 % of the variance of 

the features in the training set.

4.2. Knot point-based battery capacity trajectory prediction

The first approach we benchmark for predicting the capacity trajec-

tories is inspired by the state-of-the-art, in which some specific points 

in a trajectory are predicted to reconstruct the entire trajectory [20,21]. 

More specifically, the work by Kim et al. [21] predicts the number of
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Fig. 5. Overview of capacity trajectory prediction approaches. (a) Knot point-based prediction of empirical model parameters; (b) sequential prediction of empirical 

model parameters; (c) end-to-end prediction of empirical model parameters.

cycles between several predetermined SOH values and reconstructs the 

trajectory using PCHIP interpolation. Meanwhile, the work by Ibraheem 

et al. [20] simultaneously predicts the cycle numbers and capacity val-

ues at the knee onset and the knee point, and the reconstruction is done 

by fitting modified three-stage quadratic splines, with each term con-

necting between a pair of consecutive points. In our study, we formulate 

the first approach for capacity trajectory prediction following two steps:

(1) predicting the location of four equidistant knot points selected based 

on normalized remaining capacity values and (2) fitting the predicted 

points with the empirical model (see Fig. 5a).

The five equidistant knot points to be predicted are at 

[96 %, 92 %, 88 %, 84 %, 80 %] remaining capacity, and the target to 

predict from the machine learning model is the difference of Ah-

throughput values between each location. The reason for predicting 

the difference between each location instead of the location directly is 

to ensure the monotonicity of the predicted trajectory, which is easily 

enforced by using ReLU activation functions at the output layer. After 

predicting the five points and combining these with the beginning 

of life (i.e., 100 % remaining capacity with an Ah-throughput of 0), 

the empirical model in Eq. (2) is fitted to a total of six points, and 

the empirical model parameters are obtained for each cell. Then, 

the prediction error is evaluated using the empirical model with the 

obtained parameters, which is a univariate function of Ah-throughput 

for capacity, at each Ah-throughput value of the capacity data.

4.3. Sequential optimization for battery capacity trajectory prediction

Early prediction of a battery cell’s capacity trajectory using the 

sequential optimization method involves two optimization processes:

(1) fitting the empirical model to a cell’s trajectory and obtaining the 

optimal set of parameters; (2) training a machine learning model to 

estimate these parameters using PCA features extracted from early-

life data (see the overview in Fig. 5b). In this study, we consider two

machine learning algorithms for mapping early-life features to empirical 

capacity model parameters: (1) elastic-net regularized linear regression 

(ENR) and (2) multi-layer perceptron neural network (MLP). To better 

illustrate this approach and draw differences from the end-to-end opti-

mization method introduced in the following subsection, we present the 

mathematical formulation for sequential optimization using an elastic 

net regression model.

The first step is a curve-fitting problem that minimizes the mean 

squared error (MSE), formulated for one cell as

min
𝑎,𝑏 1 

,𝑏 2 

,𝑏 3

1
2𝑚

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

𝟏 1×𝑚−

power-law term
⏞⏞⏞
𝑏 1 

𝐍𝑎 

1×𝑚 

−

sigmoid term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝟏 1×𝑚 

⊘ 

( 

𝟏 + exp 

𝑏 2 

𝟏 1×𝑚 

− 𝐍 1×𝑚

𝑏 3

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ 

fitted trajectory

− 𝐪 1×𝑚
⏟⏟⏟

true trajectory

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

2

2

,

s.t. 0.4 ≤ 𝑎 ≤ 0.6 ,

10 

−6 ≤ 𝑏 1 

≤ 1 ,

100 ≤ 𝑏 2 

≤ 2000 ,

10 ≤ 𝑏 3 

≤ 500 ,

(4)

where 𝑏 1 

, 𝑏 2 

, and 𝑏 3 are scalars representing the local empirical model

parameters for the given cell, and 𝑎 is a scalar representing the global

parameter shared across the entire dataset. The first three terms in

Eq. (4) are the fitted trajectory using the empirical capacity fade model

in Eq. (2), and the fourth term represents the true capacity measure-

ments that the empirical model is fitted to. Here, since we only consider

one cell, the Ah-throughput measurement 𝐍 ∈ R 

𝑚 , the corresponding 

capacity 𝐪 ∈ R 

𝑚 , and a unity vector 𝟏 ∈ R 

𝑚 are all vectors of 𝑚 ele-

ments, where 𝑚 denotes the number of interpolated measurements on a 

capacity trajectory.
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This optimization problem is non-convex (i.e., no analytical global 

optimum can be derived). To improve convergence, we provide initial 

parameter guesses to the optimization algorithm and set bounds based 

on expected behavior and the numerical values of Ah-throughput. For 

the exponent of the power-law term (global parameter 𝑎), an expected 

value of 0.5 is widely reported in the capacity modeling literature, pri-

marily capturing SEI formation and other surface-related degradation 

mechanisms during initial cycles [52,55]. To accommodate dataset flex-

ibility, we set a bound between 0.4 and 0.6. The local parameters 𝑏 2 

and 𝑏 3 

control the onset and slope of the expected knee-point effect, 

respectively. The bounds for these two parameters, along with the coef-

ficient of the power-law term (𝑏 1 

), are determined based on numerical 

experiments on the dataset to ensure expected model behavior. 

Expanding this optimization problem to the case with multiple cells,

the minimization of curve-fitting MSE becomes, in a matrix form,

min
𝑎,𝐛

1
2𝑛𝑚

‖

‖

‖ 

‖ 

𝟏 𝑛×𝑚 −

power-law terms 

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐛 1 

𝟏 1×𝑚 ⊗ 𝐍 

𝑎
𝑛×𝑚 

−

sigmoid terms
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝟏 𝑛×𝑚 ⊘

(

𝟏𝑛×𝑚 + exp
(

𝐛2 

𝟏 1×𝑚 

− 𝐍 𝑛×𝑚 

) 

⊘ 𝐛 3 

𝟏 1×𝑚 

) 

−

true trajectories
⏞⏞⏞
𝐐 𝑛×𝑚

‖ 

‖ 

‖ 

‖ 

2

F
,

(5)

s.t. 0.4 ≤ 𝑎 ≤ 0.6 ,

10 

−6 ≤ 𝑏 1,𝑗 

≤ 1, 𝑏 1,𝑗 

∈ 𝐛 1 

= [𝑏 1,1 

, 𝑏 1,2 

,… , 𝑏 1,𝑛 

] , 

100 ≤ 𝑏 2,𝑗 

≤ 2000, 𝑏 2,𝑗 

∈ 𝐛 2 

= [𝑏 2,1 

, 𝑏 2,2 

,… , 𝑏 2,𝑛 

] ,

10 ≤ 𝑏 3,𝑗 ≤ 500, 𝑏 3,𝑗 

∈ 𝐛 3 = [𝑏 3,1 

, 𝑏 3,2 

,… , 𝑏 3,𝑛 

] , 

where 𝑛 is the number of cells. When considering 𝑛 cells together, instead 

of in the form of a vector for one cell, the Ah-throughput for 𝑛 cells is a 

matrix 𝐍 ∈ R 

𝑛×𝑚 and the corresponding capacity is a matrix 𝐐 ∈ R 

𝑛×𝑚 .

Thus, each term inside the norm is a matrix with a shape of 𝑛 × 𝑚. Here, 

since 𝐛 𝑖 

∈ R 

𝑛 

| 𝑖=1,2,3 

are column vectors of empirical model parameters 

of 𝑛 cells, a unity vector 𝟏 1×𝑚 

is introduced to broadcast the empirical

model parameter vectors into 𝑛×𝑚 matrices for element-wise operations. 

The subscript in ‖ ⋅ ‖ F 

denotes the Frobenius norm of a matrix, which is 

equivalent to the L2-norm of a vector.

Once the empirical model parameters are obtained from all cells in 

the training set, a multi-task elastic net regularized linear regression 

model is trained to predict the local parameters using early life features. 

The training process by minimizing the MSE of labels (i.e., the fitted 

empirical model parameters) is specified as

min
𝐖

1
2 𝑛

‖

‖ 

𝐗 𝑛×𝑘 

𝐖 𝑘×3 

− 𝐁 𝑛×3
‖

‖

2
F + 𝛼 

(𝜌
2
‖𝐖 𝑘×3‖

2
F
+ (1 − 𝜌)‖𝐖 𝑘×3 

‖ 1

) 

, (6)

where 𝐗 ∈ R 

𝑛×𝑘 is the extracted from early-life data, 𝐁 ∈ R 

𝑛×3 is the

optimized empirical model parameters of all training cells, and 𝐖 ∈ 

R 

𝑘×3 is the weight assigned to each feature for three tasks separately 

(i.e., predicting the three empirical parameters). Here, 𝑘 represents the 

number of early-life features. Two hyperparameters, 𝜌 and 𝛼, are the 

ratio between L1 and L2 penalization and the regularization parameter, 

respectively. Similarly, this process of training an elastic net regression 

model can be replaced with the backpropagation algorithm for training 

an MLP network. 

4.4. End-to-end optimization for battery capacity trajectory prediction

Instead of following a two-step optimization for predicting the empir-

ical model parameters as discussed in Section 4.3, the distinct difference 

of an end-to-end optimization framework is that there is only one opti-

mization that performs both learning tasks simultaneously (see Fig. 5c). 

Specifically, when we train a model using the end-to-end optimization 

regardless of the machine learning approach, the loss is evaluated based 

on the predicted trajectories from the empirical model and the true ca-

pacity trajectories are considered as the ground truth. By embedding the

empirical model into the loss function, both curve fitting and empirical 

parameter learning can be achieved within a single optimization process. 

The idea of an end-to-end optimization framework was introduced in a 

brief conference proceeding [56], along with some preliminary results 

obtained using the publicly available 124-cell LFP dataset [6]. However, 

in this work, we aim to present a more complete study on a dataset with 

a more significant divergence in observed capacity trajectories, which 

means a more challenging early capacity-trajectory prediction problem. 

In the case of utilizing a multi-task elastic net regressor as the ma-

chine learning model in the end-to-end optimization framework and 

neglecting constraints on bounds for the empirical model parameters, 

the optimization problem is formulated with a single objective

min
̂ 𝐛 1 , ̂

 𝐛2 

, ̂𝐛 3

1
2𝑛𝑚

‖

‖

‖ 

‖ 

𝟏 𝑛×𝑚 −

predicted power-law terms
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
�̂� 1 

𝟏 1×𝑚 ⊗ 𝐍 

𝑎
𝑛×𝑚 

−

predicted sigmoid terms
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

(

�̂�2 

𝟏 1×𝑚 

− 𝐍 𝑛×𝑚 

) 

⊘ 

̂ 𝐛 3 

𝟏 1×𝑚 

) −

true trajectories
⏞⏞⏞
𝐐 𝑛×𝑚

‖

‖

‖

‖

2

F

+

elastic net regularization
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝛼 

( 

𝜌‖‖
‖

𝐖𝑘×3
‖

‖

‖

2

F
+(1 − 𝜌)‖‖

‖

𝐖𝑘×3
‖ 

‖ 

‖1

) 

, (7)

s.t. �̂� 1 = 𝐗𝐰 1 ,

�̂� 2 = 𝐗𝐰 2 ,

�̂� 3 = 𝐗𝐰 3 .

In this single objective, the empirical model parameters (̂ 𝐁 = [ ̂𝐛 1, ̂

 𝐛 2 

, ̂

 𝐛 3 

])
are predicted from a multi-task elastic net regression model originated 

from Eq. (6) with a weight matrix 𝐖 = [𝐰 1 

,𝐰 2 

,𝐰 3 

]. The weights for 

each individual parameter 𝐰 𝑖 

| 𝑖=1,2,3 are column vectors with a shape of

𝑘 × 1. Then, the MSE loss (overall prediction performance) is calculated 

between the predicted trajectories and the true capacity trajectories 𝐐,
which requires the Ah-throughput of equidistant capacity 𝐍 𝑛×𝑚 defined

in Eq. (1) as an additional input to the loss function. This formulation 

can then be simplified into one equation with constraints as

min
𝐖

1
2𝑛𝑚

‖

‖

‖

𝟏 𝑛×𝑚 

− 𝐗𝐰 1 

𝟏 1×𝑚 ⊗ 𝐍 

𝑎 

𝑛×𝑚 

− 𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

( 

𝐗𝐰2 

𝟏 1×𝑚 

− 𝐍 𝑛×𝑚 

) 

⊘ 𝐗𝐰 3 

𝟏 1×𝑚 

) − 𝐐 𝑛×𝑚
‖

‖

‖

2

F

+ 𝛼 

(

𝜌 

‖ 

‖

‖

𝐖𝑘×3
‖ 

‖ 

‖ 

2

F
+(1 − 𝜌) 

‖

‖

‖

𝐖 𝑘×3
‖ 

‖ 

‖1

) 

, (8)

s.t. min (𝐗𝐰 1) > 0 , 

min (𝐗𝐰 2) > 0 , 

min (𝐗𝐰 3) > 0 . 

Compared to the sequential optimization that can be easily implemented 

via various curve fitting and machine learning toolboxes, the implemen-

tation of an end-to-end framework is not as straightforward, especially 

in the case of elastic net regression. The end-to-end optimization prob-

lem in Eq. (8) is hand-coded into a non-linear optimizer to find the 

weights 𝐖. So, to avoid convergence issues from enforcing too many 

non-differentiable constraints (as shown in Eq. 5), we only implement 

three constraints to ensure all predicted empirical model parameters 

during the training process are strictly positive. 

In both the sequential optimization and end-to-end approaches, ma-

chine learning models (e.g., an elastic net regressor or an MLP network) 

take PCA-transformed early-life features as the input and predict the 

empirical model parameters. The key distinction between these two 

early trajectory prediction approaches lies in the loss function design. 

Specifically, the end-to-end approach employs a custom loss function, 

as shown in Eq. (8) for an elastic net regressor, which directly embeds 

the empirical model to guide the optimization process. This elimi-

nates the need for an intermediate step to generate labels for machine

Applied Energy 389 (2025) 125703 

8 



T. Li, J. Liu, A. Thelen et al.

learning (i.e., obtaining empirical model parameters via curve fitting). 

Disregarding the regularization terms, the prediction error of the end-

to-end framework should always be lower than that of its sequential 

optimization counterpart. A more detailed mathematical proof is shown 

in Section A.2, which yields

1
2𝑛𝑚

‖

‖

‖

𝟏𝑛×𝑚 − 𝐗𝐰 

e2e
1 𝟏 1×𝑚 ⊗ 𝐍 

𝑎 

− 𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

( 

𝐗𝐰e2e
2 𝟏 1×𝑚 − 𝐍 

)

⊘ 𝐗𝐰 

e2e
3 𝟏 1×𝑚 

) − 𝐐‖

‖

‖

2

𝐹

≤ 

1
2𝑛𝑚

‖

‖

‖

𝟏𝑛×𝑚 − 𝐗𝐰 

seq

1 𝟏 1×𝑚 ⊗ 𝐍 

𝑎 

− 𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

( 

𝐗𝐰seq

2 𝟏 1×𝑚 − 𝐍 

)

⊘ 𝐗𝐰 

seq

3 𝟏 1×𝑚) − 𝐐‖

‖

‖

2

𝐹 

,

(9)

where the superscript e2e denotes the weights obtained through the end-

to-end framework, and the superscript seq denotes the weights obtained 

through the sequential optimization.

4.5. Neural network ensemble for probabilistic trajectory prediction

To promote real-world decision-making applications that incorporate 

the early prediction of capacity trajectories, it is essential to understand 

the uncertainty of such methods. Typically, machine learning model un-

certainty is classified into two conceptual categories, namely aleatory 

and epistemic uncertainties. Aleatory uncertainty (also known as data 

uncertainty) is a measure of deviation within the dataset distribution; 

thus, it is irreducible. Epistemic uncertainty is uncertainty from our im-

perfect understanding and modeling of the data, and because of this, it is 

reducible. Therefore, we select ensemble learning based on neural net-

works to better quantify the epistemic uncertainty associated with our 

end-to-end learning framework.

For the neural network ensemble (NNE) applied in a general machine 

learning problem, each predicted mean has its corresponding predicted 

variance, which makes each prediction an independent Gaussian dis-

tribution. However, in our application, the predictions from machine 

learning models are the three empirical model parameters; providing 

three Gaussian distributions each for one empirical parameter makes it 

hard to propagate from uncertainties of parameters to the uncertainty 

of final trajectory prediction. So, we design the neural network in the 

ensemble to output three mean predictions and only one prediction re-

lated to the variance. Specifically, the three mean predictions are the 

empirical model parameters used to construct the predicted capacity tra-

jectory, and the fourth output from the model should reflect the variance

of overall trajectory prediction in our application. We adopt the variance 

prediction for a trajectory such that, for a given cell 𝑖, the predicted 

standard deviation ̂ 𝝈𝑖 

is defined as

̂ 𝝈𝑖 

= 𝐶𝑉 𝑖 

× 

( 

𝟏 − ̂ 𝐪𝑖
) 

, (10)

where 𝐶𝑉 𝑖 

is a scalar value for the coefficient of variation predicted 

by a model, and ̂ 𝐪𝑖 are vectors of the predicted capacity values at a 

given sequence of Ah-throughput for the cell 𝑖. An assumption made 

in this adaptation is that the predictive uncertainty should increase as 

the predicted capacity fade increases (i.e., predicting further into the 

future), and the prediction for the beginning of life (at 𝑁 = 0 with 

no capacity fade) should ideally be 0. The ensemble method used to 

quantify the uncertainty of the end-to-end framework neural network 

models is summarized in Fig. 6. In an ensemble of 𝑀 neural networks, 

each network outputs means for the three empirical model parameters 

(𝜇  𝑏1 , 𝜇𝑏2 , and 𝜇𝑏3 ) and a coefficient of variation (̂ 𝐶𝑉 ) for the predicted

trajectory. The network outputs can then be used to construct a Gaussian 

distribution which describes the mean and variance of the predicted 

trajectory.

Conventionally, a single neural network in an ensemble is trained by 

minimizing the overall negative log-likelihood (NLL) between true and

predicted values, with a general form for the mean NLL of 

NLL = 

1
𝑛

𝑛
∑ 

𝑖=1

1
2
log(2𝜋𝜎2𝑖 ) + 

(𝑦 𝑖 − 𝜇  𝑖) 

2

2𝜎  

2
𝑖

 

, (11)

( )

where 𝑛 is the number of samples. In our implementation, the NLL loss 

function is simplified and adapted as

NLL = 

1
2𝑚𝑛

𝑛
∑

𝑖=1

(

(

𝐪 𝑖 

− ̂ 𝐪𝑖
) 2 ⊘ ̂ 𝝈2

𝑖 + log ̂ 𝝈2 

𝑖

) 

. (12)

However, as widely reported in the literature, training a mean-variance 

estimation network by simply minimizing NLL can result in a biased 

model towards data points where the model predicts well at the be-

ginning of the training process [57–59]. Thus, we utilize a 𝛽-NLL loss 

function, which is defined to scale the gradient based on the prediction 

performance of each sample [58]. The 𝛽-NLL loss function adapted for 

the end-to-end optimization is defined as

𝛽-NLL = 

1
2𝑚𝑛

𝑛
∑ 

(( 

( 

𝐪 𝑖 

− ̂ 𝐪𝑖
) 2 ⊘ ̂ 𝝈2

𝑖 + log ̂ 𝝈2 

𝑖

) 

⊗ ⌊𝝈2𝛽
𝑖 ⌋ 

) 

, (13)
𝑖=1

where 𝛽 is a hyperparameter to balance between MSE and NLL, which 

is set at 0.5 based on the suggestion from the original work [58]. The 

symbol ⌊⋅⌋ denotes the operation of stopping gradient for the back-

propagation during the training process. In addition to utilizing the 

modified NLL loss function, warm-up training epochs are also introduced 

to ensure a better starting model before learning the mean and variance 

simultaneously, which has been proven effective in improving mean pre-

dictions [59]. During the warm-up, all variance values are set to unity 

and the model solely learns the mean prediction because the 𝛽-NLL loss 

then becomes the MSE loss.

Once 𝑀 individual models are trained, the ensemble prediction is 

obtained via a Gaussian mixture of a mean ̂ 𝐪∗𝑖 and variance ̂ 𝝈2 

∗

𝑖 [60],

which is formulated as

𝐪∗𝑖 = 

1
𝑀 

𝑀
∑ 

𝑗=1
̂ 𝐪𝑖,𝑗 

, (14)

̂ 𝝈2 

∗

𝑖 = 

1
𝑀

𝑀
∑ 

𝑗=1

( 

𝝈2
𝑖,𝑗 + 𝐪2𝑖,𝑗 − 𝐪∗2𝑖

) 

. (15)

Strictly speaking, the probability distribution assumed in the NLL loss 

function for model training (Eqs. 12 and 13) and the Gaussian mixture 

for ensemble prediction (Eqs. 14 and 15) should be a truncated Gaussian 

distribution, where ̂ 𝐪 can neither be greater than one (i.e., the capacity 

fade with respect to the initial capacity cannot be negative) nor less 

than zero (i.e., the capacity of a cell cannot be negative). However, we 

still assume an unbounded Gaussian distribution for our implementation 

since this study focuses on the presentation of combining an empirical 

capacity model with machine learning algorithms for trajectory predic-

tion, and our evaluation and comparison of the model performance are 

mainly based on the mean predictions. Also, by monitoring the training 

process, both physical constraints are rarely violated for training sam-

ples, but the violation may appear in some test samples, especially for 

the out-of-distribution (low-DoD) test samples. The implementation of 

NNE serves as a proof of concept that our proposed end-to-end opti-

mization can be probabilistic, and NNE is just one approach to enable 

probabilistic prediction and uncertainty quantification. Standard prob-

abilistic machine learning approaches, such as bootstrapping or Monte 

Carlo dropout, can also be implemented with the deterministic end-to-

end optimization models introduced in the previous section for obtaining 

probabilistic predictions [61,62]. Thus, a more complete and thorough 

benchmark study on the probabilistic early-life trajectory prediction and 

uncertainty quantification is outside the scope of this study.
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Fig. 6. A neural network ensemble, with 𝑀 individual mean-variance estimation networks, for probabilistic predictions of the capacity trajectory.

5. Results and discussion

In this section, we present the capacity trajectory prediction accu-

racy and compare six different methods from the aforementioned early 

capacity-trajectory prediction approaches, which are informed by the 

empirical capacity model. The six methods are listed below:

• Knot-point based reconstruction with an MLP network (Knot-point)

• Sequential optimization with an elastic net regression (Seq-ENR)

• Sequential optimization with an MLP network (Seq-MLP)

• End-to-end optimization with an elastic net regression (E2E-ENR)

• End-to-end optimization with an MLP network (E2E-MLP)

• End-to-end optimization with a neural network ensemble of 5 MLP

networks (E2E-NNE) 

5.1. Implementation details of trajectory prediction methods

For all methods with MLP networks as the machine learning algo-

rithm, we utilize Optuna framework [63], which is a comprehensive 

hyperparameter optimization framework, to help determine the num-

ber of layers, number of neurons, learning rate, weight decay, and batch 

size. For the E2E-NNE specifically, an additional hyperparameter of the 

warmup epoch number has been included in the optimization process. In 

the hyperparameter optimization, we perform 10-fold cross-validation 

based on groups (i.e., cells from a given group are only in the training 

or validation subset for each fold) and use the average of cross-validated 

errors as the objective to minimize. Since we have a very small training 

set of 92 samples, overfitting becomes a concern during network train-

ing for any given set of hyperparameters. To prevent overfitting, on top 

of limiting the maximum number of layers and number of neurons for 

each layer, the validation set of each fold is tracked to stop the train-

ing process when the validation loss is no longer decreasing (i.e., the 

early-stopping strategy for neural network training). The hyperparame-

ter optimization results are listed in Section A.3. The adaptive moment 

estimation (Adam) algorithm is used as the optimizer for the training 

process.

For each cross-validation fold, the validation set is excluded from 

the training set, resulting in a different training subset for updating the 

weights in each fold. Therefore, we include the results of all 10 models 

(or 10 ensembles for E2E-NNE), each trained with the training subset of 

a given fold, for later evaluations in Section 5.3. For methods with elas-

tic net regression as the machine learning algorithm (i.e., Seq-ENR and 

E2E-ENR), there is no need to exclude a validation set for early-stopping 

or any other evaluation during the training process once the hyperpa-

rameters are defined. So, we only train one model for these methods by 

fully utilizing the entire training set of 92 cells.

5.2. Error metrics

We utilize two commonly used error metrics for regression problems 

to evaluate the prediction performance of different empirical-model-

assisted approaches on the capacity trajectory, namely the mean abso-

lute error (MAE) and the root mean squared error (RMSE). These two 

metrics are in the same unit as the data, which is the normalized remain-

ing capacity on a percentage scale. The MAE and RMSE for a given cell 

𝑖 are formulated as

MAE 𝑖 

= 

1
𝑚

‖

‖ 

𝐪𝑖 − ̂ 𝐪𝑖‖ 

‖1 , (16)

RMSE 𝑖 

= 

√

1
𝑚

‖

‖ 

𝐪 𝑖 

− ̂ 𝐪𝑖‖‖
2
2 , (17)

where 𝐪 and ̂ 𝐪 are vectors of length 𝑚 for the true and predicted capac-

ity values at a given sequence of Ah-throughput for a cell, respectively. 

The error metrics are evaluated for each cell individually, and then the 

overall performance of a given model is taken by the mean of the error 

metric for all cells in a given subset (i.e., the mean MAE and the mean 

RMSE of a given subset). Mathematically, they can be expressed as

MAE = 

1
𝑛

𝑛
∑ 

=1
MAE 𝑖 

, (18)
𝑖
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RMSE = 

1
𝑛

𝑛
∑ 

𝑖=1
RMSE 𝑖 

, (19)

where 𝑛 represents the number of cells in a given subset (training set, 

high-DoD test set, or low-DoD test set).

For probabilistic predictions from neural network ensembles, we 

include the continuous ranked probability score (CRPS) as an addi-

tional error metric. The CRPS measures the discrepancy between a 

predicted probability distribution and the true observed value by com-

paring their cumulative distributions. A lower CRPS indicates a more 

accurate probabilistic prediction. For a given cell 𝑖, CRPS is computed 

as

CRPS 𝑖 

= 

1
𝑚

𝑚
∑ 

𝑗=1
∫

∞ 

−∞

(

𝐹 (𝑥; 𝑞∗𝑖,𝑗 , 𝜎
∗
𝑖,𝑗 ) − 𝐻(𝑞 𝑖,𝑗 )

)2
𝑑𝑥 , (20)

where 𝐹 (𝑥) is the cumulative distribution function defined by the pre-

dicted mean and standard deviation, and 𝐻(⋅) is the Heaviside step 

function centered at the true value 𝑞 𝑖,𝑗 

. Similarly, the average CRPS 

across all cells within a given data subset can be expressed as

CRPS = 

1
𝑛 

𝑛
∑ 

𝑖=1
CRPS 𝑖 

. (21)

5.3. Trajectory prediction performance

The overall prediction performance for all six methods is summa-

rized in Table 1 and Fig. 7. As mentioned in Section 5.1, for those 

methods with MLP networks as machine learning algorithms, the mean 

values of prediction error for each method across 10 models/ensem-

bles, one for each fold, are reported in Table 1, and the prediction 

errors for all 10 models/ensembles are visualized in Fig. 7 as box 

plots. For methods based on elastic net regression, only one model is 

trained for each method. Thus, no variation is shown in Fig. 7. Predicted 

trajectories from different methods for selected cells are included in 

Section A.5.

The first benchmarking method we consider is the knot point-based 

prediction with an MLP network. The neural network in this method 

learns the nonlinear relationship between features and the degrada-

tion rate within different health ranges. However, we observe a larger 

variation in the degradation trends in this dataset compared to other 

public datasets, which makes this approach hard to perform well. From 

Fig. 7, we can see a noticeable fold-to-fold variation in the training er-

ror compared to all other methods, which is even worse for the test 

errors over the two test sets. This observation indicates three issues 

that hinder the overall performance of this approach. First and fore-

most, we have a small aging dataset with wide-varying aging trends,

Table 1 

Summary of overall capacity trajectory prediction errors from different 

empirical-model-informed methods, reported in the unit of normalized capacity 

at % scale.

Method MAE RMSE

Training High DoD Low DoD Training High DoD Low DoD

Knot-point 2.77 % 3.82 % 15.99 % 4.25 % 5.86 % 22.05 %

Seq-ENR 2.32 % 2.63 % 13.62 % 3.08 % 3.46 % 19.28 %

Seq-MLP 2.32 % 3.00 % 15.98 % 3.06 % 4.05 % 21.73 %

E2E-ENR 1.43 % 1.97 % 3.77 % 1.71 % 2.46 % 4.39 %

E2E-MLP 1.61 % 1.96 % 5.92 % 1.93 % 2.38 % 7.62 %

E2E-NNE 1.70 % 2.00 % 6.44 % 2.10 % 2.45 % 8.05 %

which requires more data to allow sufficient learning of the degrada-

tion rates within different ranges with respect to the early life features. 

Second, there is a lack of information about the dependency of the 

degradation rate of a given health range on the history because the 

neural network outputs the Ah-throughput difference between each 

pair of subsequent knot points independently. Third, there is an issue 

with curve-fitting on a very small amount of points, especially when 

a fitted curve needs to be extrapolated beyond the data points it was 

fitted to.

The sequential optimization approach is implemented by using two 

different machine learning algorithms, one is a multitask elastic net 

model, and the other one is an MLP network, to map from the early-life 

features to the fitted empirical model parameters. From the overall re-

sults listed in Table 1 and Fig. 7, these two methods also exhibit high 

prediction errors towards the low-DoD test set, at a similar magnitude 

to the Knot-point method but with a much smaller fold-to-fold variation 

for the Seq-MLP. Both training errors and test errors on the high-DoD 

test sets are lower in both overall magnitude and variation compared to 

the Knot-point method but are still higher than the proposed end-to-end 

approach. There are multiple sources where the sequential optimization 

methods are limited in performance and could fail when extrapolating 

to out-of-distribution test samples. For the Seq-ENR method, a linear re-

gression model cannot sufficiently learn the relationship between PCA 

features and individually fitted parameters. Meanwhile, for the Seq-MLP 

method, given that a simple MLP network is trained with mini-batches 

and the early-stopping mechanism, it is likely that the feature-label re-

lationship learned from the training subset doesn’t reflect well on that 

of both test sets. Also, the machine learning loss that is minimized dur-

ing the sequential optimization training process is solely on predicting 

parameters, which is not directly scalable or mappable to the error of 

the entire trajectory (e.g., 1 % error in parameters may result in more

Fig. 7. Capacity trajectory prediction error of different empirical-model-informed methods for cells in three subsets. The red cross indicates the mean.

Applied Energy 389 (2025) 125703 

11 



T. Li, J. Liu, A. Thelen et al.

than 1 % error in the trajectory prediction). Furthermore, in the first 

optimization problem that minimizes the empirical model fitting error 

on individual cells, the optimal set of empirical parameters for each cell 

is not necessarily the global optimum given the non-convex nature of 

fitting the empirical model in Eq. (2). Under an assumption that the em-

pirical parameters should correlate with the early life features, either 

in a linear or a nonlinear fashion, the obtained local minima may intro-

duce more errors or deviations in the training labels (fitted parameters of 

the training set) compared to an “ideal” relationship. Or, in an intuitive 

way, the locally optimal fitted parameters may result in a hard-to-learn 

pattern with respect to the extracted features.

In contrast, the end-to-end optimization has shown better perfor-

mance during the training and over the two test cases. The E2E-ENR 

method targets to balance optimizing a linear relationship between the 

early-life features and the empirical parameters and optimizing the ca-

pacity trajectory prediction from the predicted parameters. It is also 

similar for the E2E-MLP and E2E-NNE methods while the relationship 

to find can be non-linear. For the test accuracy on the high-DoD test 

set, all three methods have similar performance based on the two de-

fined error metrics, where the mean MAE is less than 2 % and the mean 

RMSE is less than 3 %. However, by considering the out-of-distribution 

test performance, E2E-ENR outperforms all its peers and shows a higher 

stability in extrapolation. This can be attributed to the benefit of a sim-

ple linear model where the performance of extrapolation is better than a 

complicated, larger, non-linear NN model. In addition, since all machine 

learning models in this study have a very small training set to learn from, 

a key consideration for building a model is the ratio between the num-

ber of samples and the number of trainable parameters. A practical rule 

of thumb for achieving good generalization performance and avoiding 

overfitting to the training data on a small dataset is that the number of 

parameters should be limited to 10 % of the number of training data 

points (or 10-to-1 data points-to-parameters rule) [64]. Such a rule is 

to ensure that a model is provided with a sufficient amount of data to 

span through every dimension. In this study, the linear model has much 

fewer parameters to optimize during model training (only 30 weights 

plus three intercepts for E2E-ENR) compared to its MLP-based counter-

parts, and the ratio between the number of training samples and the 

number of trainable parameters for each output is close to the 10-to-1 

rule.

Furthermore, we can see that the E2E-NNE has a relatively larger 

fold-to-fold variation than E2E-MLP from Fig. 7. This can be partially 

attributed to the difference in the loss functions, where an MSE loss 

function minimized in the E2E-MLP method solely focuses on providing 

accurate mean predictions, but an NLL loss function minimized in the 

E2E-NNE method focuses on providing accurate predictions for proba-

bility distributions. Also, during the training process, more randomness 

is introduced in the E2E-NNE due to the random initialization of weights 

and the random shuffling of mini-batches for each individual model. If 

the randomness results in multiple poorly-performed individual models, 

the randomness can aggregate through the ensemble, resulting in an 

even higher error. This can be backed up by the observation in Section 

5.5, in which we have an ensemble of 10 individually trained models for 

each fold, and the overall performance in terms of the mean predictions 

worsens.

5.4. Analysis of empirical model parameter predictions

For all the methods included in this study, the ultimate goal of in-

corporating machine learning is to obtain a prediction of the battery 

capacity trajectory via the predicted empirical model parameters (as 

shown in Fig. 5). To better understand the performance of all six meth-

ods, it is worth visualizing the space of predicted parameters for each of 

them. It is worth noting that, as shown in Fig. 8, there are distinct dif-

ferences. Both Seq-ENR and E2E-ENR have narrower distributions with

clear linearity due to the nature of the machine learning algorithm. 

However, the trajectory prediction performances are significantly dif-

ferent, where E2E-ENR has a very stable performance in both test cases. 

This observation signifies that having a learnable pattern enables simple 

models to perform well on a complicated prediction problem, which is 

the main benefit provided by the end-to-end optimization framework. 

For Knot-point and Seq-MLP methods where MLP networks are used, 

the parameter space is sparse, and such sparsity mainly comes from the 

training dataset, which can be backed up by the lowest training errors 

among all methods. When the parameter space is sparse and the dataset 

is small, it is challenging for a machine learning model to learn the un-

derlying relationships well. On the other hand, the E2E-MLP method 

shows a very learnable pattern that is almost perfectly linear, but this lin-

ear pattern is totally different from the linear pattern from E2E-ENR. One 

contributor to this difference is that, for the E2E-MLP method, the output 

of the neural network (empirical parameters) is two-sided constrained 

by using scaled sigmoid activation function, while the E2E-ENR only has 

one-sided constraint (empirical parameters are positive). However, these 

two methods share very similar training accuracy, which highlights the 

nature of a non-convex objective for the end-to-end optimization.

5.5. A parametric study on neural network ensemble for probabilistic 

predictions

To better understand the performance of the neural network ensem-

ble, additional experiments were conducted to evaluate the performance 

of the individual models trained with the 𝛽-NLL loss function (𝑀 = 1) 

and an ensemble of 10 individual models (𝑀 = 10) for each fold. The 

results from this experiment are included in Table 2, and box plots in 

Fig. 9 showcase the fold-to-fold variation on performance metrics among 

all three cases (𝑀 = 1, 𝑀 = 5, and 𝑀 = 10). In addition to compar-

ing the trajectory prediction accuracy using the mean of the probability 

distribution, we include two more metrics specifically for evaluating 

probabilistic predictions: one is the CRPS, and the other one is the ex-

pected calibration error (ECE) of a calibration curve. The CRPS allows 

for a general evaluation of how well the predicted Gaussian distribution 

aligns with the observation. Then, the calibration curve (also known as 

the reliability curve) is introduced to better analyze the probabilistic 

predictions from these three models with different confidence levels, as 

shown in Fig. 10. A calibration curve consists of 𝐾 discrete confidence 

levels, and at each level, the ratio of samples within the confidence in-

terval on predicted distributions (the observed confidence) is plotted 

against the expected confidence. A calibration curve plot can be in-

terpreted with two regions: one is the overconfident region where the 

observed confidence is less than the expected confidence (i.e., the lower 

right region to the ideal prediction line), and the other one is the un-

derconfident region where the observed confidence is higher than the 

expected confidence (i.e., the upper left region to the ideal prediction 

line) [61]. Or, as an alternative way of understanding the calibration 

curve, an underconfident calibration means the model predicts a wider 

prediction interval (an upper bound and a lower bound for a given set 

of input) at a given confidence level than it is supposed to be, while an 

overconfident calibration means the model predicts a narrower predic-

tion interval at a given confidence interval than it is supposed to be. 

ECE is used to quantify the calibration error, which can be calculated as 

𝐸𝐶𝐸 = 

∑𝐾
𝑖=1(|𝑐 𝑖 

− 𝑐  𝑖 

|∕𝐾), where 𝑐 𝑖 

and 𝑐  𝑖 

are the expected confidence

and the observed confidence at the 𝑖-th confidence threshold from the 

𝐾 discrete cutoffs, respectively.

By ensemble of multiple models, we observe improvements over 

the two test sets. Even though the mean prediction accuracy values, 

measured by MAE and averaged across all 10 folds, are similar, the fold-

to-fold variation shrinks for the two ensembles. However, by comparing 

the MAE of 𝑀 = 5 and 𝑀 = 10 cases on the low-DoD test set, we no-

tice that an ensemble of more individual models does not necessarily
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Fig. 8. Distribution of predicted empirical model parameters from six different methods. For MLP-based methods, the predicted parameters from one fold are visualized 

in this figure. The MAE values of trajectory predictions from a given distribution are listed in the parentheses for the training set, the high-DoD test set, and the 

low-DoD test set, respectively.

Table 2 

Summary of capacity trajectory prediction errors and expected calibration errors for end-to-end neural network 

ensembles (E2E-NNE) with varying ensemble sizes 𝑀 . Results are averaged over 10-fold cross-validation.

𝑀 MAE CRPS ECE

Training High DoD Low DoD Training High DoD Low DoD Training High DoD Low DoD

1 1.85 % 2.43 % 7.84 % 1.46 1.86 5.72 0.058 0.067 0.223
5 1.70 % 2.00 % 6.44 % 1.41 1.63 4.16 0.100 0.078 0.094
10 1.73 % 2.05 % 7.14 % 1.44 1.66 4.65 0.102 0.077 0.087

Fig. 9. Performance of end-to-end neural network ensembles (E2E-NNE) using different ensemble sizes (𝑀). Each ensemble consists of 𝑀 individual mean-variance 

networks.

improve the prediction performance, where the interquartile range of 

MAE for the low-DoD test set shifts up (worsen) on 𝑀 = 10. The 

quality of probabilistic predictions evaluated by CRPS and ECE also 

improves significantly for ensembles of multiple individual mean-

variance estimation models, especially for the low-DoD test set that 

provides out-of-distribution samples. In other words, neural net-

work ensembles are able to capture higher uncertainty towards 

out-of-distribution samples and provide more reliable probabilistic 

predictions.

From the calibration curves, it is clear that neural network ensem-

bles (𝑀 = 5 and 𝑀 = 10) tend to be underconfident for the training and

high-DoD test sets (i.e., more samples observed in a given confidence in-

terval than expected) but slightly overconfident on the low-DoD test sets 

when we set the expected confidence to a low level (i.e., fewer samples 

observed in a given confidence interval than expected). This is mainly 

due to the limited size of training samples and an ideal assumption of 

a constant coefficient of variation when we formulate the customized 

NLL loss function. As a main takeaway of this parametric study, choos-

ing a proper number of individual models for the ensemble is needed 

to balance between the accuracy of mean predictions for a regression 

problem and the accuracy of the prediction interval. In practice, if the 

model is given a large enough training set that covers most of the test
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Fig. 10. Calibration curves for the E2E-NNE method with different numbers of individual models 𝑀 on the three subsets.

sample ranges, the proposed E2E-NNE method should provide robust 

probabilistic predictions and uncertainty quantification.

5.6. A parametric study on feature extraction intervals

Another parametric study we investigated is the effect of different 

RPT intervals for early-life feature extraction, denoted as 𝑤 𝑖 

−𝑤 0 

, on the 

performance of capacity trajectory prediction. In particular, we intend 

to answer the question – how early can our proposed end-to-end opti-

mization framework be to achieve an accurate prediction of the capacity 

trajectory. So, we applied the identical feature extraction and decom-

position approach described in Section 4.1 but from the RPT after one 

week of cycling (𝑤 1 

) up to the RPT after 6 weeks of cycling (𝑤 6 

). It 

is worth noting that the RPT after 4 weeks of cycling (𝑤 4 

) is omitted 

due to missing data for a batch of cells. The results obtained for this 

parametric study are based on the E2E-ENR method, and the prediction 

performance on three data subsets is visualized in Fig. 11.

From the results, we can easily observe that the training accuracy 

is consistent for all five different intervals. Both 𝑤 2 

− 𝑤 0 

and 𝑤 3 

− 𝑤0 

have slightly higher overall accuracy compared with the other three in-

tervals on the high-DoD test samples. However, for the 𝑤 2 

−𝑤 0 

interval, 

there is a significant increase in the prediction error on the low-DoD test 

samples. To better understand the difference in using different feature 

sets, we visually inspect the predicted parameter spaces, as shown in 

Fig. 12. It is clear that, for each predicted space, the predicted empiri-

cal model parameters for the high-DoD test samples are distributed with 

a similar pattern as the distribution of training samples. However, for 

𝑤 2 

− 𝑤 0 

, the distribution of parameters for low-DoD samples are much 

concentrated in which 𝑏 2 

and 𝑏 3 

are smaller, while for other models, the 

values of 𝑏 2 

and 𝑏 3 

for low-DoD samples are either similar to or larger 

than those for the training samples. Smaller 𝑏 2 

and 𝑏 3 

compared to the 

high-DoD samples are not expected for the low-DoD samples given that 

a larger 𝑏 2 

delays the onset of the knee effect and a larger 𝑏 3 enables 

a more gentle degradation trend beyond the knee point. Such an ob-

servation indicates that the weights (or the input–output relationship
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Fig. 11. Prediction performance of the E2E-ENR method with PCA features extracted from different RPT intervals.

Fig. 12. Distribution of predicted empirical model parameters from five different RPT intervals for feature extraction using the E2E-ENR method.

in general) learned are not always guaranteed to extrapolate well to a 

different feature distribution.

Although there is no significant difference in the overall training 

accuracy, 𝑤 5 

− 𝑤 0 

and 𝑤 6 

− 𝑤 0 

have distinct differences in the pat-

tern compared with the other three intervals. This observation can be 

mainly attributed to an inevitable change in early-life feature distribu-

tions. After five to six weeks of cycling, some fast-aging cells may have 

already transitioned to a different stage of degradation (e.g., reaching 

the knee onset or even beyond the knee point) and start experiencing dif-

ferent degradation mechanisms (e.g., particle cracking, loss of electrical 

contact, etc.) due to prolonged exposure to strenuous cycling condi-

tions compared to their slow-aging peers. These changes in underlying 

degradation dynamics would significantly alter the degradation infor-

mation captured by the extracted early-life features, thereby affecting 

the relationship between features and the empirical model parameters.

In general, unlike the original study of this dataset on EOL, where the 

model performance improves steadily when the RPT interval for fea-

ture extraction expands [16], the proposed methodology in this study 

is relatively agnostic to the RPT interval between RPTs. There are two 

factors contributing to the agnostic performance. First, using PCA to de-

compose the raw features derived from measurements can extract as

much information as possible from the entire feature space to describe 

the variance in training samples. Second, the proposed end-to-end opti-

mization can find its best way to minimize the overall error aggregated 

from (1) the machine-learning error between input features and empir-

ical model parameters and (2) the curve-fitting error between empirical 

model parameters and capacity trajectories.

6. Additional benchmarking studies

In this section, we present two benchmarking studies: (1) comparing 

the proposed end-to-end method with a state-of-the-art method and (2) 

demonstrating the generalizability of our proposed method to a dataset 

with a different battery chemistry and form factor.

6.1. A benchmarking study comparing with existing early prediction 

approaches

Our first benchmarking study compares the proposed neural net-

work ensemble method (E2E-NNE) with an LSTM ensemble method 

proposed by Rieger et al. [47]. Both methods use an NNL loss function,
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allowing individual models in the ensemble to learn and predict a nor-

mal distribution for each target observation. However, they differ in 

input and output representations and model structure. This LSTM en-

semble method (LSTM-E) considers two sets of input: a fixed-length 

sequence of capacity measurements immediately preceding the predic-

tion timestamp 𝑡 and early-life features, specifically PCA features from 

the first three weeks of cycling. The training process of an individual 

LSTM model is designed as follows. First, the sequence data are passed 

through an LSTM layer before being concatenated with early-life fea-

tures. Second, the concatenated features undergo transformation through 

a hidden layer with the ReLU activation. Finally, the model outputs the 

predicted mean and variance of a normal distribution describing the ca-

pacity ratio between the current step and the next step (𝑄 𝑡+1 

∕𝑄 𝑡 

). In this 

problem specifically, the model is trained for one-step-ahead prediction, 

and the capacity trajectories are interpolated based on a fixed step size 

of 5 Ah-throughput. Multi-step predictions are recursively generated for 

a cell until the cell reaches its EOL: the predicted capacity value at each 

given step is appended to the observed trajectory and used as input for 

the subsequent step. After multiple individual models are trained, the fi-

nal ensemble prediction is obtained by combining predictions from the 

individual models in the form of a Gaussian mixture, as described in Eqs. 

(14) and (15).

Both ensemble methods in this benchmarking study are trained us-

ing 10-fold cross-validation with ensembles of five individual models. 

For each fold, the held-out validation subset will be used to trigger early 

stopping if the validation error stagnates or increases. The mean pre-

diction performance of both E2E-NNE and LSTM-E across all 10 folds 

is summarized in Table 3, and the fold-to-fold variation of these perfor-

mance metrics is visualized in Fig. 13. Overall, the prediction accuracy 

of E2E-NNE, evaluated using MAE and CRPS, is comparable to that of 

the state-of-the-art LSTM-E method. E2E-NNE outperforms in the high-

DoD test set, and LSTM-E outperforms in the low-DoD test set, both 

marginally. From an uncertainty calibration standpoint, E2E-NNE ex-

hibits a slightly lower calibration error (ECE) than LSTM-E across all 

three subsets. Moreover, when looking at the calibration curves of both 

methods in Fig. 14, it is clear that LSTM-E tends towards overconfidence, 

while E2E-NNE is generally underconfident on both training and high-

DoD test sets. In practice, underconfident models are often preferred for

early prediction tasks, given the limited input information and long pre-

diction horizons relative to available observations. Although the neural 

network ensemble variant of our proposed end-to-end approach does not 

significantly improve prediction accuracy over LSTM-E, one key bene-

fit of E2E-NNE is its flexibility. Unlike LSTM-E, the proposed method 

can accommodate different machine learning algorithms, which can 

be as simple as linear regression, enhancing its adaptability to diverse 

predictive settings with varying data quantities.

6.2. A benchmarking study on battery with a different chemistry and form 

factor

In Section 5, we demonstrate the proposed end-to-end optimization 

framework on the ISU-ILCC battery aging dataset with diverse degra-

dation trends. To better showcase that the end-to-end framework can 

be applied to different test cases, we use a dataset published by Stroebl 

et al. [65], which uses cells with different chemistry and form factor. 

This dataset consists of 279 Samsung INR21700-50E cylindrical cells 

with a nominal capacity of 4.9 Ah and lithium nickel cobalt aluminum 

oxide (NCA) as the active material on the positive electrode [66]. Among 

all cells, 49 groups of cells (three cells per group) were subjected to 

various cycling conditions defined by five design variables, namely the 

charge rate, discharge rate, ambient temperature, maximum SOC, and 

DoD. Since cells were not fully discharged in each cycle, RPTs were per-

formed at predefined time intervals to obtain universal full-DoD capacity 

measurements for analysis. Also, the experimental design for this dataset 

consists of two batches of cells (referred to as Stage 1 and Stage 2 in the 

data descriptor), each following a distinct sampling strategy for defin-

ing cycling conditions. More details about the aging study design and 

experimental procedures can be found in the data descriptor [65].

With a wide range of design variables, the observed capacity tra-

jectories in this dataset exhibit significant diversity. However, since the

charge rate and discharge rate are within the manufacturer’s specifi-

cations and the SOC level during cycling is constrained between 20 % 

and 80 %, the overall degradation rate is much slower than in other 

accelerated aging datasets such as the ISU-ILCC dataset [50] and the 

124-cell LFP dataset [6]. As a result, cycling tests were terminated at 

various remaining capacity levels, with many cells stopped from testing

Table 3 

Comparison of capacity trajectory prediction errors and expected calibration errors between LSTM ensembles (LSTM-E) 

and neural network ensembles (E2E-NNE), both with five individual models 𝑀 = 5 (mean of the 10 folds).

Method MAE CRPS ECE

Training High DoD Low DoD Training High DoD Low DoD Training High DoD Low DoD

LSTM-E 1.44 % 2.30 % 5.14 % 1.06 1.67 3.52 0.120 0.141 0.107
E2E-NNE 1.70 % 2.00 % 6.44 % 1.41 1.63 4.16 0.100 0.078 0.094

Fig. 13. Fold-to-fold performance variation of LSTM-E and E2E-NNE, evaluated by three metrics for probabilistic predictions.
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Fig. 14. Calibration curves of LSTM-E and E2E-NNE on the three subsets.

before reaching 90 % remaining capacity. So, to retain as many cells 

as possible for the benchmark study while relying solely on true RPT 

measurements for remaining capacity, we set the EOL for this dataset at 

95 % and filtered all cells with no capacity measurements beyond the 

EOL. All remaining cells from Stage 1 form the training set, and cells 

from Stage 2 are considered the test samples. The observed trajectories 

from both subsets of cells can be found in Fig. 15. For this dataset, the 

end-to-end framework utilizes a power-law empirical model, which can 

be expressed as

𝑄(𝑁 ; 𝑐 1 

, 𝑐 2 

) = 1 − 𝑐 1 

𝑁 

𝑐 2 , (22) 

where 𝑐 1 

and 𝑐 2 

are cell-specific parameters that machine learning

models predict using input features.

Before training early prediction models, the early-life data must be 

defined. Given that the earliest available RPT occurs after one week of 

cycling, we extract five early-life features from data collected during the 

initial RPT and the week 1 RPT. We also use the five cycling condition 

variables as additional input features. The first two early-life features

come from the well-known capacity–voltage curve difference [6], 

which are log(|mean(Δ𝑄 w1−w0 

(𝑉 ))|) and log(|var(Δ𝑄 w1−w0 

(𝑉 ))|). 

The other three early-life features are from the voltage-

windowed incremental capacity curve differences [16], which are 

log(|mean(Δ𝑑𝑄∕𝑑𝑉 

2.5 V−3.4 V 

w1−w0 (𝑉 ))|), log(|mean(Δ𝑑𝑄∕𝑑𝑉 3.4 V−3.7 V 

w1−w0 (𝑉 ))|), 

and log(|mean(Δ𝑑𝑄∕𝑑𝑉 3.7 V−4.0 V 

w1−w0 (𝑉 ))|). The mid-voltage range between 

3.4 V and 3.7 V aligns with the major peak on the incremental capacity 

curve (see Fig. A.2). At the time of this work, no published early 

prediction models exist for this dataset. Since this benchmarking study 

aims to conduct a preliminary investigation on the feasibility of the 

proposed end-to-end method on an aging dataset with different chem-

istry, feature engineering on this dataset is not extensively optimized, 

and we acknowledge that the results of this benchmarking study are by 

no means the best of what we can get from this dataset.

In this preliminary benchmarking study, we consider three test cases 

with different features for the elastic-net-based end-to-end framework 

(E2E-ENR).

• The first case uses only the five parameters characterizing the cycling

conditions, excluding any cell-specific measurements.

• The second case directly uses the five early-life features defined

above.

• For the third case, we concatenate the five cycling condition param-

eters with the five early-life features and reduce the dimensions of 

features from ten to five using PCA transformation.

To ensure a sufficient sample-to-feature ratio, we limit the number 

of PCA-transformed features to five, following the 10-to-1 sample-to-

feature ratio rule [64]. Limiting the feature size is particularly critical 

for this benchmark study due to the smaller training sample size than the 

ISU-ILCC dataset. The prediction results from these three test cases are 

summarized in Table 4, and the predicted trajectories for selected cells 

are shown in Fig. A.8. The end-to-end approach achieves good accuracy 

by only utilizing the cycling condition parameters as inputs. However, a 

comparison of the training and test errors reveals significant differences 

in both MAE and RMSE, suggesting potential overfitting. This can likely 

be attributed to the discrete and sparse nature of cycling conditions, as 

the experimental design follows a grid-based sampling strategy – only 25 

samples are available in a 5-dimensional design space. Incorporating the 

early-life features largely reduces the discrepancy between the training 

and test errors, but the overall error magnitude becomes slightly higher. 

The minimal improvement observed when adding the cell-specific fea-

tures suggests that the selected five early-life features are not optimized 

for predictive performance in this new dataset. Further refinement of 

feature engineering is left for future studies.

It is important to note that the error magnitudes reported in Table 

4 are not directly comparable to those reported in other tables within
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Fig. 15. Capacity trajectories of cells from the public NCA dataset after preprocessing. The black dashed line highlights the Ah-throughput value of 1150, indicating 

the threshold before which all early-life data are collected.

Table 4 

Summary of overall capacity trajectory prediction errors by us-

ing different feature sets, reported in the unit of normalized 

capacity at % scale.

Features MAE RMSE

Training Test Training Test

Cycling conditions 0.27 % 0.61 % 0.33 %

0.72 %

0.55 %

0.76 %

Early-life features 0.60 %

0.46 %

0.70 % 0.83 %

PCA features 0.69 % 0.87 %

this paper (MAE and RMSE reported in Table 1 as well as MAE reported 

in Tables 2 and 3). For instance, a 1 % error in the unit of normalized 

capacity in Table 4 corresponds to 20 % of the targeted prediction range 

(from 100 % to 95 % normalized capacity). Conversely, the EOL thresh-

old for the ISU-ILCC dataset is at 80 % normalized capacity, meaning 

that an equivalent 1 % error in the NCA dataset corresponds to a 4 % 

error in the ISU-ILCC dataset. Considering this difference in the EOL 

threshold, the prediction accuracy of E2E-ENR on the NCA test subset 

is at a similar level to that of E2E-ENR on the low-DoD test set of the 

ISU-ILCC dataset.

7. Conclusion

This work explores three approaches incorporating empirical capac-

ity fade models for machine learning-based early-life battery capacity 

trajectory prediction. The empirical capacity fade model used in this 

study incorporates long-term degradation trajectory information into 

the machine learning model fitting process, leading to improved ex-

trapolation on out-of-distribution test samples. The proposed end-to-end 

learning framework achieves less than 2 % MAE on in-distribution 

samples (high-DoD test set) and less than 4 % on out-of-distribution 

samples (low-DoD test set). At the same time, comparable base-

line approaches (the knot point-based approach and the sequential 

optimization approach to trajectory prediction) exhibit greater than 

10 % MAE on out-of-distribution test samples. Such distinct perfor-

mance differences highlight the benefits of coupling empirical bat-

tery capacity fade models with machine learning during the training 

process.

However, there are still some limitations to this work. First, the ca-

pacity fade model we use can only capture the cyclic aging behaviors, 

and the calendar aging part is neglected, which is also an important 

contributor to battery degradation. Second, a thorough study of the

probabilistic prediction of capacity trajectory and uncertainty quantifi-

cation using the proposed end-to-end framework is yet to be conducted. 

Third, the proposed end-to-end framework is currently limited to ac-

commodating one empirical capacity model at a time, which partially

contributes to lower prediction accuracy towards out-of-distribution

samples. An ideal early prediction model should be more generaliz-

able and robust, distinguishing between different degradation trends 

(e.g., two-stage vs. three-stage degradation) based on early-life data and 

providing more accurate predictions across varying degradation trends. 

This remains an open problem that merits further investigation by re-

searchers in the field. In addition, a critical knowledge gap exists in the 

application domain of early life prediction methods. Specifically, there 

is a need to further our understanding of utilizing early trajectory pre-

diction to optimize the design of aging experiments for accelerating the 

process of capacity fade modeling. We will explore this new application 

in future work.
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A. Appendix 

A.1. Details of early-life features extracted from RPT data

A total of 29 features were extracted from six different sources for 

the ISU-ILCC dataset. A more complete description and discussion of 

these features can be found in the previous work [16]. For the features 

extracted from curves windowed by voltage cutoffs, there are three sets 

of bounds: a low-voltage window between 3.0 V and 3.6 V, a mid-voltage 

window between 3.6 V and 3.9 V, and a high-voltage window between 

3.9 V and 4.2 V (Fig. A.1)

A.2. Proof of end-to-end optimization performance

For the end-to-end framework problem, we can obtain that

min
𝐛 𝟏 ,𝐛 𝟐 

,𝐛𝟑 

[ 1
2𝑛𝑚 

‖𝟏 𝑛×𝑚 

− 𝐛 𝟏 

𝟏 1×𝑚 ⊗ 𝐍 

𝑎

−𝟏 𝑛×𝑚 ⊘
(

𝟏𝑛×𝑚 + exp 

( 

𝐛𝟐 

𝟏 1×𝑚 − 𝐍 

)

⊘ 𝐛 𝟑 

𝟏 1×𝑚
)

− 𝐐‖

2
𝐹

]

≤ min 

𝐖
1

2𝑛𝑚 

‖𝟏 𝑛×𝑚 

− 𝐗𝐰 1 

𝟏 1×𝑚 ⊗ 𝐍 

𝑎

− 𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

( 

𝐗𝐰2 

𝟏 1×𝑚 − 𝐍 

)

⊘ 𝐗𝐰 3 

𝟏 1×𝑚) − 𝐐‖

2
𝐹

= 1
2𝑛𝑚

‖𝟏 𝑛×𝑚 − 𝐗𝐰 

e2e
1 𝟏 1×𝑚 ⊗ 𝐍 

𝑎

− 𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

(

𝐗𝐰 

e2e
2 𝟏 1×𝑚 

− 𝐍 

)

⊘ 𝐗𝐰 

e2e
3 𝟏 1×𝑚) − 𝐐‖

2
𝐹 , (A.1)

where the inequality indicates that the end-to-end optimization re-

sults (right-hand side of the inequality) cannot achieve higher accuracy 

than fitting empirical models to individual cells (left-hand side of the 

inequality).

Furthermore, as a feasible solution to the end-to-end optimization 

problem, the sequential optimization cannot achieve a better solution. 

This is due to the optimality of end-to-end optimization that any possible 

better solution obtained by sequential optimization can be achieved by 

end-to-end optimization, which yields

min
𝐖

1
2𝑛𝑚 

‖𝟏 𝑛×𝑚 

− 𝐗𝐰 1 

𝟏 1×𝑚 

⊗ 𝐍 

𝑎 

− 𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

( 

𝐗𝐰 2 

𝟏 1×𝑚 

− 𝐍 

)

⊘ 𝐗𝐰 3 

𝟏 1×𝑚) − 𝐐‖

2
𝐹

≤ 1
2𝑛𝑚

‖𝟏 𝑛×𝑚 − 𝐗𝐰 

seq

1 𝟏 1×𝑚 ⊗ 𝐍 

𝑎

− 𝟏 𝑛×𝑚 

⊘ (𝟏 𝑛×𝑚 + exp 

(

𝐗𝐰 

seq

2 𝟏 1×𝑚 − 𝐍 

) 

⊘ 𝐗𝐰 

seq

3 𝟏 1×𝑚) − 𝐐‖

2
𝐹 . (A.2)

By combining the two inequalities in Eqs. (A.1) and (A.2), we can obtain 

the relation in Eq. (9).

Fig. A.1. The evolution of capacity–voltage curves, incremental capacity curves, and differential voltage curves as the NMC cell ages.

Fig. A.2. The evolution of capacity–voltage curves and incremental capacity curves as the NCA cell ages.
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Table A.1 

Source, mathematical formula, and description of early-life features.

Source Feature Description

Cycling conditions 𝐶 chg Charge C-rate

Discharge C-rate

Depth of discharge

Charging stress

Discharging stress

Mean cycling stress 

Multiplicative cycling stress

𝐶 dchg

DoD

𝐶 0
 

.5 
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𝐶 0
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Incremental capacity curves (𝑑𝑄∕𝑑𝑉 (𝑉 )) Mean of the incremental curve difference between two RPTs

Variance of the incremental curve difference between two RPTs

Mean of the low-voltage 𝑑𝑄∕𝑑𝑉 (𝑉 ) curve difference between two RPTs

 Mean of the mid-voltage ∕  RPTs  (  ) curve difference between two𝑑𝑄 𝑑𝑉 𝑉
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 Variance of the low-voltage ∕  RPTs  (  ) curve difference between two𝑑𝑄 𝑑𝑉 𝑉

Variance of the mid-voltage 𝑑𝑄∕𝑑𝑉 ( 𝑉 ) curve difference between two RPTs

Variance of the high-voltage 𝑄∕𝑑 𝑑𝑉 (𝑉 ) curve difference between two RPTs

Capacity–voltage curves (𝑄(𝑉 )) Mean of the QV curve difference between two RPTs 

Variance of the QV curve difference between two RPTs
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Discharge capacity values Initial capacity

Initial capacity at low-voltage

Initial capacity at mid-voltage

Initial capacity at high-voltage

Capacity fade  between two RPTs

Differential voltage curves (𝑑𝑉 ∕𝑑𝑄(𝑄)) Δ DVA 1𝑄 ,
w3−w0

Δ 2𝑄DVA,
w3−w0

Δ𝑄DVA,3
w3−w0

Δ𝑄DVA,4
w3−w0

Change of the capacity measured between the third peak and the end of           

discharge on 𝑑𝑉 ∕𝑑𝑄(𝑄) curve 

Change of the capacity measured between the beginning of discharge and the 

second peak on 𝑑𝑉 ∕𝑑𝑄(𝑄) curve 

Change of the capacity measured between the second peak and the end of             

discharge on 𝑑𝑉 ∕𝑑𝑄(𝑄) curve 

Change of the capacity measured between the second peak and the third peak             

on 𝑑𝑉 ∕𝑑𝑄(𝑄) curve

Table A.2 

Hyperparameters for the MLP networks in various approaches.

Hyperparameter Knot-point Seq-NN E2E-NN E2E-NNE

Number of layers 4 3 3 4

Number of neurons 6 16 13 5

Learning rate 4.868 × 10 

−2 1.148 × 10 

−4 1.076 × 10 

−2 1.028 × 10 

−3 

Weight decay 5.041 × 10 

−7 5.704 × 10 

−8 9.713 × 10 

−3 3.572 × 10 

−7 

Batch size 35 23 53 43 

Warm-up epochs – – – 667

A.3. Hyperparameter optimization results for all approaches with MLP

neural networks involved

See Table A.2.

A.4. Computational time results

For all methods presented in this work, the model training processes 

were completed on a local PC with an Intel 

® Core™ i5-10505 6-core

Table A.3 

Training time averaged across 5 runs for each method, reported in the unit of 

seconds.

Method Knot-point Seq-ENR Seq-NN E2E-ENR E2E-NN E2E-NNE

(𝑀 = 5)

Package used PyTorch Scikit-learn PyTorch Scipy PyTorch PyTorch

Training time 1.41 0.42 2.45 20.86 1.45 29.50

CPU, 16GB of RAM, and no external GPU. The training time for a single 

model or a single ensemble of 5 models is listed in Table A.3. 

A.5. Predicted trajectories for selected cells

See Figs. A.3, A.4, A.5, A.6, A.7 and A.8. 

Data availability

The aging dataset used for this study has been shared publicly [50, 

65]; the code for this study can be found on GitHub (https://github. 

com/tingkai-li/empirical_early_prediction).
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Fig. A.3. Predicted trajectories from selected deterministic methods for selected cells.
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Fig. A.4. Predicted trajectories from E2E-NNE (𝑀 = 1) for selected cells.
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Fig. A.5. Predicted trajectories from E2E-NNE (𝑀 = 5) for selected cells.
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Fig. A.6. Predicted trajectories from E2E-NNE (𝑀 = 10) for selected cells.
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Fig. A.7. Predicted trajectories from LSTM-E method for selected cells in the public NCA dataset.
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Fig. A.8. Predicted trajectories from E2E-ENR method for selected cells in the public NCA dataset.
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